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Buckling of regular, chiral
and hierarchical honeycombs
under a general macroscopic
stress state
Babak Haghpanah, Jim Papadopoulos,

Davood Mousanezhad, Hamid Nayeb-Hashemi

and Ashkan Vaziri

Department of Mechanical and Industrial Engineering,
Northeastern University, Boston, MA, USA

An approach to obtain analytical closed-form
expressions for the macroscopic ‘buckling strength’
of various two-dimensional cellular structures is
presented. The method is based on classical beam-
column end-moment behaviour expressed in a matrix
form. It is applied to sample honeycombs with square,
triangular and hexagonal unit cells to determine their
buckling strength under a general macroscopic
in-plane stress state. The results were verified using
finite-element Eigenvalue analysis.

1. Introduction
Low-density cellular materials have found widespread
application for energy absorption, structural protection
and as the core of lightweight sandwich panels.
However, compressive loads can cause the cell walls
to buckle, which limits their strength. Collapse of the
cellular material due to the buckling becomes more
likely as relative density is reduced [1]. Additionally,
microscopic instability patterns could be deliberately
used as a technique for induction or modification of
microscopic, periodicity-dependent structural or surface
properties such as chirality [2–4], wave propagation
and phononic properties [5–11], optical characteristics
[12–15], modulated nano patterns [16], hydrophobicity
[17–20] or generating macroscopic responses [21,22] in
periodic solids. We thus see value in a general technique
to predict the instability of regular cellular structures
subjected to a general macroscopic state of stress.
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Figure 1. (a) Types of lattice structures analysed by the beam-columnmatrix method: (i) square grid (§4a); (ii) triangular grid
(isogrid—§4b); (iii) hexagonal honeycomb (§4c); (iv) hierarchical hexagonal honeycomb (electronic supplementary material,
appendix C) and (v) tri-chiral honeycomb (electronic supplementary material, appendix D). The angle θ gives the orientation
of straight walls in the tri-chiral lattice. (b) The angles of rotation and moments of the ends (positive when counter clockwise)
in a beam-column.

Previous studies on the buckling of periodic cellular structures were largely numerical or
experimental. Ohno et al. [23] suggested a numerical method to study the buckling of cellular
solids subjected to macroscopically uniform compression using a homogenization framework
of the updated Lagrangian type. Triantafyllidis & Schraad [24] studied the onset of failure in
honeycombs under general in-plane loading using finite-element (FE) discretization of Bloch
wave theory. Abeyaratne & Triantafyllidis [25] associated instability of periodic solids with the
loss of ellipticity in the incremental response of homogenized deformation behaviour. A full-
scale FE study of intact and damaged hexagonal honeycombs has been presented by Guo &
Gibson [26]. Several experimental studies have concerned the buckling of different cellular
structures including hexagonal and circular honeycombs [27–33].

This study does not address localized buckling patterns in cellular materials (e.g. row wise)
that can occur due to the presence of imperfections [24], boundary effects [34] or material
nonlinearity [32]. However, the collapse surfaces obtained here for periodic buckling patterns
in perfect cellular materials provide an upper bound for the onset of failure in the corresponding
actual materials that contain inevitable imperfections in their underlying microstructures [24].
The analytical method presented here is inspired by research of Gibson et al. [35] on the stability
of regular hexagonal honeycombs under in-plane macroscopic biaxial stress parallel to material
symmetry directions (i.e. x and y in figure 1) using the beam-column solution of Manderla &
Maney [36,37], as presented by Timoshenko & Gere [38]. In §2, we express the beam-column
result in matrix form, to develop analytical closed-form expressions of the microscopic buckling
strength for periodic beam structures under a general in-plane loading. In §3, the FE analysis
used to verify the analytical results is explained. In §4, the proposed analytical approach is used
to predict buckling of regular square, triangular and hexagonal honeycombs as shown in figure 1.
(The illustrated hierarchical and tri-chiral hexagonal honeycombs are treated in the electronic
supplementary material, appendices for the sake of brevity but the results are summarized here.)
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The periodic square grid is also shown to buckle according to long-wave macroscopic patterns
under certain boundary conditions [39], a phenomenon observed in some three-dimensional
foams [40]. Therefore, we also calculate its long-wave buckling strength under arbitrary loading
as the wavelength approaches infinity. Conclusions are drawn in §5.

2. Method
A unit cell, or a primitive cell in classical physics, is the smallest structural unit, by assembling
which the undeformed geometrical and loading patterns in a tessellated solid are recreated.
When cellular solids are subjected to loading, buckling may occur in cell walls and edges, with a
deformation pattern repeated on finite wavelengths. This kind of buckling, known as microscopic
buckling, is repeated over wavelengths which can be longer than the unit cell [41]. Such mode-
size repeating patterns in the buckled structure are widely known as representative volume elements
(RVEs) and might be different under various macroscopic loading conditions applied to the
structure [42]. In order to obtain the periodicity of a buckled tessellated structure, various
approaches including Bloch wave analysis [24,43,44], block-diagonalization [45], Eigenvalue
analysis on RVEs of progressively increasing size [43,46], full-scale FE analysis [24,26,30,47] and
experimental investigations [28,29,32,33] have been used.

The methods proposed here for obtaining closed-form expressions of macroscopic buckling
strength are based on ‘assumed’ buckling modes, providing the size of RVE and its overall
buckled geometry. Fortunately, the number of different buckling modes observed for a cellular
structure under different macroscopic loadings is usually small. For instance, just two microscopic
buckling patterns are found in the literature for square, triangular and hexagonal honeycombs
under various loading conditions.

(a) Beam-column end moments
The beam-column formula is a classical approach linking the end rotations of an axially loaded
beam to its end moments. This approach has been used to obtain the buckling strength of cellular
structures under simplified loading conditions, including uniaxial and biaxial loadings [35,48].
However, the complexity of an arbitrary stress state complicates the beam-column equations,
especially for larger RVEs with higher nodal connectivity. In this section, we present the
characteristic nonlinear beam-column equations in a matrix form, allowing a more systematic
calculation of the buckling strength. The symbolic calculation tool in MATLAB is then used to
obtain closed-form expressions of buckling strength.

For a single beam connecting nodes a and b under axial compressive force P and subjected to
the two counter clockwise end couples Ma and Mb, the end rotations θa and θb (positive when
counter clockwise) relative to the line joining the displaced end nodes (figure 1b) can be obtained
through the beam-column relations as [38]

θa = +Mal
EI

Ψ (q) − Mbl
EI

Φ(q)

and θb = −Mal
EI

Φ(q) + Mbl
EI

Ψ (q).

