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ABSTRACT

Cell fate conversion is considered as the changing of one
type of cells to another type including somatic cell
reprogramming (de-differentiation), differentiation, and
trans-differentiation. Epithelial and mesenchymal cells
are two major types of cells and the transitions between
these two cell states as epithelial-mesenchymal transi-
tion (EMT) and mesenchymal-epithelial transition (MET)
have been observed during multiple cell fate conversions
including embryonic development, tumor progression
and somatic cell reprogramming. In addition, MET and
sequential EMT-MET during the generation of induced
pluripotent stem cells (iPSC) from fibroblasts have been
reported recently. Such observation is consistent with
multiple rounds of sequential EMT-MET during embryonic
development which could be considered as a reversed
process of reprogramming at least partially. Therefore in
current review, we briefly discussed the potential roles
played by EMT, MET, or even sequential EMT-MET during
different kinds of cell fate conversions. We also provided
some preliminary hypotheses on the mechanisms that
connect cell state transitions and cell fate conversions
based on results collected from cell cycle, epigenetic
regulation, and stemness acquisition.

KEYWORDS EMT, MET, cell states, cell fate
conversion, iPSC generation, trans-differentiation,
differentiation

INTRODUCTION

As two major types of cells in most animals, epithelial cells
are known for their basement membrane, apical-basal axis

of polarity, gap junction, immobility, and so on, while the
characteristics of mesenchymal cells are almost just oppo-
site, loosely associated, no polarity, and high mobility.
Although the two types of cells are so different from each
other, the transitions between epithelial and mesenchymal
states, epithelial-mesenchymal transition (EMT) and mes-
enchymal-epithelial transition (MET), have been observed
clearly and studied extensively during a variety of biological
processes including embryonic development, cancer pro-
gression, and somatic cell reprogramming.

The first observation of EMT can be dated back to as early
as 1890 when some ductal epithelial cells were described to
acquire mesenchymal characteristics in breast tumors pro-
gression as reviewed previously (Nieto, 2011). It is sug-
gested that EMT enables the tumor cells to acquire
mesenchymal characteristics like loose cell-cell interaction
and migratory ability, which further lead to the detachment of
cells from tumor mass and the invasion of cells to other
tissues. Although the requirement and significance of EMT
for cancer progression has been debated for a long time, the
migratory and invasive properties induced by EMT are widely
accepted to be critical for metastasis (Peinado et al., 2007;
Polyak and Weinberg, 2009).

EMT has been observed in multiple biological processes,
especially embryonic development. The generation of adult
tissues and organs requires multiple rounds of sequential
EMT-MET, which is used to refer an EMT followed with its
reversed process, MET (Thiery et al., 2009). For example,
the formation and migration of mesenchymal cells is
essential for the transformation from single-layered blastula
into three-layered gastrula in various metazoans (Nakaya
and Sheng, 2008). In addition, the development of heart has
been considered as a good example for sequential EMT-
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MET. The formation of cardiac mesodermal cells during
gastrulation and the organization of them into a two-layered
epithelium later are considered as the first round of
sequential EMT-MET. Another two rounds of sequential
EMT-MET are observed during the folding around primitive
foregut and the formation of four heart compartments (Nak-
ajima et al., 2000; Thiery et al., 2009).

Since embryonic development can be considered as a
combination of multiple differentiation processes from plu-
ripotent or multipotent stem cells to somatic cells, and cancer
progression is an acquisition of stem cells properties at least
partially, it is reasonable to suggest the critical roles of EMT/
MET or sequential EMT-MET during other kinds of cell fate
conversions, which was summarized and discussed in the
following sections of current review.

