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ABSTRACT
In the context of normal cell turnover, apoptosis is a natural phenomenon involved
in making essential life and death decisions. Apoptotic pathways balance signals
which promote cell death (pro-apoptotic pathways) or counteract these signals (anti-
apoptotic pathways). We proposed that changes in anti-apoptotic proteins would
occur during mammalian hibernation to aid cell preservation during prolonged
torpor under cellular conditions that are highly injurious to most mammals (e.g. low
body temperatures, ischemia). Immunoblotting was used to analyze the expression of
proteins associated with pro-survival in six tissues of thirteen-lined ground squirrels,
Ictidomys tridecemlineatus. The brain showed a concerted response to torpor with
significant increases in the levels of all anti-apoptotic targets analyzed (Bcl-2, Bcl-xL,
BI-1, Mcl-1, cIAP1/2, xIAP) as well as enhanced phosphorylation of Bcl-2 at S70
and T56. Heart responded similarly with most anti-apoptotic proteins elevated
significantly during torpor except for Bcl-xL and xIAP that decreased and Mcl-1 that
was unaltered. In liver, BI-1 increased whereas cIAP1/2 decreased. In kidney, there
was an increase in BI-1, cIAP and xIAP but decreases in Bcl-xL and p-Bcl-2(T56)
content. In brown adipose tissue, protein levels of BI-1, cIAP1/2, and xIAP decreased
significantly during torpor (compared with euthermia) whereas Bcl-2, Bcl-xL,
Mcl-1 were unaltered; however, Bcl-2 showed enhanced phosphorylation at Thr56
but not at Ser70. In skeletal muscle, only xIAP levels changed significantly during
torpor (an increase). The data show that anti-apoptotic pathways have organ-specific
responses in hibernators with a prominent potential role in heart and brain where
coordinated enhancement of anti-apoptotic proteins occurred in response to torpor.

Subjects Molecular Biology, Anatomy and Physiology
Keywords Hibernation, Anti-apoptosis, Inhibitor of apoptosis proteins, Cytoprotection,
Bcl proteins

INTRODUCTION
The cellular pathways which regulate programmed cell death have long been recognized

as important biological processes. Several forms of programmed cell death exist

(e.g. apoptosis, autophagy, necrosis), but apoptosis is a prominent form in mammalian

cells and, in vertebrates, apoptosis proceeds largely through the so-called mitochondrial

pathway (Spierings et al., 2005). Apoptotic pathways receive information both extrinsically
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(e.g. from growth factors, hormones, cytokines, toxins) and intrinsically (e.g. in response

to nutrient deprivation, hypoxia, viral infection, calcium concentration, etc.) and influence

a cell’s commitment to death (Strasser, Cory & Adams, 2011). Ultimately, dysregulation

of the molecular signals responsible for promoting versus inhibiting apoptosis has been

linked to various disease or degenerative states including atrophy and cancer (Siu, 2009;

Strasser, Cory & Adams, 2011).

A key initial event in the mitochondrial pathway of apoptosis is mitochondrial outer

membrane permeabilization (MOMP) that leads to the release of biomolecules from the

organelle including cytochrome c (Green & Kroemer, 2004). As such, the mitochondria

lie upstream of irreversible cellular damage and local proteins play roles in either the

inhibition or promotion of MOMP (Fig. 1) (Estaquier et al., 2012). A subset of B-cell

lymphoma 2 (Bcl-2) family proteins are well-known for their roles in controlling apoptosis

at the mitochondria (Chipuk et al., 2010). Bcl-2, Bcl-xL, and Mcl-1 are core pro-survival

Bcl-2 family members whereas Bak, Bax, and BAD are pro-apoptotic members (McDonnell

et al., 1996). Other local proteins, including BI-1 (Bax inhibitor-1), also regulate cell death

via inhibition of pro-apoptotic Bcl-2 members, but are also linked with endoplasmic

reticulum (ER) stress (Ishikawa et al., 2011). When pro-apoptotic influences dominate,

cytochrome c is released into the cytosol and binds to Apaf-1 (Apoptotic protease activat-

ing factor 1) initiating apoptosome formation and activating the caspase cascade (Cain,

Bratton & Cohen, 2002). While acting downstream of MOMP and apoptosome formation,

selected caspases may also be induced independently of mitochondria-associated events

(e.g. TRAIL and TNF death receptors). As a result, additional pro-survival members such

as the inhibitor of apoptosis protein (IAP) family, including cIAP1/2 and xIAP, function by

interfering with caspase activation as well as by playing a role in NFκB signal transduction

(Gyrd-Hansen & Meier, 2010).