⎫⎪⎪⎬
⎪⎪⎭

(2.1)

Here, Φ(q) = (1/ sin q − 1/q)/q and Ψ (q) = (1/q − 1/ tan q)/q are nonlinear functions of the non-
dimensional loading parameter q defined as q = l

√
P/(EI), where P is the beam axial force (positive

when compressive), l is the beam length and EI is the beam flexural rigidity. The functions Φ and
Ψ can be approximated by even-order expansions, climbing monotonically from Φ = 1/6 and
Ψ = 1/3 when q = 0 to infinity when q = π .) Taking the rigid body rotation β of the beam (i.e.
the line joining the beam ends) as an additional degree of freedom, the set of three boundary
conditions (i.e. two on beam end displacements or moments, and one on beam rotation β) and
two beam-column relations given in equation (2.1) can be expressed in the following matrix form
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to obtain the buckling of a single beam under axial loading:

[A]5×5

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Mal/EI

Mbl/EI

θa

θb

βab

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

5×1

= [B]5×1. (2.2)

Here, matrix A is termed the system’s characteristic matrix, and the condition |A| = 0 gives the
critical value of q and hence the buckling load Pc. Vector B contains any loading terms appearing
in the problem which do not explicitly include any beam end moments, beam end rotations or
axial loads. From the physical point of view, components of vector B are terms which only cause
a static deflection without buckling (e.g. a transverse load component applied to the tip of a
cantilevered axially loaded beam-column). Vector B does not affect the magnitude of the critical
loads obtained from Eigenvalue buckling analysis (electronic supplementary material, appendix
A shows how this matrix representation can be used for solving standard single-column buckling
problems.)

For the case of a cellular structure’s RVE consisting of several beams and connecting nodes, the
relationships between nodal rotations and end moments for each beam, and also the boundary
conditions, can be assembled in the following general matrix form:

[A]n×n

⎡
⎢⎢⎢⎢⎣

Ml/EI
θ

β

...

⎤
⎥⎥⎥⎥⎦

n×1

= [B]n×1. (2.3)

The condition |A| = 0 gives the relationship between the magnitudes of axial load for the beams
inside a RVE that cause it to become unstable. When [B] = 0 or small, this instability condition
(i.e. |A| = 0) translates to the possibility of unlimited increase in values of nodal (or beam)
rotations or beam end moments at finite, fixed values of beam axial loads. When [B] is non-zero
and sufficiently large, the bifurcation response is suppressed by a static, stable deformation of
the structure. Therefore, while the condition |A| = 0 is mathematically sufficient to predict an
Eigenvalue buckling, both |A| = 0 and [B] = 0 have to be simultaneously satisfied for an ideal
bifurcation in the load–displacement response. Analysis of the existing experimental data [49]
on rubber honeycombs with hexagonal cells marks the possibility of buckling at non-zero, but
relatively small, values of [B].

3. Finite-element simulations
FE Eigenvalue buckling analysis was performed to validate the closed-form estimates of buckling
strength. Two-dimensional elastic beam element models of the RVE were constructed using the
FE software ABAQUS. These small RVE models were subjected to external loads derived from
static analysis of the structure subjected to arbitrary states of macroscopic stress. (For the case
of the statically indeterminate triangular grid, conditions from the periodicity of the unit cell are
additionally required [50].) Rotation and displacement constraints following from the periodicity
of the RVE for each buckling mode were also applied to the outer nodes. A mesh sensitivity
analysis was carried out to ensure that the numerical solutions are mesh-independent. As there
is little data on the in-plane buckling behaviour of hierarchical and tri-chiral honeycombs, large-
scale FE models of these structures were developed initially, to determine their modes of buckling
and the RVE size (see §2 for criteria for determining the RVE).
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4. Buckling of cellular structures under a general macroscopic stress state
As examples of the method outlined in §2, the buckling stresses of some two-dimensional
cellular structures including hexagonal honeycombs and square and triangular grids (figure 1)
are computed.

(a) Square honeycombs
Wah [51] first studied the stability of finite-size rectangular gridworks for both in-plane and out-
of-plane loadings. Under uniaxial compressive loading parallel to cell walls, the strength of a
square grid according to the sway of the axially loaded cell walls (figure 2a) was estimated as
Sc/Es = (π2/12) ∗ (t/L)3, where cell walls of length L are treated as side-swaying columns with
fixed slope at both ends [52]. This is an upper bound estimate of the actual buckling strength
of square grid structure since it ignores structural rotational compliance that actually permits
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slope change. Fan et al. [48] calculated the uniaxial buckling strength of square honeycombs for
the two numerically observed microscopic buckling patterns, swaying and non-swaying modes,
using the beam-column method (figure 2a,b). They expressed the uniaxial buckling strengths
of the structure as SIc/Es = ((0.76 ∗ π )2/12) ∗ (t/L)3 and SIIc/Es = ((1.292 ∗ π )2/12) ∗ (t/L)3, with
the mode I strength being less than the upper bound solution from [52]. Also, the long-wave
bifurcation in square honeycombs under in-plane loading was previously studied through a
two-scale theory of the updated Lagrangian type by Ohno et al. [39]. They showed that unlike
hexagonal honeycombs, the long-wave buckling patterns in periodic square honeycombs could
occur at loads lower than the critical loads corresponding to some microscopic buckling patterns.
According to their analysis, by increasing the wavelength to infinity the buckling strength under
either uniaxial or biaxial loadings parallel to material directions (i.e. x and y in figure 1) would
approach Sc/Es = (1/2) ∗ (t/L)3 (where the structures buckle due to the higher principal stress
and ignore the lower). The buckling wavelength for long-wave buckling patterns is shown to be
dependent on the size of the finite structure and also on the boundary conditions applied to a
finite structure [39].

Here, for the first time we derive closed-form relations for the microscopic buckling patterns
in the square grid, as well as the long-wave buckling patterns under general in-plane loading
conditions. For example, we show that under equi-biaxial (Sx = Sy) macroscopic loading the
buckling strength (Sx) of a square grid is Sx

c/Es = 0.453 ∗ (t/L)3; for pure shear (Sx = −Sy, Sx > 0) it
is Sx

c/Es = 0.493 ∗ (t/L)3.

(i) Mode I (swaying)

Sway buckling shown in figure 2a is a shear deformation with only one set of beams changing
their mean orientation, as expected for an overloaded building frame where the ground
connection keeps the horizontal beams level. By making cuts through cell wall midpoints, internal
reaction forces per unit depth (positive when compressive) in the beams’ axial and transverse
directions, denoted Px, Py and Pxy in figure 2a, are obtained for a square grid of beam length L [1]

⎡
⎢⎢⎣

Px

Py

Pxy

⎤
⎥⎥⎦ = −L

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σxx

σyy

τxy

⎤
⎥⎥⎦ . (4.1)

Consequently, the non-dimensional x- and y-direction beam axial loading parameters qx and qy

are obtained as qx = L/2 ∗ √
Px/(EI) = i

√
3σ̄xx and qy = L/2 ∗ √

Py/(EI) = i
√

3σ̄yy, where i = √−1
and the stresses are normalized according to σ̄ = (σ/E)/(t/L)3.