EMT/MET DURING DIFFERENT CELL FATE
CONVERSIONS

In general, the cell fate conversions are considered as the
changes of cells from one type to another, and can be fre-
quently observed during embryonic development when most
types of cells are generated. The success of somatic cells to
regain pluripotency after nuclear transfer or exogenous
expression of four pluripotency-related transcriptional factors
makes de-differentiation or iPSC generation as one new type
of cell fate conversion (Gurdon, 1962a, b; Takahashi et al.,
2007; Takahashi and Yamanaka, 2006). The direct repro-
gramming from fibroblasts to functional neurons enables cell
fate conversion to cover an even wider area including differ-
entiation, de-differentiation, and trans-differentiation (Vierbu-
chen et al., 2010). Since the combination of de-differentiation
and differentiation or trans-differentiation alone can use cells
isolated from patient skin or urine to generate patient-specific
functional cells (Muller et al., 2009; Wang et al., 2012; Zhou
et al., 2012), which have the potential to treat a variety of
diseases without facing ethics concerns and immunologic
rejections (Grabel, 2012; Nishikawa et al., 2008), a lot of
efforts have been put to study the mechanisms underlying cell
fate conversions to optimize these technologies for clinic
application.

EMT/MET during iPSC generation

In 2006, Dr. Yamanaka’s laboratory successfully induced
mouse embryonic fibroblasts (MEF) into embryonic stem
cells (ESC)-like cells with Oct4, KIf4, c-Myc, and Sox2. The
generated cells were named induced pluripotent stem cells
(iPSC). iPSC are able to generate tumors containing a
variety of tissues from all three germ layers cells after being
transplanted into nude mice and viable, fertile live-born
progeny by tetraploid complementation (Takahashi and
Yamanaka, 2006; Zhao et al., 2009). Because of the
potential application of iPSC in clinic, the method to generate
iPSC has been improved a lot since 2006 by using somatic

cells other than fibroblasts for reprogramming (Aasen et al.,
2008; Kim et al., 2008), by generating iPSC in other species
like rat and pig (Esteban et al., 2009; Liao et al., 2009; Liu
et al., 2008), by identifying new combinations of transcrip-
tional factors (Maekawa et al., 2011; Yu et al., 2007), by
developing new strategy to deliver transcriptional factors
(Hou et al., 2013; Warren et al., 2010; Yu et al., 2009; Zhou
et al.,, 2009), and by optimizing the culture systems (Chen
et al., 2011; Chen et al., 2010a; Esteban et al., 2010).

During the generation of iPSC, multiple changes have
been observed with the MEF, including those in gene
expression profiles (Brambrink et al., 2008), epigenetic state
(Koche et al., 2011; Watanabe et al., 2013), cell morphology
(Li et al., 2010; Samavarchi-Tehrani et al., 2010), and cellular
metabolism (Folmes et al., 2011). Among these changes, the
transition of MEF from mesenchymal state to epithelial state
has been recognized as a required step during the early
phase of reprogramming (Li et al., 2010; Samavarchi-Tehrani
et al,, 2010). Inhibiting early MET by inducing EMT with
transformation growth factor (TGF)-3 or Snail1 prevents
iPSC generation. In addition, Sox2 and c-Myc inhibit the
expression of Snail1, TGF-B1, and TGF- receptor 2 to
suppress the mesenchymal characteristics of MEF, while
KIf4 induces the epithelial properties by up-regulating
E-cadherin directly (Li et al., 2010). Promoted MET has been
used to explain the beneficial roles played by miR-302,
Glis2, and several small molecules during iPSC generation
(Chen et al., 2010b; Ichida et al., 2009; Maekawa et al.,
2011; Subramanyam et al., 2011). Furthermore, the inter-
actions between Vitamin C which increases the efficiency
and quality for iPSC generation (Chen et al., 2012; Esteban
and Pei, 2012; Esteban et al., 2010) and Ten-eleven trans-
location methylcytosine dioxygenase 1 (Tet1) which can
replace Oct4 during iPSC generation (Gao et al., 2013) are
also related to MET (Chen et al., 2013).