The battle between pro- and anti-apoptotic forces is multifaceted and complex,

playing a pivotal role in an organism’s response to environmental and cellular insults.

Consequently, the use of a wide range of model systems has been an invaluable tool,

providing different vantage points, in the field of apoptosis research (Ishizuya-Oka,

Hasebe & Shi, 2004; Orme & Meier, 2009; Eimon & Ashkenazi, 2010; Menze et al., 2010;

Van Breukelen, Krumschnabel & Podrabsky, 2010; Silva et al., 2011; Wu, Wang & Xue, 2012).

This concept is most persuasively demonstrated when important regulatory mechanisms

are identified in non-classical model organisms that are found to be dysregulated in

human diseases, resulting in putative new intervention strategies for disease treatment.

Organisms that face extreme environmental challenges over the course of their life cycle

are of particular interest because they endure under conditions that are incompatible

with human survival. Stress-tolerant vertebrates include mammalian hibernators, such as

ground squirrels, that undergo dramatic physiological and biochemical changes between

summer and winter as well as over cycles of torpor and arousal during the winter months

(Margesin, Neuner & Storey, 2007; Storey & Storey, 2010).

Mammalian hibernation is characterized by periods of deep torpor where metabolic

rate may fall to just 2%–4% of normal and body temperature can be as low as 0–5 ◦C,
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Figure 1 Image of anti-apoptotic proteins at the mitochondrial membrane. Anti-apoptotic proteins,
such as Bcl-2, Bcl-xL, Mcl-1, and BI-1, maintain the integrity of the mitochondrial membrane by
countering the influences of local pro-apoptotic family members (Bad, Bax, Bim, Apaf1) whereas the
inhibitor of apoptosis (IAP) protein family regulates the caspase cascade through a physical interaction
which inhibits proteolytic activity. Pro-survival members are highlighted and colour-coded whereas
pro-apoptotic members are shown in grayscale. Arrowheads denote positive regulatory effects whereas
blunt-ended lines denote negative regulatory effects.

resulting in energy savings of up to 88% as compared to the energy that would otherwise

be needed to remain euthermic over the winter months (Wang & Lee, 1996). Heart rate,

breathing and all other body functions also fall to<5% of normal and, yet, every 1–2 weeks

the animals spontaneously arouse back to euthermia (Storey, 2010). Hibernation is not a

passive process and important regulatory signals actively promote the hypometabolic state

by suppressing ATP-costly cellular activities (e.g. transcription, translation, ion motive

ATPases) balanced with comparable suppression of ATP-generating pathways (MacDonald

& Storey, 1999; Storey & Storey, 2004; Armstrong & Staples, 2010). In addition, cell

preservation strategies (e.g. antioxidant defenses, the unfolded protein response [UPR],

heat shock proteins) are enhanced to help preserve macromolecules during prolonged

torpor (Mamady & Storey, 2006; Mamady & Storey, 2008; Orr et al., 2009; Storey & Storey,

2010). In essence, hibernators can endure a range of cellular stresses that are known to

activate pro-apoptotic proteins in nonhibernating mammals (e.g. nutrient deprivation,

ischemia/reperfusion, oxidative damage, low body temperature) and, therefore, they

present an opportunity to learn how nature promotes mammalian cell survival under

unfavorable conditions.