For the swaying mode of buckling due primarily to compressive y stress, the RVE consists
of horizontal beam type OA and vertical beam type OB, as shown in figure 2a. These beams,
respectively, experience end moments MOA and MOB at node O, and because of 180◦ rotational
symmetry at the outer nodes A and B are moment-free there. The unknown rotation of node O
is defined as −α. Then the beam-column and equilibrium relations of the different beam types
OA and OB can be expressed in the matrix form given below. The first row expresses the beam-
column relation for rotation −α of end O of OA, where there is a moment at O only, and overall
beam rotation β is zero. The second row, for the relative rotation β − α of end O of beam OB,
again has a moment at O only, but this time rotation β is non-zero. The third row corresponds to
the moment equilibrium of node O, and the last row expresses the moment equilibrium of beam
OB about point O

⎡
⎢⎢⎢⎢⎣

−Ψ (qx)/2 0 1 0

0 −Ψ (qy)/2 1 −1

1 1 0 0

0 −1 0 −2q2
y

⎤
⎥⎥⎥⎥⎦

A

⎡
⎢⎢⎢⎢⎣

MOAL/(EI)

MOBL/(EI)

α

β

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

0

−PxyL2/(2EI)

⎤
⎥⎥⎥⎥⎦

B

. (4.2)
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Figure 3. (a) Buckling of square honeycomb under x–y biaxial loading according to swaying, non-swaying and long-wave
modes of buckling. (b) The buckling collapse surface for the square grid in the σxx − σyy − τxy stress space, allowing
prediction of buckling strength under a general in-plane state of stress. The left- and right-hand sides of the instability surface
correspond to the sway of horizontal and vertical beams. The condition [B]= 0 is marked by dashed lines on the instability
surface. (Online version in colour.)

For buckling to occur, i.e. for α and β to spontaneously take on non-zero values, the determinant
of matrix A must vanish due to its dependence on the loads, i.e. qx and qy. The relation for the
threshold of in-plane instability in a square grid according to the swaying mode (mode I) of
buckling with the x-direction beams held level is therefore

1

q2
x

(
1 − qx

tan(qx)

)
− 1

q2
y

(
qy

tan(qy)

)
= 0. (4.3a)

This relation is plotted in figure 3a, where it can be seen that x tension is very slightly protective
against sway of y-direction beams due to y compression. A second relation is required for the
sway of x-direction beams

1

q2
y

(
1 − qy

tan(qy)

)
− 1

q2
x

(
qx

tan(qx)

)
= 0. (4.3b)

Note that Pxy is irrelevant to the question of buckling, since it appears only on the right-hand
side of equation (4.2). However, it leads to unbounded α and β as matrix A approaches singularity.
Substituting from qx = i

√
3σ̄xx and qy = i

√
3σ̄yy into equations (4.3) yield the following relations for

the first-mode buckling of a square grid

σ̄yy

(
1 −

√
3σ̄xx coth

(√
3σ̄xx

))
− σ̄xx

(√
3σ̄yy coth

(√
3σ̄yy

))
= 0 (4.4a)

and
σ̄xx

(
1 −

√
3σ̄yy coth

(√
3σ̄yy

))
− σ̄yy

(√
3σ̄xx coth

(√
3σ̄xx

))
= 0. (4.4b)

(ii) Mode II (non-swaying)

Non-swaying buckling involves x and/or y compressive buckling with no macroscopic shearing
deformation. This requires cooperative buckling in adjacent cells to minimize energy. The same
definitions of Px, Py, Pxy, qx and qy are used as above. Figure 2b shows the non-swaying mode
(mode II) with the structural RVE indicated by red lines, as well as the free-body diagram of the
RVE. Now the beam midpoints are not moment-free, so both MOA and MAO come into play. (Note
the altered sign convention for MOA.)



8

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130856

...................................................

The set of beam-column relations can be expressed in the following matrix form. The first
two rows express moment equilibrium of beams OA and OB about point O. Rows three to six
represent the beam-column relations for relative rotation of both ends of beams OA and OB. The
last row expresses the moment equilibrium of node O

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 0 0 −2q2
x 0

0 0 −1 1 0 0 −2q2
y

Φ(qx)
2

Ψ (qx)
2

0 0 0 −1 0

Ψ (qx)
2

Φ(qx)
2

0 0 −1 1 0

0 0
Φ(qy)

2
Ψ (qy)

2
0 0 −1

0 0
Ψ (qy)

2
Φ(qy)

2
−1 0 1

1 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MOAL/(EI)

MAOL/(EI)

MOBL/(EI)

MBOL/(EI)

α

β

γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−PxyL2/(2EI)

+PxyL2/(2EI)

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.5)

Setting the determinant of the characteristic matrix to zero results in qx cot(qx) + qy cot(qy) = 0.
Since this relation is symmetric in x and y (figure 3a), no additional expression is needed. Later
we will see that the magnitudes of stresses satisfying this relationship are always greater than
the stresses required for the swaying mode of buckling, described by equations (4.4). Therefore,
the non-swaying buckling mode is never the preferred mode of buckling under macroscopic
stress state.

(iii) Mode III (long-wave)

The long-wave mode of buckling was previously studied by Ohno and co-workers through FE
discretization of a two-scale theory of the updated Lagrangian type [39,53,54]. They estimated
the uniaxial onset stress of long-wave buckling for the square grid as Sx

LWc/Es = 0.5 ∗ (t/L)3. Here,
the long-wave buckling strength of a square grid under a general stress state is sought as the
wavelength approaches infinity, using the beam-column method. Figure 2c shows a deformed
structure according to this buckling pattern, where the RVE is defined as a cross-shaped unit
connecting four adjacent beam centres. Note that under the long-wave mode shown in this figure
all vertical lines deform similarly. Also, the horizontal lines deform periodically over x with the
deflections equal to zero at the midpoints of each length-L segment. As a result, each vertical
beam can be independently analysed as an axially loaded vertical beam supported at a spacing
of L along the height of the beam by horizontal beams of length L which are welded to the
vertical beam at their centres. The horizontal beams can be considered to be simply supported
at both ends due to zero curvature but free to translate horizontally. As the buckling wavelength
(along y) approaches infinity, the distance between horizontal beams become smaller with respect
to the wavelength, and thus, the angular stiffening effect of the horizontal beams can be estimated
by analogy to an axially loaded vertical beam on a foundation of distributed rotational springs.
Electronic supplementary material, appendix B details the differential relations governing the
instability of an axially loaded beam on a distributed rotational spring foundation of intensity Kt

(with the unit of moment per radian per unit length and dimension [N]), where it is shown that
the critical compressive buckling load equals Pcr = Kt.

The goal here is therefore to obtain an equivalent rotational stiffness for the horizontal
segments which are supporting vertical beams using the beam-column method. Once the effective
rotational stiffness, Kt, is obtained, the buckling load can be calculated using Pcr = Kt. Figure 2c
shows a free-body diagram of the RVE, where the central node is rotated by angle β and the
vertical beam segment of length L has an equivalent rotation of α, as resisted by the moment M in
the middle as shown in the figure. Since each half-beam has a moment-free end, the set of beam-
column relations for the RVE is α − β = (ML/(4EI)) ∗ Ψ (qy) and β = (ML/(4EI)) ∗ Ψ (qx), where
qx = L/2 ∗ √

Px/EI and qy = L/2 ∗ √
Py/EI. The equivalent rotational stiffness of the horizontal
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segments due to the swaying angle α can therefore be calculated as

Kt = M
Lα

= 4EI
L2

1
Ψ (qx) + Ψ (qy)

. (4.6)

Substituting into the Pcr = Kt identity, the relations between parameters qx and qy needed for the
long-wave instability of square grid based on the two variations along x and y are

q2
x(Ψ (qx) + Ψ (qy)) = 1

and q2
y(Ψ (qx) + Ψ (qy)) = 1.