Although MET is necessary for fibroblasts reprogramming,
there are still several questions remaining unclear. Firstly,
since the process from MEF to iPSC can be considered as a
reversed process of embryonic development at least partially,
the reversed process of sequential EMT-MET, which is also a
sequential EMT-MET, might be observed during iPSC gen-
eration. Secondly, the different or even opposite regulatory
roles of the four transcriptional factors, like on TGF1 and
TGFB receptor 2, make MET induction more complex (Li
et al., 2010). These two questions were answered in one of
our recent publications (Liu et al., 2013a). Considering the
complex functions of the four factors in regulating pluripo-
tency (Kashyap et al., 2009; Pan et al., 2002) and the proper
expression level of Oct4 required to maintain pluripotency
(Pan et al., 2006), we proposed that the four factors have
different functions during iPSC generation and may even
have counteractions under certain circumstances or at cer-
tain time points. In order to diminish or decrease the possible
counteractions, we introduced the four factors into MEF at
different time points during iPSC generation.
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Figure 1. Schematic illustration of EMT/MET during iPSC generation. Simultaneous and time-dependent introduction of the four
Yamanaka factor, Oct4 (O), KlIf4 (K), c-Myc (M), and Sox2 (S) into MEF resulted in MET and sequential EMT-MET during the

processes.

Briefly, we determined reprogramming efficiencies with
totally 74 different infection sequences. One particular
infection sequence, Oct4 and KIf4 first, c-Myc next and Sox2
last, generated iPSC with the highest efficiency, about 600%
of basal level (Liu et al., 2013a) (Fig. 1). After analyzing the
differences between simultaneously infection (OKMS
method) and the time-dependent infection of the four factors
(OK+M+S method), we identified a temporary EMT in the
early phase of iPSC generation as demonstrated by an
impaired up-regulation of E-cadherin and temporary up-
regulation of Snail2. Such temporary EMT was further con-
firmed with qPCR, Western blotting, FACS analysis, and
wound healing assay (Liu et al., 2013a). Consistent with
previous reports (Chiou et al., 2010; Liu et al., 2012), the
short EMT and delayed MET were suggested to be resulted
from the different abilities of Oct4 and Sox2/KIf4 to regulate
the expression of E-cadherin and Snail2 (Liu et al., 2013a).
In OKMS method, since the four factors were introduced
simultaneously, the influences from Sox2 and Klf4 on Snail2
and E-cadherin were be larger than those from Oct4, which
led to the consistent down-regulation of Snail2 and rapid up-
regulation of E-cadherin. In OK+M+S method, since Sox2
was infected at least, Oct4 would overcome the counterac-
tions from Kif4, which led to temporary up-regulation of
Snail2 and impaired up-regulation of E-cadherin.

The reports on MET during iPSC generation in 2010
suggest this temporary EMT should generate more difficul-
ties for later MET and decrease the reprogramming effi-
ciency at the first glance (Li et al., 2010; Samavarchi-Tehrani
et al., 2010). However, inducing EMT before MET with short
treatment of TGFB during OKMS reprogramming promoted
reprogramming, while blocking EMT before MET with Re-
psox short treatment during OK+M+S reprogramming
impaired reprogramming. Thus introducing a short EMT

before MET is beneficial for iPSC generation, especially from
MEF.

To explain how short EMT was induced on MEF which are
already in mesenchymal state and why sequential EMT-MET
promotes iPSC generation, we proposed a new model in
previous report (Liu et al., 2013a). As two major cell states,
both mesenchymal state and epithelial state are collective
concepts and each covers a variety of distinct but similar cell
states. We proposed that both of the two states have an
optimal or central state within them, which can be named as
optimal mesenchymal state and optimal epithelial state. The
first hypothesis is to suppose a shortcut pathway between
the optimal mesenchymal and epithelial states. When
reprogrammed with OK+M+S method, MEF, though in
mesenchymal state, would be converted into the optimal
mesenchymal state after a short EMT, and took the shortcut
pathway to the optimal epithelial state via a delayed MET
and to iPSC finally (Fig. 2). When reprogrammed with OKMS
method, MEF would not be able to take the advantages of
the shortcut pathway and went a longer distance to epithelial
state or iPSC, which makes its efficiency lower than that
observed with OK+M+S method. This hypothesis was sup-
ported by the experiment to identify the optimal cell state for
OKMS and OK+M+S reprogramming. When we used TGF/
RepSox to induce EMT/MET in MEF and determined the
ratio of the reprogramming efficiency of OK+M+S method to
that of OKMS, we found that the highest ratio is in MEF with
12-h TGF treatment, and both longer treatment with TGF3
or Repsox treatment decreased the ratio.

