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Abstract

Introduction: People with Down syndrome (DS) are particularly susceptible to

Alzheimer’s disease (AD) due to the triplication of the amyloid precursor protein (APP)

gene. In this cross-sectional study, we hypothesized that choroidal thinning reported in

sporadic AD (sAD) is mirrored in adults with DS.

Methods:The posterior pole of the eye for 24 adults withDS and 16 age-matched con-

trols (Ctrl) were imagedwith optical coherence tomography. Choroidal thickness (ChT)

was measured and analyzed in relation to cognitive status and cerebral amyloid beta

(Aβ) load.
Results: ChT was increased in people with DS (pwDS) compared to Ctrl. This increase

was associatedwith gender differences and positively correlatedwith cerebral Aβ load
in a small subset. There was no significant correlation detected between ChT and age

or cognitive status.

Discussion: In contrast to sAD this study found a significantly thicker choroid in pwDS.

Whether these changes are related to Aβ pathology in DS needs further investigation.

KEYWORDS
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1 INTRODUCTION

People with Down syndrome (pwDS) are known to be at increased risk

of developing Alzheimer’s disease (AD) due to the trisomy of chromo-

some 21, which results in the overproduction of amyloid beta (Aβ) pro-
tein and plaque formation in the brain.1 Improved support has led to a

two-fold increase in life expectancy for pwDS resulting inADbecoming

an increasing concern.2

Because the DS population represents the largest cohort of genetic

AD, with about 6 million people worldwide, understanding early AD

biomarkers in DS is crucial for clinical studies for DS and sAD.3,4 An

increasing number of studies investigating the brain, cerebrospinal

fluid (CSF) and blood biomarkers have shown that the natural history

of AD in pwDS is very similar to those with sporadic AD (sAD)3,5–8
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As a potential early biomarker for AD, retinal thinning has been

investigated in DS. In contrast to what has been observed in sAD

or mild cognitive impairment (MCI), the retina was found to be

thicker in those with DS compared to age-matched controls9

despite the AD pathology and the accelerated aging effect

in DS.2,10

In sAD, the choroid also undergoes thinning, both in MCI11 and

later stages,12,13 as assessed in vivo using enhanced depth imaging

optical coherence tomography (EDI-OCT). It is believed that Aβ accu-
mulation in the choroid leads to inflammation, which results in neu-

rodegeneration and vascular attenuation, mirroring the evolution of

the amyloid cascade in the brain.11,13 Despite the choroid having been

proposed as a potential early and non-invasive biomarker that may

reflect neurodegeneration in thebrain, the clinical utility of imaging the

Alzheimer’s Dement. 2021;13:e12170. wileyonlinelibrary.com/journal/dad2 1 of 8

https://doi.org/10.1002/dad2.12170

mailto:i.lengyel@qub.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/dad2
https://doi.org/10.1002/dad2.12170


2 of 8 CSINCSIK ET AL.

choroid remains inconclusive in sAD.14,15 Given that pwDS overpro-

duce Aβ, studying choroidal thickness (ChT) in adults with DS before

or during the onset of clinical dementia, may provide a better insight

into early choroidal changes due to developing AD pathology. The

only published study in the literature assessed ChT in DS in children

and adolescents and found no evidence of choroidal thinning rela-

tive to an age-matched Ctrl group.16 However, ChT has never been

assessed in adults with DS. For the first time, this cross-sectional study

investigated whether choroidal thinning reported in sAD and MCI is

mirrored in adults with DS before clinical evidence of dementia is

apparent.

2 METHODS

2.1 Study recruitment and imaging

The imaging was undertaken by trained examiners in Cambridge, UK.

The pwDS were recruited from an existing cohort.9 Age-matched con-

trols were recruited locally in Cambridge. The study was conducted

with ethical approval from the East of England Cambridge Central

Research Ethics Committee (study ref. 14 /EE/1118), and in accordance

with the World Medical Association Declaration of Helsinki. Written

informed consent was obtained from all individuals, except for those

pwDS who lacked the capacity to consent in which case advice was

sought from an identified consultee in keeping with theMental Capac-

ity Act 2005.

After pharmacological mydriasis (1% tropicamide), all participants

were imaged using the Heidelberg Spectralis OCT (Heidelberg Engi-

neering GmbH, Heidelberg, Germany, Camera Model S3610) in EDI

mode, between November 2018 and October 2019. Each foveal-

centered EDI scan consisted of 25 high resolution (1536 A scans) 9

times averagedB scans, spaced 240 μmapart, with a total scanned area

of 300 × 20◦, using Automatic Real-Time Tracking (ART) and the Retina

module (Figure 1 A1).