⎫⎬
⎭ (4.7)

These are mathematically identical to the relations obtained in equations (4.3) for buckling of the
square grid according to the x or y swaying mode of instability. This approaching of the long-
wave buckling strength to the swaying mode strength can also be justified from the physical
point of view. By increasing the buckling wavelength in an unbounded structure (figure 2c), the
deformation field corresponding to an arbitrary volume of n × n cells (n < ∞) approaches the
uniform deformation field observed in the swaying mode of buckling.

(iv) Results

Figure 3a shows the buckling strength curves corresponding to the x and y swaying modes, and
the non-swaying buckling mode, in a square honeycomb under biaxial loading parallel to material
principal directions (i.e. x and y). The horizontal and vertical axes correspond to normalized
normal stresses in x and y, respectively, according to σ̄ = (σ/E)/(t/L)3. The green curve denotes
the non-swaying mode of buckling. The red lines correspond to the swaying microscopic buckling
mode (equally, the long-wave buckling mode). The equi-biaxial buckling strength of a square grid
is estimated as S̄x

c = S̄y
c = 0.453. The results are verified by the FE Eigenvalue analysis preformed

at full as well as RVE scales.
Since three loading variables, Px, Py and Pxy, define the general in-plane loading, the results

can be plotted in three dimensions for an arbitrary macroscopic state of stress. In figure 3b, the
buckling surface of the square honeycomb is presented, which is described by the inner envelope
of buckling stresses corresponding to the two rotational variations of the swaying or long-wave
modes of buckling identically given by equations (4.4). The left- and right-hand sides of the
instability surface in this figure correspond to the sway of horizontal and vertical beams in the
square grid, respectively. The Eigenvalue instability in a square grid is independent of the value
of shear loading, Pxy, since the shear component does not explicitly appear in equations (4.4).
However, sufficiently large values of shear stress can suppress the bifurcation response in a
biaxially loaded square grid parallel to material principal directions (i.e. x and y), since the shear
load component yields non-zero [B] matrices in equations (4.2) and (4.5). The macroscopic stress
states corresponding to [B] = 0 are also marked in this figure by dashed lines, sufficiently large
deviations from which would cause the structure to deform according to a static, stable shear.

(b) Triangular honeycombs
A similar approach was used to explore the buckling of triangular honeycomb. Differences occur
in the number of beams in the RVE, and the possibility of two kinds of buckling pattern. Wang &
McDowell [52] approximated the buckling strengths of a series of common cellular structures by
means of a simplistic approach involving the equivalent beam length for cell walls of different
periodic structures. They estimated the uniaxial buckling strength of triangular grid along any

of the three cell wall directions to be Sc/Es =
(

2π2/3
√

3
)

∗ (t/L)3. Similar to the case of a square
honeycomb, this is an upper bound estimate of the actual buckling strength since it suppresses the
rotations of the end nodes of the cell walls during buckling. More recently, Fan et al. [48] obtained
a more precise estimation of uniaxial buckling strength of triangular honeycombs using the beam-
column approach which allows for the rotation of the end nodes of cell wall during buckling. They
expressed the uniaxial buckling strength along the cell wall direction (x) and the perpendicular
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to cell walls (y) as Sx
c/Es = 2.543 ∗ (t/L)3 and Sy

c/Es = 2.876 ∗ (t/L)3, respectively. Here, for the first
time we provide a simple formula for the in-plane buckling of triangular grid under a general
stress state.

(i) Mode I

For the sake of simplicity and also symmetrical results, the general state of in-plane macroscopic
stress is uniquely expressed in terms of its normal lattice-direction components, σaa, σbb, σcc, in
the three in-plane material directions a = 0◦, b = 120◦ and c = 240◦ (measured from the x-axis)
as shown in figure 1. Given these lattice-normal components of general stress tensor, the
macroscopic xy stress tensor can be written as [55]

⎡
⎣σxx τxy

τxy σyy

⎤
⎦ =

⎡
⎢⎢⎣

σaa
σcc√

3
− σbb√

3
σcc√

3
− σbb√

3

2σcc + 2σbb − σaa

3

⎤
⎥⎥⎦. (4.8)

For example, uniaxial loadings σxx = σ and σyy = σ are represented by sets of (σa, σb, σc) stresses
equal to (σ , σ/4, σ/4) and (0, 3σ/4, 3σ/4), respectively.

Based on FE computations, only the two buckling modes indicated as I and II in figure 4 appear
in the triangular grid structure under various loading conditions. Mode I is characterized by the
equal rotation of all nodes in a row (e.g. along a), while adjacent rows have opposite rotations.
Mode II is distinguished by zero rotation of nodes and beams in every other row of the structure
and the alternating rotation of adjacent nodes in the remaining rows. Note that mode shapes I
and II shown in figure 4 are unique with respect to direction a and symmetric relative to b and c
directions, so the entire collapse surface is defined by equivalent mode shapes along the a, b and
c directions.

Wang & McDowell [50] provided the internal axial forces per unit depth (positive when
compressive) of beams in the equilateral triangular cell (isogrid) honeycomb of beam length L

⎡
⎢⎢⎣

Fa

Fb

Fc

⎤
⎥⎥⎦ = −L

⎡
⎢⎢⎣

√
3/2 −√

3/6 0

0
√

3/3 −1

0
√

3/3 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σxx

σyy

τxy

⎤
⎥⎥⎦, (4.9)
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substituting from equation (4.8), we find the non-dimensional axial loading parameters
qa = L

√
Fa/(EI), qb = L

√
Fb/(EI), qc = L

√
Fc/(EI) for the beams oriented along the a, b and c

directions as follows:

qa = 2i
√

5σ̄aa − σ̄bb − σ̄cc

31/4 , qb = 2i
√

5σ̄bb − σ̄aa − σ̄cc

31/4 , qc = 2i
√

5σ̄cc − σ̄aa − σ̄bb

31/4 . (4.10)

Here, stresses are normalized according to σ̄ = (σ/E)/(t/L)3. Since a triangular grid of inextensible
beams can resolve all macroscopic loads with purely axial forces, load-induced beam transverse
forces in this stretching dominated grid may be taken as zero.