Another available hypothesis is that the optimal mesen-
chymal state may be more suitable for the cell fate conver-
sions, which is partially supported by the connection
between EMT and stem cell characteristics (Hayashida et al.,
2011; Mani et al., 2008). OK+M+S method-induced short
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Figure 2. Schematic illustration of the potential shortcut between optimal mesenchymal and epithelial states. Mesenchymal
state (M) and epithelial state (E) are collective concepts of two groups of cell states. The optimal mesenchymal state and optimal
epithelial state are located in the middle of M and E, respectively. The shortcut was illustrated by putting the two optimal states on the
reversed side of each other. MEF can be induced into iPSC by crossing the barriers between the two states. MEF can also be induced
into the optimal mesenchymal state first and then to iPSC via optimal epithelial state.

EMT would convert MEF into this optimal mesenchymal
state for easier reprogramming, whereas OKMS method
could not fulfill this function. Of course, there should be other
explanations for the ability of short EMT to promote MEF
reprogramming, and how optimal mesenchymal and epi-
thelial state are defined or inter-converted should be inves-
tigated in depth even if our hypotheses are right.

EMT/MET during in vitro differentiation

Multiple rounds of sequential EMT-MET make embryonic
development an excellent model and hot topic for EMT/MET
research (Nieto, 2011; Thiery et al., 2009). However, the
in vitro differentiation of ESC or iPSC is also useful for EMT/
MET research because of their similarity to embryonic

development and relative simplicity of the system. As a
membrane marker for epithelial cells, E-cadherin has also
been used as one of the markers for undifferentiated ESC (Li
et al., 2012). Loss of E-cadherin expression, which suggests
an EMT, can be observed immediately after ESC differentia-
tion (Easthametal., 2007). If considering EMTas an early step
for ESC differentiation, MET should also be observed some-
where during the differentiation of ESC to epithelial cells.
Take the differentiation from iPSC to NSC as an example,
immediate up-regulation of N-cadherin, a marker for mes-
enchymal cells, is essential for the efficient differentiation.
However, E-cadherin expression is required to support the
self-renewal of NSC (Karpowicz et al., 2009). Thus the
expression switches between E-cadherin and N-cadherin,
which suggests the transitions between epithelial and
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mesenchymal states (Gravdal et al., 2007; Maeda et al.,
2005), might be observed multiple times during the differ-
entiation from iPSC to NSC. In addition, MET has also been
observed during the differentiation of hepatic stem/progeni-
tor cells, suggesting the possibility to observe sequential
EMT-MET during the differentiation from ESC/iPSC to
hepatic cells (Li et al., 2011).

EMT/MET during trans-differentiation

The successful trans-differentiation of somatic cells into
functional neurons (Sheng et al., 2012a; Vierbuchen et al.,
2010), NSC (Kim et al., 2011a; Sheng et al., 2012b; Wang
et al., 2012), multilineage blood progenitors (Szabo et al.,
2010), hepatocyte-like cells (Huang et al., 2011) or cardio-
myocytes (Efe et al., 2011; leda et al., 2010) suggests a new
route to generate target cells for transplantation without
employing pluripotent stem cells as an intermediate state.
The observation of EMT or MET during these trans-differ-
entiation processes is greatly anticipated, not only because
both the mesenchymal cells (fibroblasts) and epithelial cells
(cells isolated from urine) have been used for trans-differ-
entiation, but also because of the different characteristics
received by the cells after trans-differentiation (Huang et al.,
2011; Vierbuchen et al., 2010; Wang et al., 2012). Actually, if
the cells were in different cell states (mesenchymal or epi-
thelial) before and after cell fate conversions, EMT or MET
should be observed during the conversions. Although the
existence of sequential EMT-MET has not been reported yet,
complex transitions between mesenchymal and epithelial
state should exist during the NSC trans-differentiation for the
similar reasons mentioned above and the critical functions of
N-cadherin in neuron-neuron interaction (Tan et al., 2010).