2.2 Choroidal segmentation

As described by Chhablani et al., manual segmentation was performed

on each of the 25 horizontal B-scans for the right eye only of each

participant using Heidelberg Eye Explorer (v.1.10.4.0).17 The Inter-

nal Limiting Membrane (ILM) segmentation line was moved to the

RPE/Bruch’s membrane interface, and the Bruch’s membrane seg-

mentation line to the inner border of the sclera–the choroidal scle-

ral interface (CSI) (Figure 1 B1 and B2). Consequently, the lines now

demarcated choroidal rather than retinal thickness. In cases where the

suprachoroidal layer (SCL) (hyperreflective suprachoroidal stroma and

hyporeflective suprachoroidal space [SCS]) was present, the inner bor-

der of the sclera was posterior to the SCS (Figure 1 C2). If the SCL

was absent, the inner border of the sclera corresponded to the inter-

face between the hyporeflective vasculature and the hyperreflective

HIGHLIGHTS

∙ This is the first study investigating ChT1 in pwDS2.

∙ Manual segmentation revealed an increased ChT1 in

pwDS2.

∙ There is an increased prevalence of suprachoroidal space

in pwDS2.

∙ Cerebral Aβ3 load correlates with ChT1 in a small subset

of pwDS2.

∙ The choroidal thickening in pwDS2 is contrary to the thin-

ning reported in sAD4.

RESEARCH INCONTEXT

1. Systematic review: Based on reviewing the available lit-

erature, using keywords, optical coherence tomography,

choroidal thickness (ChT), and Down syndrome (DS), we

identified one study assessing ChT in DS. This study

recruited children with DS and found no significant dif-

ference in ChT compared to age-matched controls. This

is appropriately cited in our manuscript.

2. Interpretation: In contrast to the thinning observed in

sporadic Alzheimer’s disease (AD), this study found a

thicker choroid in adults withDS, before the onset of clin-

ical dementia. The lack of changes in ChT in children with

DS suggesting that the thicker choroid detected in our

study is a feature of an older DS population and may be

the result of developing AD pathology.

3. Futuredirection: As this is the first time that thickeningof

the choroid is recorded in DS, further studies are needed

to verify this observation. Furthermore, it will be impor-

tant to determine whether the result is due to the devel-

oping AD pathology.

sclera (Figure 1C1). After segmentation, the averaged thickness values

of the choroid were manually recorded in micrometers for each sec-

tor of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid

with circle diameters of 1, 3, and 6 mm (Figure 1 A2). A second grader

re-segmented the single B-scan crossing the fovea for each study par-

ticipant to validate the manual segmentation. After re-segmentation,

13 measurement points were defined, one at the foveola and 500 μm
intervals from the foveola to 3 mm nasal and 3 mm temporal (ETDRS

grid size). The thickness values for each pre-defined point were manu-

ally recorded, and interobserver agreementwas calculated. In addition,

retinal thickness values were also extracted using the corresponding

posterior pole scans and ETDRS grid, as reported in,9 to assess its rela-

tionship with ChT.
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F IGURE 1 Determination of choroidal thickness in control and in people with Down syndrome. A1 and A2 show the infrared fundus image
with green lines demarcating the scanning area (A1. One of the 25 corresponding Enhanced depth imaging (EDI) Optical coherence tomography
(OCT) B-scans (1/25) is depicted in B1 and B2. The retina is outlined as a result of automated retinal segmentation (B1), and the choroid is outlined
as a result of manual segmentation (B2). The lines denoting the internal limitingmembrane (ILM) (yellow arrows) and Bruch’s membrane (BM)
(pink arrows) (B1) weremoved from their automated position to delineate the retinal pigment epithelium/Bruch’s membrane interface and the
choroid-sclera interface respectively (B2). After choroidal segmentation, the thickness values for each sector of the foveal centered Early
Treatment Diabetic Retinopathy Study (ETDRS) grid were extracted (A2) and plotted onD (Ctrl= black; pwDS= red). EDI1OCT2 B scan of the
same area of the posterior pole from a Ctrl (C1) and pwDS (C2), illustrating the suprachoroidal layer (SCL) with the hyperreflective stroma (green
arrowhead) and the suprachoroidal space (SCS) (white arrowhead). The line graph onD shows the choroidal thickness in Ctrl (black line and error
bars) and pwDS (red line and error bars). Estimatedmarginal mean values of the adjustedmodel were plotted in each group for each sector of the
ETDRS3 grid. Box andwhisker plots on E show the unadjusted individual choroidal thickness values inmales and females for both Ctrl and pwDS in
the inner circle (C), inner ring (average of SI, TI, II, and NI sectors) and outer ring (average of SO, TO, IO, NO sectors) of the ETDRS grid as well as
globally (all ETDRS sectors averaged). Abbreviations: Ctrl, control; pwDS, people with Down syndrome; SO, superior outer; SI, superior inner; TO,
temporal outer; TI, temporal inner; IO, inferior outer; II, inferior inner; NO, nasal outer; NI, nasal inner; C, inner circle. *, P< 0.05