The free-body diagram of a RVE for mode I buckling in a triangular grid is shown in figure 4a.
In this mode, all nodes in a row rotate by the same angle. The a beams therefore have the
same moment and same angle at each end, so the beam-column relations for each end are
identical and only one is needed. Similarly, the b and c beams are symmetrically deformed with
opposite moments and opposite relative angles, so the beam-column relations for each end are
also identical (apart from a sign change). Beam-column and equilibrium relations for all three
types of beam can be expressed in the following matrix form, where the first three rows are the
three single beam-column relations for beams OA, OB and OC, and the last row expresses moment
equilibrium for the central node O

⎡
⎢⎢⎢⎢⎢⎣

1 −(Ψ (qa) − Φ(qa)) 0 0

1 0 −(Ψ (qb) + Φ(qb)) 0

1 0 0 −(Ψ (qc) + Φ(qc))

0 1 1 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

MAL
EI

MBL
EI

MCL
EI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎦

. (4.11)

Equating the determinant of the characteristic matrix to zero, the relation governing mode I
buckling can be obtained as

qb cot
(qb

2

)
+ qc cot

(qc

2

)
+ q2

a
2 − qa cot(qa/2)

= 0. (4.12a)

Similar expressions for the other two directions can be obtained by cyclically interchanging the
subscripts:

qc cot
(qc

2

)
+ qa cot

(qa

2

)
+ q2

b
2 − qb cot(qb/2)

= 0 (4.12b)

and

qa cot
(qa

2

)
+ qb cot

(qb

2

)
+ q2

c
2 − qc cot(qc/2)

= 0. (4.12c)

The buckling modes described by equations (4.12a–c) correspond to zero curvature at the
midpoints of beams along the a, b and c directions, respectively.

(ii) Mode II

Figure 4b shows the RVE free-body diagram for mode II buckling. In this mode, alternate a
lines remain straight during the buckling. The set of beam-column and equilibrium equation
can be written in the following matrix form, where the first five rows represent the beam-column
relations for beams OA, OB and OC, and the last row satisfies the equilibrium of moments around
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node O

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −Ψ (qa) − Φ(qa) 0 0 0 0

1 0 −Ψ (qb) −Φ(qb) 0 0

0 0 Φ(qb) Ψ (qb) 0 0

1 0 0 0 −Ψ (qc) −Φ(qc)

0 0 0 0 Φ(qc) Ψ (qc)

0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α

MOAL
EI

MOBL
EI

MBOL
EI

MOCL
EI

MCOL
EI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.13)

Equating the determinant of the characteristic matrix to zero, the relation between components of
stress for mode II of buckling is

qa cot
(qa

2

)
+ qb cot

(qb

2

) (
1 − qb cot qb

2 − qb cot(qb/2)

)
+ qc cot

(qc

2

) (
1 − qc cot qc

2 − qc cot(qc/2)

)
= 0, (4.14a)

and cyclically for b and c directions

qb cot
(qb

2

)
+ qc cot

(qc

2

) (
1 − qc cot qc

2 − qc cot(qc/2)

)
+ qa cot

(qa

2

) (
1 − qa cot qa

2 − qa cot(qa/2)

)
= 0 (4.14b)

and

qc cot
(qc

2

)
+ qa cot

(qa

2

) (
1 − qa cot qa

2 − qa cot(qa/2)

)
+ qb cot

(qb

2

) (
1 − qb cot qb

2 − qb cot(qb/2)

)
= 0. (4.14c)

Geometrically, the three rotational variations of mode II buckling described by equations
(4.14a–c) involve alternate straight beams along a (figure 4b), b and c directions in the buckled
state, respectively. For the variation of mode II buckling shown in figure 4b, for example,
the straightness of alternate horizontal type a beams is a special condition implying reflection
symmetry about x- and y-axes, which requires, in effect, that the internal moment in those beams
be small (i.e. MBO ∼= MCO). This condition is only satisfied when the characteristic matrix is
symmetric with respect to b and c directions (i.e. qb = qc), corresponding to a biaxial state of
loading in the principal material directions x and y. The necessity of a biaxial stress state for
formation of mode II buckling in a triangular grid is also observed full-scale FE analysis, where
the second mode of buckling described by equation (4.14a) is rapidly suppressed by adding the τxy

shear stress component. Similarly, the two other variations of mode II with straight beams along b
and c directions described by equations (4.14b,c) can only occur under microscopic biaxial loading
along the b (and b⊥) and c (and c⊥) directions, respectively (the symbol ⊥ denotes perpendicular).

Under a general state of loading where no two loading parameters (i.e. qa, qb, qc) are equal,
the macroscopic stresses required for the mode II of buckling given in equations (4.14) are equal
or greater than those for the mode I of buckling given in equations (4.12). Under a biaxial
state of loading along material principal directions x and y (i.e. qb = qc), equation (4.14a) can be
algebraically simplified to equations (4.12b,c). It can be shown numerically that under the x–y
biaxial macroscopic loading with first principal stress along y (i.e. σ̄xx < σ̄yy), the first rotational
variation of mode II buckling expressed by equation (4.14a), and the second and third rotations
of mode I buckling expressed by equations (4.12b,c) equally yield the minimum required stress,
and therefore are preferred buckling modes. For the case of x–y biaxial loading with the first
principal stress along x (i.e. σ̄xx > σ̄yy), the first rotational variation of mode I buckling described
by equation (4.12a) requires the minimum stress and is consequently preferred.
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(iii) Results

Figure 5a shows the curves corresponding to the two modes of buckling under biaxial state of
loading, where horizontal and vertical axes correspond to normalized normal stresses in x and
y directions. The red line denotes the stress state corresponding to mode I buckling along a. The
green line corresponds to mode II as well as the two rotations of mode II occurring along b or
c directions. The green and red lines intersect at the equibiaxial state of macroscopic loading
with the principal stresses equal to σ̄xx = σ̄yy = −2.395. Under a state of pure shear described
by compression along x and tension along y (σ̄xx = −σ̄yy, σ̄xx < 0), the buckling strength (Sx

c ) of
triangular grid is given by Sx

c/Es = −2.099 ∗ (t/L)3. Also, under a state of pure shear described
by compression along y and tension along x (σ̄xx = −σ̄yy, σ̄yy < 0), the buckling strength (Sy

c ) of
triangular grid is Sy

c/Es = −3.213 ∗ (t/L)3. The results are verified by the FE Eigenvalue analysis
preformed at the RVE scale, which is in agreement with full-scale FE results.

In figure 5b, the buckling surface corresponding to the triangular grid is presented, consisting
of the inner envelope of buckling stresses corresponding to the three rotational variations of mode
I of buckling given by equations (4.12). The three solid curved lines in this figure correspond to
the three biaxial states of loading along x–y, x–z and y–z directions where mode II buckling is also
possible. The three areas separated by these solid curved lines correspond to the three rotational
variations of mode I buckling characterized by double-curvature beams in the post-buckled state
along a, b and c directions. Since the triangular grid is a stretching dominated structure, the
condition [B] = 0 is satisfied under all macroscopic stress states. Therefore, the entire instability
surface plotted in figure 5b predicts an ideal bifurcation as discussed in §2.