THE CONTRIBUTIONS OF EMT/MET TO CELL FATE
CONVERSIONS

The observations of EMT/MET during different kinds of cell
fate conversions do not enable us to answer the question
that EMT/EMT is a by-product or a significant cause for cell
fate conversions. Take MET during iPSC generation from
MEF for example, MEF and iPSC definitely have the char-
acteristics of mesenchymal and epithelial cells respectively.
Thus the successful conversion from MEF to iPSC must be
accompanied by a MET process. MET is demonstrated to be
required for MEF reprogramming, because reprogramming
was greatly impaired when EMT was induced or MET was
inhibited (Li et al., 2010). However, this necessity might be
explained by that cells will not become iPSC without epi-
thelial characteristics.

One way to answer the question above is to study the
reprogramming of epithelial cells. Ciliary body epithelial cells
have been reported to have higher reprogramming efficiency
to iPSC than fibroblasts (Ni et al., 2013). NSC, which require
E-cadherin for self-renewal (Karpowicz et al., 2009), can be

reprogrammed into iPSC with only two factors, Oct4 with Kif4
or c-Myc (Kim et al., 2008). In addition, cells isolated from
urine have epithelial characteristics and have been consid-
ered as one excellent somatic cell types to generate iPSC or
NSC not only because of their easy accessibility but also
because of the high reprogramming efficiency (Wang et al.,
2012; Zhou et al., 2011). These reports suggested that the
MET during MEF reprogramming might only be a by-product
rather than a significant cause. However, it is difficult to
compare the reprogramming efficiencies between different
types of somatic cells, because they have their own char-
acteristics and can not be put at the same start point during
reprogramming. Thus in the following text, we will discuss
the connection between EMT/MET and other biological
processes and how the marker events or factors during
EMT/MET may contribute to cell fate conversions.

Marker factors and events during EMT/MET

Unfortunately, the studies on MET are fewer than those on
EMT not only because MET is regarded as a reversed and
following process of EMT during embryonic development but
also because both MET and EMT employ same regulatory
system and most method to inhibit EMT can induce MET (Li
etal.,, 2010; Liu et al., 2013a). The marker events during EMT,
especially EMT during cancer progression, can be consid-
ered as the loss of tight cell-cell junction and the gain of
migratory ability (Thiery, 2002). Thus the switch from E-cad-
herin to N-cadherin demonstrated with gPCR, immunoblot-
ting or FACS analysis has been used to evaluate EMT
(Gravdal et al., 2007; Liu et al., 2013a; Maeda et al., 2005),
because E-cadherin plays critical role in maintaining the
adhesion of epithelial cells (van Roy and Berx, 2008). Other
membrane markers are also used to characterize epithelial
and mesenchymal states, like epithelial cell adhesion mole-
cule, epithelial keratins, Occludin, and Claudin3 for epithelial
cells (Li et al., 2010; Litvinov et al., 1997), or Fibronectin and
Vimentin for mesenchymal cells (Freire-de-Lima et al., 2011;
Zhou et al., 2008). Many transcriptional factors, Snail1/2,
Zeb1/2, Twist1/2, and E47, are also involved in EMT as
reviewed extensively in previous reports (Nieto, 2011; Thiery
et al., 2009). In addition, EMT is twisted with multiple sig-
naling pathways. For example, TGF( treatment can trigger
both cell death and EMT (Massague, 2008), while modulating
Snail1 expression can shift the balance between cell death
and EMT (Franco et al., 2010). TGF molecules and recep-
tors have also been used as markers for EMT (Li et al., 2010).
EMT is also regulated by WNT/B-catenin (Li et al., 2013; Wu
et al., 2012), FGF (Zhang et al., 2006), Sonic Hedgehog
(Panman et al., 2006), mTOR (Lamouille et al., 2012), and
other signaling pathways (Wang et al., 2010).