EDI scans with missing B scans or missing parts of the CSI, with

a quality score (QS) <15 and with scan focus <−6D or >6D were

excluded, according to obvious problems (O), poor signal strength

(S), centration of scan (C), algorithm failure (A), retinal pathology

other than MS related (R), illumination (I) and beam placement (B)

(OSCAR-IB) criteria.18 Additional exclusion criteria were history of

eye surgery within 3 months of retinal imaging, intravitreal injection,

severe cataract, glaucoma, age-related macular degeneration, and dia-

betes mellitus. Presence of psychiatric illness other than dementia for

theDSgroup, or includingdementia for the control group,was a further

exclusion criterion.

2.2.1 CAMCOG-DS and CAMDEX-DS

The Cambridge Cognition Examination DS (CAMCOG-DS) was used

to assess areas of cognition known to decline with the onset of

dementia.19 The Cambridge Examination for Mental Disorders of

Older People with Down Syndrome and Others with Intellectual Dis-

abilities (CAMDEX-DS)wasused to assess changes related to theonset

of dementia retrospectively and to exclude the possibility of other dis-

orders that mimic dementia.20 PwDS did not show signs of clinical

dementia based on their CAMCOG-DS score and CMDEX-DS assess-

ment. CAMCOG-DS scoreswere available for 21 of 24DSparticipants.
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TABLE 1 Study characteristics

Characteristics

Controls

N= 16

pwDS

N= 24 P

Age: y (mean [SD]) 36.31 (9.31) 38.50 (7.25) .410*

CAMCOG-DS‡ (mean [SD]) N/A 78.43 (16.08) N/A

MOF ctx§ (mean [SD]) N/A 0.287 (0.08) N/A

RMF ctx§ (mean [SD]) N/A 0.311 (0.05) N/A

Sex; male [N(%]) 7 (43.8) 15 (62.5) .243†

Imaging time; AM (N[%]) 11 (68.8) 6 (25.0) .006†

SCS; present (N[%]) 0 (0%) 14 (58.3%) .000 †

Characteristics for control and pwDS including between-group comparisons.

Bold numbers indicate a significant difference (P< 0.05).

Abbreviations: pwDS, people with Down syndrome; CAMCOG-DS, Cambridge Cognition Examination DS; AM, ante meridiem; SCS, suprachoroidal space;

MOF, medial orbitofrontal; RMF, rostral middle frontal; Ctx, cortex.
*Independent sample t test for continuous variables; †χ2 test for categorical variable; ‡CAMCOG-DS scores were available for only 21 of 24 pwDS; §Medial

orbitofrontal (MOF) and rostral middle frontal (RMF) cortex (ctx) Aβ scores were available for only 6 of 24 pwDS.

2.2.2 Brain imaging

For a sub-set of pwDS, positron emission tomography (PET) scans

were acquired in three-dimensional mode (3D) mode on a General

Electric Medical Systems Advanced PET Scanner using Pittsburgh

compound11C (PIB). Mean cortical Aβ load was calculated in all corti-

cal regions using the non-displaceable binding potential (BPND).

2.3 Statistical analysis

All analysis was conducted using SPPS (version 26.0; SPSS Inc.,

Chicago, IL) and data were visualized using GraphPad Prism (version

7). When assessing study characteristics, the chi-square test was used

for categorical variables and independent sample t test (with Levene’s

Test for Equality ofVariances) for continuous variables. The continuous

variable of ChT was normally distributed as verified by the Shapiro-

Wilk test. Multivariate linear regression adjusted for multiple compar-

isons (Bonferroni) was used to assess the relationships between ChT

of different sectors of the ETDRS grid and diagnosis (Ctrl, DS), with

Ctrl as a reference group. Similarly, multivariate linear regression was

used to assess the effect of gender on ChT within Ctrl and DS group.