(c) Regular hexagonal honeycomb
The nonlinear elastic response of regular hexagonal honeycomb has been previously studied by
different researchers [23,24,33,35,56–58]. Gibson & Ashby [42] estimated the uniaxial buckling
strength of the regular honeycomb structure in the cell wall direction (x in figure 1) as Sx

c/Es =
0.22 ∗ (t/L)3, using the rotational spring approach. Later, Gibson et al. [35] used the beam-column
relations to obtain the buckling strength of the hexagonal honeycomb structure under a biaxial
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state of loading parallel to x and y directions. They recognized two modes of buckling, commonly
referred to as uniaxial and biaxial, for elastic bifurcation of a hexagonal honeycomb structure
(figure 6a,b). The large deformation of cell edges before elastic buckling was taken in account by
Zhang & Ashby [56] to analyse the biaxial in-plane buckling of hexagonal honeycombs. Ohno et al.
numerically analysed the in-plane biaxial buckling of the regular hexagonal honeycomb using
a homogenization framework of updated Lagrangian type [23]. Triantafyllidis & Schraad [24]
studied the onset of bifurcation in hexagonal honeycombs under general in-plane loading using
FE discretization of the Bloch wave theory. A third, more complex, flower-like mode, shown
in figure 6c, is suggested for the buckling of regular hexagonal honeycomb structure [23].
This mode of buckling has been previously observed in experimental and numerical trials for
hexagonal honeycombs with circular cells under equi-biaxial loading condition [28,47]. In this
mode of buckling, groups of six highly deformed cells surround almost intact central cells,
and the central cells rotate uniformly in either the clockwise or the counter-clockwise direction.



15

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130856

...................................................

Okumera et al. [58] later showed that the flower-like mode does not occur as the first bifurcation
under macroscopic biaxial compression control. Here, for the first time we obtain expressions of
buckling strength for the uniaxial, biaxial and flower-like modes of buckling of the hexagonal
honeycomb structure under a general stress state.

(i) Mode I (uniaxial)

Because of the minimum threefold symmetry of regular honeycomb structure, the general state
of in-plane macroscopic stress is expressed in terms of its normal components, σaa, σbb, σcc, in the
three in-plane material directions a = 0◦, b = 120◦ and c = 240◦ from the x-axis as shown in figure 1.
The macroscopic xy stress tensor can be expressed in terms of the normal components of stress
in a, b and c directions according to equation (4.8). Also the axial forces per unit depth (positive
when compressive) in the cell walls oriented along a, b, c directions can be expressed as [1]⎡

⎢⎢⎣
Fa

Fb

Fc

⎤
⎥⎥⎦ = −L

⎡
⎢⎢⎣

√
3 0 0

0
√

3 0

0 0
√

3

⎤
⎥⎥⎦

⎡
⎢⎢⎣

σaa

σbb

σcc

⎤
⎥⎥⎦, (4.15)

where L is the size of the hexagon side. The non-dimensional parameters qa, qb and qc, are

therefore found as qa = L
√

Fa/(EI) = 2i
√

3
√

3σ̄aa and cyclically for qb and qc. Also the transverse
forces in the cell walls of the hexagonal honeycomb can be obtained according to [55]⎡

⎢⎢⎣
Ga

Gb

Gc

⎤
⎥⎥⎦ = 1√

3

⎡
⎢⎢⎣

0 1 −1

−1 0 1

1 −1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Fa

Fb

Fc

⎤
⎥⎥⎦. (4.16)

For mode I (uniaxial) buckling, the structural RVE shown in figure 6a consists of the three
beams OA, OB and OC oriented along a, b and c directions, respectively. The pre- and post-
buckling configurations of the RVE are shown by red dashed lines and solid black lines,
respectively. Taking into account the symmetry requirements in the buckled configuration of the
structure, beam OA is under equal end moments, denoted by Ma, and beams OB and OC each
are under opposite (with equal magnitude) end moments denoted by Mb and Mc, respectively, as
shown in figure 6a. The set of beam-column and equilibrium relations of the three different bar
types OA, OB and OC can be expressed in the following matrix form, where the first three matrix
rows represent the beam-column relations for beams OA, OB and OC, the fourth line corresponds
to equilibrium of node O, and the last relation expresses moment equilibrium in beam OA around
node O.

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Ψ (qa) + Φ(qa) 0 0 −1 1

0 −Ψ (qb) − Φ(qb) 0 1 0

0 0 −Ψ (qc) − Φ(qc) 1 0

1 −1 −1 0 0

2 0 0 0 −q2
a

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MaL
EI

MbL
EI

McL
EI
α

β

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

0

−GaL2

EI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.17)
Using the symbolic toolbox in MATLAB to set |A| = 0, the relation between qa, qb and qc expressing
the mode I instability of a regular honeycomb structure under a general loading is

qa tan
(qa

2

)
− qb cot

(qb

2

)
− qc cot

(qc

2

)
= 0. (4.18)

Therefore, the expression of mode I instability in the abc stress space would be

√
σ̄aa tanh

(√
3
√

3σ̄aa

)
+

√
σ̄bb coth

(√
3
√

3σ̄bb

)
+

√
σ̄cc coth

(√
3
√

3σ̄cc

)
= 0, (4.19a)



16

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130856

...................................................

where the bar above the stresses means they are normalized according to σ̄ = (σ/E)/(t/L)3.
Note that the uniaxial mode of buckling shown in figure 6a does not possess the threefold
symmetry observed in the honeycomb lattice (i.e. the rotational symmetry with respect to the
three directions a, b and c), and therefore the following additional relations are needed to describe
the buckling strength of a regular honeycomb according to uniaxial modes of buckling along b and
c directions

√
σ̄bb tanh

(√
3
√

3σ̄bb

)
+

√
σ̄cc coth

(√
3
√

3σ̄cc

)
+

√
σ̄aa coth

(√
3
√

3σ̄aa

)
= 0 (4.19b)

and

√
σ̄cc tanh

(√
3
√

3σ̄cc

)
+

√
σ̄aa coth

(√
3
√

3σ̄aa

)
+

√
σ̄bb coth

(√
3
√

3σ̄bb

)
= 0. (4.19c)

From the geometrical point of view, the buckling modes described by equations (4.19) correspond
to zero curvature at midpoints of beams along the a, b and c directions, respectively. Substituting
qb = qc in equations (4.19), the result given in [35] for the instability of a regular hexagonal
honeycomb under the simplified case of x–y biaxial loading condition is obtained.