EMT/MET and cell cycle

Cell cycle regulation is an old topic in cell biology and is
observed during almost all kinds of cell fate conversions. iPSC
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have a high proliferation rate and short G; phase similar to
ESC (Neganova and Lako, 2008; White and Dalton, 2005).
MEF gain these cell cycle signatures at the early phase of
reprogramming. Proliferation induction and cell cycle arrest
respectively promotes and impairs MEF reprogramming (Ruiz
et al., 2010). In addition, these is a positive correlation
between proliferation rate and reprogramming efficiency,
which further confirmed the connection between cell cycle
regulation and iPSC generation (Hanna et al., 2009).

On the other hand, EMT and cell cycle regulation are also
inter-connected. TGFB can lead to proliferation arrest and
has extensive interaction with p53 (Adorno et al., 2009;
Massague, 2008). Forced expression of p53 increased the
mRNA levels of TGFB1/2 (Fujiwara et al., 1994; Kannan
et al., 2000). p53 is also essential for the responses to TGFf3
signals by promoting the activation of multiple TGF target
proteins (Cordenonsi et al., 2003; Termen et al., 2013). EMT
induced by TGFB in AML-12 cells is in a cell cycle-depen-
dent manner and takes place at G,/S phase, where lies the
major difference on cell cycle signatures between MEF and
iPSC (Yang et al., 2006). In addition, another EMT inducer,
Zeb1, also suppresses proliferation (Hugo et al., 2013), while
p53 can suppress the expression of Zeb1 directly or via
microRAN34/200c (Chang et al., 2011; Kim et al., 2011b).
Therefore the decrease in reprogramming efficiency when
TGF was included in the medium for iPSC generation might
be mediated by the impaired proliferation (Li et al., 2010).

To explain the positive correlation between proliferation
rate and reprogramming efficiency, Dr. Jaenisch’s laboratory
has provided a model which suggested the early phase of
MEF reprogramming was a stochastic process (Buganim
etal.,2012; Hannaetal., 2009). Thatis each round of cell cycle
would enable MEF to choose to enter iPSC cell fate or to stay
in MEF cell fate. In addition, the inability of proliferation
induction to increase reprogramming efficiency in y-axis when
the number of cell cycle rather than the length of reprogram-
ming time was used in x-axis suggests that the increase in the
number of cell cycle accounts for almost all the effects of high
proliferation rate on reprogramming (Hanna et al., 2009). This
hypothesis is strongly supported by the short of observations
with iPSC generated from cells in Gy phase.

The following question is what kind of events or markers
during cell cycle promote reprogramming. One possibility is
the DNA methylation regulation during cell cycle progression
(Bou Kheir and Lund, 2010). There are multiple tasks like
growth, expansion, and communication for cells in G4 phase,
whereas cells are focused to DNA replication in S phase.
Thus genes that specify the original cell fate would be
silenced in S phase, as partially confirmed by the relative
higher DNA methylation in S phase than G, phase (Brown
et al., 2007). The protein coded by these genes would be
gradually degraded from S phase until the end of M phase,
which resulted in a good opportunity for genes that specify
different cell fates to function at the beginning of G, phase.
Since genes specify original cell fate is in a hypo-methylated

state in contrast to the hyper-methylated state of genes
specify other cell fates, the cells would keep their original
fate without outside stimulants. However, when the expres-
sion of genes specifying for other cell fates were increased
significantly like during iPSC generation and trans-differen-
tiation, the possibility for cells to switch cell fate will increase
significantly. In addition, it is also reasonable to propose that
decreasing the overall DNA methylation might facilitate cell
fate conversion by reducing the methylation levels on the
genes specifying for other cell fates. This hypothesis is
supported by the study on Tet1 and lysine-specific demeth-
ylase 1 (Chen et al., 2013; Gao et al., 2013; Lin et al., 2011).
Over-expressing Tet1 increases the reprogramming effi-
ciency, possibly by reducing DNA methylation.