The time the retinal scans were acquiredwas recorded as a categorical

variable (AM or PM) and included as a covariate in the final regression

model to address diurnal changes in ChT. The right eye was selected

as the study eye, and only data from this eye were included in the

final analysis. Symmetricity between the right and the left eyes was

assessed by paired sample t test on fovea-centered single B-scans from

both eyes.

All P values < 0.05 were considered significant. Inter-observer

agreement between the two graders was assessed by calculating intr-

aclass correlation coefficient (ICC). Pearson correlation was used to

evaluate the relationship between ChT and age, CAMCOG-DS scores,

brain Aβ load, and retinal thickness.

3 RESULTS

3.1 Cohort characteristics

There was no significant difference in age or gender ratio between DS

and Ctrl groups (Table 1). The mean CAMCOG-DS score was 78.43,

with a standard deviation of± 16.08 (Table 1).

3.2 There are significant changes in the choroid
in pwDS

To assess the reliability of the manual segmentation, inter-rater agree-

ment was calculated using ICC and was found to range from 0.88 to

0.97, falling in the good-excellent correlation range. ChT values were

not significantly (p > 0.05) different between the right and left eyes

(Figure S1).

In pwDS, regional differences in ChT across the posterior pole were

very similar to the pattern of regional differences measured in the Ctrl

group (Figure 1 D). The choroid was thinnest in the nasal outer (NO)

and thickest in the superior inner (SI) sectors in both pwDS and Ctrls

(Figure 1 D and Table S1). When ChT values were compared between

the two groups, apart from the inferior inner (II) sector, a significantly

increased ChT was detected across all the sectors of the ETDRS grid

in pwDS compared to the Ctrls (Table S1). In the final adjusted model,

the differences remained significant in all sectors except in II and IO

(Figure 1 D and Table S1).

When gender differences were assessed, a significantly (P < 0.05)

thicker choroid was found in males compared to females in the inner

circle (C;M: 414.60±98.02 μmvs F: 292.11±97.07 μm), the inner ring

(average of SI, TI, II and NI sectors; M: 394.61 ± 97.25 μm vs F: 293.38

± 96.13 μm), and globally (M: 378.14 ± 94.11 μm vs F: 288.63 ± 93.64

μm) in pwDS (Figure 1E and Table S2). Significant differences were not

observed in Ctrl (P> 0.05) (Figure 1E and Table S2).
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TABLE 2 The relationship between choroidal thickness and age, cognition, and brain Aβ

Ctrl, n= 16

r (p)

pwDS, n= 24

r (p)

pwDS, n= 21

r (p)

pwDS, n= 6

r (p)

pwDS, n= 6

r (p)

ChT Age CAMCOG AβMOF ctx AβRMF ctx

Superior Outer −.034 (.902) −.130 (.545) .304 (.181) .778 (.069) .786 (.064)

Temporal Outer .300 (.258) −.255 (.230) .186 (.419) .966 (.002) .957 (.003)

Inferior Outer −.041 (.882) −.227 (.286) .062 (.791) .740 (.093) .773 (.071)

Nasal Outer −.225 (.402) −.343 (.101) .095 (.683) .840 (.036) .831 (.040)

Superior Inner −.046 (.866) −.222 (.297) .371 (.098) .648 (.164) .730 (.100)

Temporal Inner .216 (.422) −.216 (.310) .326 (.149) .897 (.015) .861 (.028)

Inferior Inner −.033 (.905) −.251 (.237) .249 (.277) .880 (.021) .928 (.008)

Nasal Inner −.045 (.868) −.330 (.115) .227 (.322) .925 (.008) .939 (.005)

Inner Circle .187 (.489) −.293 (.165) .308 (.174) .913 (.011) .902 (.014)

Centre (SF) .261 (.329) −.271 (.200) .319 (.158) .903 (.014) .855 (.030)

Global .066 (.808) −.264 (.212) .261 (.253) .927 (.008) .936 (.006)

Assessing the relationships between the choroidal thickness of different sectors of the early treatment diabetic retinopathy study (ETDRS) grid and age,

CambridgeCognition ExaminationDS (CAMCOG-DS), medial orbitofrontal (MOF), and rostralmiddle frontal (RMF) cortex (ctx) Aβ load. P valueswere calcu-
lated using the Pearson correlation. Bold numbers indicate a significant correlation (P < 0.05). Abbreviations: ChT, choroidal thickness; Ctrl, control; pwDS,

people with Down syndrome; r, Pearson correlation coefficient; P, P-value; SF, subfoveal; MOF, medial orbitofrontal; RMF, rostral middle frontal; ctx, cortex;

Aβ, amyloid beta.