(ii) Mode II (biaxial)

The biaxial mode of buckling and the associated RVE are shown in figure 6b. According to
symmetry requirements the beam OA is under opposite (with equal magnitude) moments,
denoted by Ma, at the ends. Beams OB and OC are subjected to end moments Mob, Mbo, Moc, Mco,
as shown in the figure. The set of beam-column and equilibrium relations of the three different bar
types OA, OB and OC can be expressed in the following matrix form, where the first five matrix
rows represent the beam-column relations for beams OA, OB and OC, the sixth line corresponds
to moment equilibrium of node O, and the last two relations satisfy the moment equilibrium in
beams OB and OC about node O.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Φ(qa) − Ψ (qa) 0 0 0 0 1 0 0

0 −Ψ (qb) −Φ(qb) 0 0 0 1 0

0 −Φ(qb) −Ψ (qb) 0 0 1 −1 0

0 0 0 −Ψ (qc) −Φ(qc) 0 0 1

0 0 0 −Φ(qc) −Ψ (qc) 1 0 −1

1 1 0 1 0 0 0 0

0 1 −1 0 0 q2
b −q2

b 0

0 0 0 1 −1 q2
c 0 −q2

c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MaL/(EI)

MobL/(EI)

MboL/(EI)

MocL/(EI)

McoL/(EI)

α

θb

θc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

GbL2/(EI)

GcL2/(EI)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.20)

Using the symbolic toolbox in MATLAB to set |A| = 0, the relation between qa, qb and qc expressing
the instability of a regular honeycomb structure in mode II under a general loading is

qa cot
(qa

2

)
+ qb cot(qb) + qc cot(qc) = 0, (4.21)
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or considering all three rotations corresponding to this mode in the abc stress space
√

σ̄aa coth
(√

3
√

3σ̄aa

)
+

√
σ̄bb coth

(
2
√

3
√

3σ̄bb

)
+

√
σ̄cc coth

(
2
√

3
√

3σ̄cc

)
= 0, (4.22a)

√
σ̄bb coth

(√
3
√

3σ̄bb

)
+

√
σ̄cc coth

(
2
√

3
√

3σ̄cc

)
+

√
σ̄aa coth

(
2
√

3
√

3σ̄aa

)
= 0, (4.22b)

and
√

σ̄cc coth
(√

3
√

3σ̄cc

)
+

√
σ̄aa coth

(
2
√

3
√

3σ̄aa

)
+

√
σ̄bb coth

(
2
√

3
√

3σ̄bb

)
= 0, (4.22c)

Geometrically, the buckling modes described by equations (4.22a–c) include straight beams in the
post-buckled configuration along a, b and c directions, respectively.

The zero curvature in a series of horizontal beams in the post-buckled state shown in figure 6b
requires the internal moment throughout those beams to be zero. Noting that the two pairs
of opposite moments Mbo and Mco act on the ends of these beams, the last condition requires
Mbo = Mco. This is only satisfied when the characteristic matrix is symmetrical with respect to b
and c directions, which translates to a biaxial state of loading in the principal material directions x
and y. This is supported by full-scale FE analysis, where the mode II buckling is observed under x–
y biaxial loading, and is rapidly suppressed by increasing the magnitude of macroscopic xy shear
stress component. Given a biaxial state of macroscopic stress, equations (4.22) can be simplified
to the result obtained in [35] for the instability of regular honeycomb under the simple case of x–y
biaxial loading condition.

(iii) Mode III (flower-like or chiral)

For the flower-like mode of buckling shown in figure 6c, the set of beam-column and equilibrium
relations of three different bar types OA, OB and OC can be expressed in the following matrix
form, where the first and the second rows satisfy the moment equilibrium of node O and the
intact central hexagon, respectively; rows three to five satisfy the moment equilibrium of beams
OA, OB and OC about O; and rows six to eleven represent the beam-column relations for
beams OA, OB and OC.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 −(q2
a + q2

b + q2
c ) 0 0 0

1 0 0 −1 0 0 0 0 q2
a 0 0

0 1 0 0 −1 0 0 0 0 q2
b 0

0 0 1 0 0 −1 0 0 0 0 q2
c

Ψ (qa) 0 0 Φ(qa) 0 0 −1 0 1 0 0

0 Ψ (qb) 0 0 Φ(qb) 0 −1 0 0 1 0

0 0 Ψ (qc) 0 0 Φ(qc) −1 0 0 0 1

Φ(qa) 0 0 Ψ (qa) 0 0 0 −1 −1 0 0

0 Φ(qb) 0 0 Ψ (qb) 0 0 −1 0 −1 0

0 0 Φ(qc) 0 0 Ψ (qc) 0 −1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

MoaL/(EI)

MobL/(EI)

MocL/(EI)

MaoL/(EI)

MboL/(EI)

McoL/(EI)

α

β

γa

γb

γc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

(Ga + Gb + Gc)L2/(EI)

GaL2/(EI)

GbL2/(EI)

GcL2/(EI)

0

0

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.23)
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Figure 7. (a) Biaxial buckling collapse of regular hexagonal honeycomb under biaxial loading along x (the so-called armchair
or ribbon direction) and y (the so-called zigzag or transverse direction) according to uniaxial, biaxial and flower-like modes of
buckling. The inset shows comparison with the experimental data from [49]. (b) The buckling collapse surface of the regular
honeycomb structure in the abc stress space, allowing prediction of buckling strength under a general in-plane state of stress.
The three solid lines represent the stress states where more than one mode is possible (i.e. modes I and II). The three distinct
areas on the buckling surface separated by the solid lines correspond to the three rotational variations of the primary buckling
mode (i.e. mode I). The condition [B]= 0 is marked by dashed lines on the instability surface. (Online version in colour.)

Equating the determinant of the characteristic matrix to zero yields the following relation between
qa, qb and qc for flower-like instability of a regular hexagonal honeycomb

2

q2
a + q2

b + q2
c

+ 1
qa tan(qa/2) + qb tan(qb/2) + qc tan(qc/2)

= 1
qa cot(qa/2) + qbcot(qb/2) + qc cot(qc/2)

, (4.24)

where qa = 2i
√

3
√

3σ̄aa and cyclically for qb and qc.

(iv) Results

For all loading directions, each defined by a ratio between components of macroscopic stress,
the stresses required for biaxial mode of buckling described by equations (4.22) are equal or
greater than those needed for the uniaxial mode of buckling given by equations (4.19). Under
in-plane x–y biaxial loading (i.e. τ̄xy = 0 or equivalently σ̄bb = σ̄cc), equations (4.19b,c) can be
simplified to equation (4.22a) using the trigonometric identity coth(2x) = ( coth(x) + tanh(x))/2.
For a regular honeycomb structure under biaxial macroscopic loading with the first principal
stress along x (i.e. σ̄xx > σ̄yy), the microscopic instability could arise through either the uniaxial
mode with alternative swaying of beams along the a direction, or the biaxial mode involving
straight beams along the a direction. In full-scale numerical trials, the buckling mode under this
loading condition is determined by the boundary conditions applied to the finite-size FE model.
For the case of biaxial loading with the first principal stress along y (i.e. σ̄xx < σ̄yy), the uniaxial
mode of buckling is the preferred mode.