EMT/MET and histone modifications

As just discussed on DNA methylation, histone modifications
are also required to be duplicated and inherited during cell
cycle progression (Probst et al., 2009). Thus histone modi-
fications may also be possible to mediate the interaction
between cell cycle and cell fate conversions. However, the
complex regulation on histone modifications during cell cycle
and undetermined functions of different histone modifica-
tions make our discussion more difficult.

The histone modifications affect cell fate conversions
from a variety of aspects (Papp and Plath, 2012). Increasing
H3K4 methylation with lysine-specific demethylase 1 inhibi-
tor, decreasing H3K9 methylation with Setdb1, reducing
H3K27 methylation with Utx, and inhibiting H3K36 methyla-
tion with Jhdm1a/1b are all reported to benefit iPSC gener-
ation (Chen et al., 2012; Mansour et al., 2012; Wang et al.,
2011a; Wang et al., 2011b). Thus, by affecting cell cycle,
EMT/MET may influence histone modifications and sub-
sequent cell fate conversion. Although difficult to eliminate
the participation of cell cycle, there are many reports on the
interactions between EMT/MET and histone modifications.
Histone deacetylases 3 not only increases H3K4 methylation
by interacting with hypoxia-induced WD repeat-containing
protein 5 to activate mesenchymal gene expression, but also
serves as an essential co-repressor to repress epithelial
gene expression (Wu et al., 2011). LSD1 which functions in
the demethylation of H3K4 and H3K9 not only serves in
NuRD complex to block EMT during breast cancer metas-
tasis (Wang et al., 2009), but also forms complex with Snail1
and Twist to repress E-cadherin expression (Fu et al., 2011;
Lin et al.,, 2010). Considering the extensive interactions
between EMT/MET and histone modifications as reviewed
(Nieto, 2011), it is reasonable to hypothesize that EMT/MET
may contribute to cell fate conversions by modulating his-
tone modifications and other epigenetic properties.

EMT/MET and stemness

As mentioned above, EMT was first observed in breast
cancer and plays critical roles during cancer progression
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(Thiery et al., 2009). On the other hand, cancer stem cells
(CSCs) are characterized as a special group of cancer cells
with enhanced tumorigenicity, partial stemness as in self-
renewal and differentiation, and CD44*/CD24™"°% on cell
surface (Al-Haijj et al., 2003; Dalerba et al., 2007). These two
concepts, EMT and CSCs, are not well connected until the
report by Mani et al. in 2008. The induced EMT in human
mammary epithelial cells increased the CD44%/CD247"%
population with properties associated with mammary epi-
thelial stem cells like abilities to form mammosphere and to
differentiate into myoepithelial or luminal epithelial cells
(Mani et al., 2008). The connection between EMT and CSCs
is further established with the common characteristics
between cells undergoing EMT and CSCs in TGF@ signaling
pathway activation, circulation in blood, and chemo-resis-
tance as reviewed (Hayashida et al., 2011). Thus it seems
that EMT may be able to induce stemness in cells at least
during cancer progression.

However, the studies on ESC and iPSC are not fully
consistent with the hypothesis above. ESC as isolated from
inner cell mass are considered to be typical epithelial cells.
The epithelial marker, E-cadherin, together with proteins like
SSEA1, alkaline phosphatase, Oct4, Nanog, and others
have been used to determine the undifferentiated state of
ESC (Horie et al., 2010; Redmer et al., 2011). The expres-
sion of E-cadherin in undifferentiated ESC decreased
immediately after the induction of differentiation (D’Amour
et al., 2005; Eastham et al., 2007). In addition, blocking the
up-regulation of E-cadherin significantly decreased the effi-
ciency during iPSC generation from MEF (Li et al., 2010).
Although the absolute requirement of E-cadherin for pluri-
potency is still under debate (Eastham et al., 2007; Ullmann
et al., 2007), E-cadherin contributes to the survival, self
renewal, and pluripotency of ESC at least partially (Li et al.,
2012). Thus it seems that EMT may prohibit stemness in
cells like iPSC and ESC. The opposite influences of EMT on
stemness observed in the two sets of studies above suggest
that either EMT has multiple roles or different aspects of
EMT function differentially in regulating stemness.