The present study aimed to identify the responses by anti-apoptotic proteins to torpor

in hibernating thirteen-lined ground squirrels, Ictidomys tridecemlineatus, in order to

uncover the mechanisms employed to resist damage under physiological conditions that

most mammals cannot survive. Previous data suggest that hibernators regulate signals

that control apoptosis (Chen et al., 2008; Yan et al., 2008; Jani et al., 2011). For example,

studies of the brain of the greater horseshoe bat demonstrated that multiple genes that

were over-expressed during hibernation were involved in the regulation of cell cycle

and apoptosis (Chen et al., 2008). Studies of differential gene expression in arctic ground

squirrels found that expression profiles of apoptosis-related genes increased significantly in

brown adipose tissue, liver, heart, hypothalamus and skeletal muscle during arousal phases
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of the torpor-arousal cycle (Yan et al., 2008). These data led us to propose that changes

in the expression of anti-apoptotic proteins may play a protective role against the stresses

associated with the winter season and that this stress response could be executed via two

central mechanisms. Firstly, inhibition of MOMP could occur through the enhanced

expression of local mitochondrial proteins such as Bcl-2, Bcl-xL, Mcl-1, and BI-1 (and/or

posttranslational modifications of their actions) and, secondly, the direct inhibition of

caspase activity could result from increased levels of members of the IAP protein family

(e.g. cIAP and xIAP). The present data suggest that anti-apoptotic mechanisms show

organ-specific responses which may be attributed to the unique challenges faced by

different organs of ground squirrels over torpor-arousal cycles.

MATERIALS AND METHODS
Animals
Hibernation experiments were conducted by the laboratory of Dr. J.M. Hallenbeck

at the Animal Hibernation Facility, National Institute of Neurological Disorders and

Stroke (NIH, Bethesda, MD), as described by McMullen & Hallenbeck (2010). Briefly,

thirteen-lined ground squirrels (Ictidomys tridecemlineatus), weighing 150–300 g,

were wild-captured by a United States Department of Agriculture-licensed trapper

(TLS Research, Bloomingdale, IL) and transported to the NIH. Animal housing and

experimental procedures followed the guidelines set by the NINDS animal care and use

committee (ACUC). Animals were individually housed in shoebox cages at 21 ◦C and fitted

with a sensor chip (IPTT-300; Bio Medic Data Systems) injected subcutaneously while

anesthetized with 5% isofluorane. Animals were fed standard rodent diet and water ad

libitum until they gained sufficient lipid stores to enter hibernation. To enable a natural

transition into torpor, animals were transferred to an environmental chamber at∼5 ◦C in

constant darkness. Body temperature (Tb), time and respiration rate were monitored and

used to determine sampling points. All animals had been through a series of torpor-arousal

bouts prior to sampling. Animals were sampled as in McMullen & Hallenbeck (2010) and

tissue samples were shipped to Carleton University on dry ice. Tissues were stored at

−80 ◦C until use. EC designates euthermic, cold room; these euthermic squirrels had a

stable Tb (∼37 ◦C) in the 5 ◦C cold room, were capable of entering torpor but had not done

so in the past 72 h. LT designates late torpor; animals that were constantly in deep torpor

for at least 5 days with Tb values of 5–8 ◦C.

Total protein extraction and preparation
Samples of frozen tissues (brown adipose, skeletal and cardiac muscle, liver, kidney, brain)

from two sampling points (EC and LT) were separately extracted (N = 4–5 samples from

different animals). Tissues were quickly weighed, crushed into small pieces under liquid

nitrogen, and then homogenized 1:3 w:v using a Polytron PT10 in ice-cold homogenizing

buffer (20 mM Hepes, 200 mM NaCl, 0.1 mM EDTA, 10 mM NaF, 1 mM Na3VO4,

10 mM β-glycerophosphate) with 1 mM phenylmethylsulfonyl fluoride (BioShop) and
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1 µl protease inhibitor cocktail (BioShop) added immediately before homogenization.

Each sample was centrifuged for 10 min (12,000 g, 4 ◦C), the supernatant containing

soluble proteins was removed, and the protein concentration was determined by the

Coomassie blue dye-binding method (BioRad Laboratories, Hercules, CA) using a

MR5000 microplate reader. Samples were adjusted to a constant 4 µg/µl by addition of

small amounts of homogenizing buffer and then aliquots were combined 1:1 v:v with

2X SDS loading buffer (100 mM Tris-base pH 6.8, 4% w:v SDS, 20% v:v glycerol, 0.2%

w:v bromophenol blue, 10% v:v 2-mercaptoethanol) and boiled. Final protein samples

(2 µg/µl)were stored at−40 ◦C until use.