Figure 7a shows the curves corresponding to uniaxial, biaxial and flower-like modes of
buckling in a regular honeycomb under biaxial state of loading, where horizontal and vertical
axes correspond to normalized normal stresses in x and y directions, respectively, according to
σ̄ = (σ/E)/(t/L)3. The green and red lines denote the uniaxial mode of buckling along a (or x)
and the flower-like modes, respectively. The blue line corresponds to the biaxial mode as well
as the two variations of the uniaxial mode occurring along b or c directions. The green and
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blue lines intersect at the equi-biaxial state of macroscopic loading with the principal stresses
equal to σ̄xx = σ̄yy = −0.175. The flower-like mode is not a dominant mode under any loading
condition. However, the macroscopic stresses needed for this mode become relatively close to
those of uniaxial and biaxial modes under equi-biaxial loading with the macroscopic stresses
σ̄xx = σ̄yy = −0.198. The results are verified by the FE Eigenvalue analyses preformed at the RVE
scale, which are in good agreement with full-scale FE results. The inset of the figure shows a
comparison of the analytical results with experimental data from [49]. In figure 7b, the buckling
surface for a regular hexagonal honeycomb structure under arbitrary stress state is presented. The
surface is mathematically described by the inner envelope of buckling stresses corresponding to
the three rotational variations of the unixial mode (mode I) of buckling given by equations (4.19).
The three edges marked by solid lines correspond to the three biaxial states of loading along
x–y, b (and b⊥) and c (and c⊥) directions, where the biaxial mode (mode II) of buckling is also
possible. The three areas of the instability surface separated by these lines correspond to the three
rotational variations of mode I buckling. On each edge, macroscopic stress states corresponding
to the condition [B] = 0 in equation (4.17) are marked by dashed lines. Deviation from these lines
would cause the structure to fold up in a stable way. Note that for a mode II buckling the condition
[B] = 0 in equation (4.20) is only satisfied under an equi-biaxial stress state.

5. Conclusion
Table 1 summarizes the closed-form relations for the buckling strength of regular, chiral and
hierarchical hexagonal honeycombs and triangular and square grids (the periodic buckling modes
and derivations for tri-chiral and hierarchical honeycombs are similar to the regular honeycomb
structure and are given in the electronic supplementary material, appendix D).

An interesting feature in buckling of hexagonal and triangular honeycombs is the possibility of
secondary modes of buckling which are observed only under the x–y biaxial state of macroscopic
stress. These secondary modes were shown to occur at the same macroscopic stress levels
required by the primary modes of buckling under x–y biaxial stress state. Similarly, there is no
difference between the closed-form strength relations corresponding to the swaying and the long-
wave buckling patterns in a square grid when the wavelength in the long-wave buckling mode
approaches infinity. The preferred buckling mode in these cases is controlled by the far-field
boundary conditions, and by imperfections in large-scale FE models.

Use of the beam-column approach for calculating the buckling strength of cellular structures
requires a caveat with regard to the effect of cell wall lateral loads (i.e. non-axial components
of cell wall reaction force) on suppressing instability in periodic structures. These lateral load
components, appearing on the right-hand side of equation (2.3) (i.e. vector B), eliminate the
sudden collapse normally expected of buckling, and smooth out the associated bifurcation in
the macroscopic load–displacement curve. As shown for a regular honeycomb structure under
uniaxial y-compression, the lateral loads on the oblique beams cause the structure to fold up in a
stable way [1]. This suppression of buckling happens for a square grid under pure macroscopic
xy shear loading, where the characteristic matrix was shown to be independent of lateral loads
in the vertical and horizontal beams, and thus of the amount of shear stress. As the value of
shear stress increases compared with axial stresses, the beams simply deflect statically until the
pre-buckling deformations become so large that they suppress buckling. For the triangular grid
with a stretching dominated behaviour, however, the lateral reaction forces in the cell walls are
essentially zero. As a result, the cell walls in the structure do not undergo a pre-buckling bending
deformation, and bifurcation of the macroscopic load–displacement curve is observed under all
stress states.

Regarding the post-buckling response of the regular, hierarchical and chiral honeycombs
considered here, FE simulations on finite honeycomb models reveal a distinct sequence of
deformed configuration; that is, linear elastic behaviour, weakly stable or unstable buckling
followed by a significant restiffening caused by densification. This sequence has been
previously reported in the crushing response of honeycombs and foams [28,32,59]. The buckling
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Table 1. Relations describing the instability stress surface for the structures studied.

honeycomb
type instability stress surface (σ̄ = (σ/E)/(t/L)3)

square grid
σ̄yy

(
1 −

√
3σ̄xx coth

(√
3σ̄xx

))
− σ̄xx

(√
3σ̄yy coth

(√
3σ̄yy

))
= 0

σ̄xx

(
1 − √

3σ̄yy coth
(√

3σ̄yy

))
− σ̄yy

(√
3σ̄xx coth

(√
3σ̄xx

))
= 0

⎫⎪⎬
⎪⎭

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

triangular grid

qb cot
( qb
2

)
+ qc cot

( qc
2

)
+ q2a

2 − qa cot(qa/2)
= 0

qc cot
( qc
2

)
+ qa cot

( qa
2

)
+ q2b

2 − qb cot(qb/2)
= 0

qa cot
( qa
2

)
+ qb cot

( qb
2

)
+ q2c

2 − qc cot(qc/2)
= 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(
qa = 2i

√
5σ̄aa − σ̄bb − σ̄cc

31/4
, qb = 2i

√
5σ̄bb − σ̄aa − σ̄cc

31/4
, qc = 2i

√
5σ̄cc − σ̄aa − σ̄bb

31/4

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

�a ≡
√

σ̄aa tanh
(√

3
√
3σ̄aa

)
+

√
σ̄bb coth

(√
3
√
3σ̄bb

)
+

√
σ̄cc coth

(√
3
√
3σ̄cc

)

�b ≡
√

σ̄bb tanh
(√

3
√
3σ̄bb

)
+

√
σ̄cc coth

(√
3
√
3σ̄cc

)
+

√
σ̄aa coth

(√
3
√
3σ̄aa

)

�c ≡
√

σ̄cc tanh
(√

3
√
3σ̄cc

)
+

√
σ̄aa coth

(√
3
√
3σ̄aa

)
+

√
σ̄bb coth

(√
3
√
3σ̄bb

)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

regular �a = 0,�b = 0,�c = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hexagon based tri-chiral (tan θ 	 1)

√
3
√
3(σ̄a′a′ + σ̄b′b′ + σ̄c′c′ ) tan2 θ + �a′ = 0√

3
√
3(σ̄a′a′ + σ̄b′b′ + σ̄c′c′ ) tan2 θ + �b′ = 0√

3
√
3(σ̄a′a′ + σ̄b′b′ + σ̄c′c′ ) tan2 θ + �c′ = 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hierarchical (γ 	 1)

(σ̄aa + σ̄bb + σ̄cc)
2
√
3
√
3γ

1 − 2γ
+ �a = 0

(σ̄aa + σ̄bb + σ̄cc)
2
√
3
√
3γ

1 − 2γ
+ �b = 0

(σ̄aa + σ̄bb + σ̄cc)
2
√
3
√
3γ

1 − 2γ
+ �c = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

investigations presented, in conjunction with recent progress on plastic-collapse criteria [55],
are making it possible to construct comprehensive multi-axial, multi-failure surfaces for cellular
structures.
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