The SCS (a hyporeflective band in the SCL) was visible in 14 DS par-

ticipants (58.3%) but in none of the controls (Table 1 and Figure 1 C2).

Those with visible SCS were significantly older (41.6 ± 6.7 years, P =

.019) than those in whom the SCS was not visible (35.4 ± 8 years).

The visibility of the SCS was not associated with increased ChT in DS

(Global ChT, SCS not present: 349.9 ± 128 vs SCS present: 340.7 ±

83.7, P= 0.843).

3.3 There is a correlation between ChT and
cerebral Aβ load

There was no significant correlation (P > 0.05) detected between

ChT and age or CAMCOG-DS (Table 2). Although PET data were

only available for a subset of pwDS (n = 6, all male), Aβ load in the

medial orbitofrontal (MOF) and the rostral middle-frontal (RMF) cor-

tex showed a positive correlationwith all the sectors of the ETDRS grid

except for the SO, SI, and IO (MOF: r = 0.840 to 0.966 and RMF: r =

0.831 to 0.957) (Table 2). Figure 2 illustrates global ChT plotted against

Aβ load of theMOF and the RMF cortex. The global ChT remained sig-

nificant (P < 0.05) when the correlation was adjusted for the time of

the scan (AM/PM) and/or age (data not presented). A significant corre-

lation betweenChT andAβ load in other parts of the brain could not be
detected (data not shown).

In addition, the relationship between ChT and retinal thickness,

published earlier,9 was also assessed, and found no significant cor-

relation in any of the ETDRS grid sectors (P > 0.05) (data not

presented).

4 DISCUSSION

Identifying early, non-invasive and inexpensive biomarkers for proxy

outcome measure is crucial for the success of AD trials, especially

for those pwDS, as many are likely to benefit from treatment trials

aimed at preventing the onset of AD pathology. Choroidal thinning has

been proposed as an early biomarker for AD in the typically devel-

oping population.11–13 We conducted a detailed choroidal assessment

by extracting thickness values for each sector of the ETDRS grid. The

thicker choroid detected in our DS cohort with no signs of clinical

dementia does not mirror choroidal changes demonstrated in sAD and

MCI.11–13

Choroidal thickening due to increased vessel number in the

choroidal stroma was found in a post-mortem histological study of

sAD.14 The vascular proliferation could be the response to a metabolic

dysfunction of the retina due to retinal Aβ deposition.21,22

An increasing number of publications on post-mortem tissues show

Aβplaque-likedeposits in the retinaof donorswith sAD.23–27 However,
not all groups can verify these findings28–30 or can distinguish between

people with sAD and age-matched, cognitively normal controls.31

Only one study examined the presence of Aβ plaques in the retina of
pwDS using a modified laser scanning ophthalmoscope and curcumin

labeling.32 In the absence of controls, this study could not determine

the power of the method. Based on emerging data on sAD,24,33 the

need for further examination of retinal Aβ in vivo is warranted.
Wealso investigatedwhether the increasedChTmeasured in theDS

group could result from the SCS that was exclusively visible in pwDS.

We found no significant difference in ChT between those with or with-

out SCS. The SCSappears to be an age-related phenomenonmost likely
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F IGURE 2 Relationship between choroidal thickness and cerebral Aβ load. The scatter plots show the global choroidal thickness correlation
withmedial orbitofrontal (A) and rostral middle-frontal (B) cortex Aβ load. Unadjusted values are plotted, all cortical areas were analyzed, but only
the above two showed significant correlation. Abbreviations: MOF, medial orbitofrontal; RMF, rostral middle-frontal; Aβ, amyloid beta

due to fluid accumulation at the scleral and choroidal interface.34 It is

present in approximately 50%of typically developing individuals above

the age of 50 and is associated with hyperopia.34 The known acceler-

ated aging effect and the higher prevalence of refractive error (in par-

ticular, hyperopia) in pwDS may explain the exclusive presence of SCS

in the DS group.10,35

ChT is decreased in patients with systemic arterial hypertension

and may result from vascular contraction caused by high intravascu-

lar pressure in the choroid.36,37 A study on healthy volunteers aged

18 and 60 found an inverse relationship between systemic blood

pressure and sub-foveal ChT.38 Although blood pressure data were

not available for our cohort, DS is associated with lower systemic

blood pressure.39,40 Therefore, we speculate that the increased ChT

observed in our DS group might be, at least partially, due to lower sys-

temic and or choroidal blood pressure.