FUTURE DIRECTIONS

We have provided a brief review on the connection between
EMT/MET and cell cycle, epigenetic regulation, and stem-
ness to provide possible mechanisms underlying the con-
tributions of EMT/MET to cell fate conversions. Of course,
EMT/MET also twists with other biological processes or
factors including cell senescence with telomerase reverse
transcriptase (Qiao et al., 2012; Yu et al., 2014), hypoxia with
hypoxia induced factor 1a (Liu et al., 2013b; Marie-Egypti-
enne et al,, 2013), microRNAs like miR-200 (Ocana and
Nieto, 2008; Park et al., 2008), and so on, we did not listed
them all in current review. Since the interactions among
these biological processes are also complex as those
between cell cycle and epigenetic regulation mentioned

above, the future study on how EMT/MET contributes to cell
fate conversions should not be limited in one or few biolog-
ical processes.

In our opinion, the well established connections between
EMT/MET and large amount of biological processes is the
major problem faced by researchers who intend to study the
contributions of EMT/MET to cell fate conversions. Firstly,
the complex interactions among different biological pro-
cesses make it difficult to study one aspect at one time. For
example, cell cycle, DNA methylation, and tumor progresses
have been suggested to function together under certain cir-
cumstances (Robertson et al., 2000; Wu et al., 1993). Sec-
ondly, these complex interactions lead to opposite
observations on how EMT/MET affect cell fate conversions
under different conditions. TGF treatment in whole process
of iPSC generation from MEF decreased reprogramming
efficiency, while pre-treatment or short treatment (Day 0-1.5
during reprogramming) with TGFB decreased the prolifera-
tion rate and significantly increased the reprogramming
efficiency. (Li et al., 2010; Liu et al., 2013a). The studies on
EMT during CSCs and iPSC generation suggested the
opposite roles of EMT on stemness as mentioned above.
The ability of periphery cells around undifferentiated ESC to
have both mesenchymal characteristics and ESC properties
makes the correlation between EMT and stemness even
more complex (Ullmann et al., 2007). Thirdly but not lastly,
different biological processes have distinct preference with
different aspects of EMT/MET. For example, the function of
E-cadherin during EMT/MET may have a closer connection
with cell-cell adhesion and WNT/B-catenin pathway (Tian
et al.,, 2011; van Roy and Berx, 2008), while TGFB may
prefer to interact with p53 (Dupont et al., 2004; McPherson,
1996).

To solve the problem above, one possibility is to put
EMT and MET together and study sequential EMT-MET
during cell fate conversions. Sequential EMT-MET has
been observed during embryonic development and iPSC
generation (Liu et al., 2013a; Thiery et al., 2009). In addi-
tion, EMT has long been considered important during the
initial phase of metastasis, MET is also suggested to be
important for the latter phase of metastasis, when cancer
cells regain similarities to primary tumors at the secondary
sites (Chaffer et al., 2007). Although sequential EMT-MET
has not been reported during differentiation and trans-dif-
ferentiation, it is reasonable to suggest that inducing
sequential EMT-MET in proper manner may facilitate dif-
ferent cell fate conversions.

To explain why temporary EMT before EMT promotes
iPSC generation from MEF, we proposed a hypothesized
model with optimal mesenchymal and optimal epithelial
states as above. Considering the sequential EMT-MET, the
preliminary hypothesis that an optimal mesenchymal may
function as intermediate for efficient cell fate conversions
might be more reasonable. This hypothesis is able to explain
the beneficial effects of temporary EMT during iPSC
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generation and the opposite roles of EMT on stemness
regulation. The hypothesis is supported by the chromosomal
instability during EMT and in mesenchymal stem cells (Miura
et al.,, 2006; Roschke et al., 2008) and challenged by the
short of evidences during a variety of cell fate conversions.
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