We have previously shown that a thicker retina was associated with

DS, and the thickening occurred in the inner retinal layers.9 pwDS have

amarkedly increased number of vessels in the retinal, which is believed

to be the consequence of altered angiogenesis in DS.41 Because retinal

vessels are present in the inner retinal layers, the higher vessel number

may contribute to the inner retinal layer changes.41 Therefore, apart

from the decreased blood pressure, the altered angiogenesis in pwDS

may also contributor to the increased ChT.

A recent study showed no significant increase in ChT in children

with DS,16 suggesting that the significantly thicker choroid detected

in our study is a feature of an older DS population. This raises the

question of whether the observed choroidal thickening in pwDS could

result fromdevelopingADpathology. Thepositive correlationbetween

ChT and the increased Aβ load in the MOF and RMS cortices could be

related to inflammatory changes observed in early AD stages.42 It is

perhaps not surprising that differences are associated with the frontal

cortices, as these areas are among the first that are affected by Aβ

deposition in pwDS.4 However, the results should not be overinter-

preted, considering the lownumberof studyparticipantswithPETdata

in this study and the lack of correlation with other primarily affected

areas such as the striatum.4

While information on choroidal changes are sparse,15 retinal thick-

ening had been reported in early stages of sporadic AD (preclinical AD

andMCI), and believed to be the result of inflammatory processes due

toADpathology.43,44 Hence, we cannot rule out the possibility that the

thickened choroid in our cohort is, at least partially, the result of inflam-

matory processes due to developing AD pathology.

We found thinner choroid in females compared to males in pwDS,

a difference that was not detected in the Ctrl group. The same het-

erogeneity in ChT between females and males has been observed in

the general population,45 and it is believed to be driven by hormonal

changes in postmenopausalwomen.46 Although the information on the

onset ofmenopause in our studywas not available, it iswell known that

themenopauseoccurs earlier in pwDSwomen than the general popula-

tion and is associatedwith an increased risk of dementia.47 Phenotypic

variability has been shown in sAD, and gender was a significant driv-

ing force.48 We are not aware of studies reporting gender-related phe-

notypic differences in choroidal or retinal thickness in pwDS or sAD.

Future studies assessing eye biomarkers for AD should consider gen-

der in study design based on our observation.

Decreased ChT had been associated with age.49 However, we did

not observe a significant age effect on ChT in the Ctrl or pwDS, prob-

ably due to the relatively young age and the limited age-range in our

study. Previous studies have also demonstrated a positive correlation

betweenChTand cognitive status in sADandMCI,11 but thiswas prob-

ably not detectable in our cohort due to the limited differences in cog-

nitive scores. Therefore, further studies should elucidate further this

relationship between ChT and cognitive measures in pwDS. Tan et al.

demonstrated that there are diurnal variations in ChT but this could
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also be influenced by refractive error, intraocular pressure (IOP), and

blood pressure.50 Although our analysis controlled for diurnal varia-

tion, refractive error, IOP and blood pressure data were not available.

We demonstrated a potential relationship between brain Aβ load and

ChT in a subset of pwDS (n = 6). However, further studies will need to

verify this relationship due to the small sample size andpossible gender

bias.

Oneof our study’s strengthswas the comprehensive analysis under-

taken by segmenting all the 25 OCT B-scans per posterior EDI scan,

which allowed us to extract data for each sector of the ETDRS grid. To

ensure that the manual choroidal segmentation was robust, we used a

second grader and found an excellent inter-observer agreement.

Overall, this study reports for the first time choroidal thickening

in adults with DS with no signs of clinical dementia. Further stud-

ies are needed with additional brain imaging components to elucidate

whether theobserved choroidal thickening in pwDS results fromdevel-

opingADpathology and/or a developmental aspect ofDS. Understand-

ing the cellular andmolecular changesunderpinning this thickeningwill

help gain better insight into early AD-related pathological changes in

pwDS. Imaging the choroid may provide a new understanding of how

to detect ormonitor disease progression and assess disease-modifying

interventions.
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STATEMENT OF SIGNIFICANCE

This is the first study that reports choroidal thickening in the eye in

adults with Down syndrome. This finding is in contrast to the thinning

observed in sporadic Alzheimer’s disease.
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SUPPORTING INFORMATION

Additional supporting informationmay be found online in the Support-

ing Information section at the end of the article.
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