Western blotting
Equal amounts of protein from each sample (20–30 µg protein/well) were loaded onto

SDS-polyacrylamide gels (SDS-PAGE) or Tris-tricine gels and separated on a BioRad

Mini Protean III apparatus. Discontinuous SDS-polyacrylamide gels were used with a 5%

stacking gel pH 6.8 and a 10% resolving gel pH 8.8. For Tris-tricine gels, the stacking gel

was composed of 375 µl 3.0 M Tris-HCl/SDS (pH 8.45), 253 µl 30% acrylamide, 875 µl
water, 15 µl 10% APS, 1.5 µl TEMED whereas the 15% resolving gel contained 1.875 mL

3.0 M Tris-HCl/SDS (pH 8.45), 2.875 mL 30% acrylamide, 316 µl water, 112 µl 10% APS,

3.5 µl TEMED. The Tris-tricine 10X anode buffer was 2 M Tris-HCl, pH 8.8 and the 10X

running buffer was 1 M Tris-HCl, 1 M Tricine, 1% w/v SDS, pH 8.3. For detection of Bcl-2,

samples were loaded on 15% Tris-tricine gels and run at 30 V for 1 h followed by∼2 h at

150 V. Other proteins were separated by standard SDS-PAGE using either 12% (Bcl-xL,

BI-1) or 10% (cIAP, xIAP, Mcl-1) gels run at 180 V for 45–60 min. Proteins were then

transferred to PVDF membrane (0.2 micron PVDF for transfer of Tris-tricine gels and

0.45 µm PVDF for all others) by electroblotting at 160 mA for 1–1.5 h using a transfer

buffer containing 25 mM Tris (pH 8.5), 192 mM glycine and 10% v:v methanol at room

temperature.

Membranes were blocked with either milk (2%–5% w:v) or polyvinyl alcohol (PVA)

made up in TBST (20 mM Tris base, pH 7.6, 140 mM NaCl, 0.05% v:v Tween-20). Those

blocked with milk were incubated on a rocker for 20–40 min (Bcl-xL, cIAP, xIAP, p53,

Bcl-2 all forms). When PVA was used, incubation was with 1 mg/ml PVA (70–100 kDa or

30–70 kDa) in TBST for 45 s (Mcl-1, BI-1). Membranes were then probed with specific

primary antibodies at 4 ◦C for 12–24 h. Antibodies were carefully selected from suppliers

with the following criteria: antibodies cross-react with several model organisms and the

epitope correlates with highly conserved protein regions. Antibodies were diluted 1:1000

v:v in TBST (0.05% Tween-20) except for xIAP and cIAP1/2 which were 1:200 v:v dilution.

Membranes that had been probed with Bcl-2, p-Bcl-2 S70, p-Bcl-2 T56, Bcl-xL, Mcl-1 or

p-p53 S46 antibodies were then incubated with HRP-linked anti-rabbit IgG secondary

antibody (1:4000 v:v dilution); HRP-linked anti-goat IgG secondary antibody (1:8000

v:v dilution) was used for cIAP1/2 and BI-1 and HRP-linked anti-mouse IgG secondary

antibody (1:2000 v:v dilution) was used for xIAP. All membranes were washed between

incubation periods in TBST for ∼10 min per wash. Bands were visualized by enhanced
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Figure 2 Representative Western blots for extracts from each tissue are shown. The targets of interest
are labeled to the left and the tissue to the right of the gel. The antibodies cross-reacted with single strong
bands on the immunoblots at the expected molecular masses for the following proteins: Bcl-2 (26 kDa),
Bcl-xL (30 kDa), cIAP (69 kDa), xIAP (53 kDa), p53 (53 kDa), Mcl-1 (40 kDa), and BI-1 (27 kDa). In
samples from the liver and brain the first 3 bands represent EC state and the next 4 bands represent LT
state.

chemiluminescence (H2O2 and luminol) and then blots were restained using Coomassie

blue (0.25% w:v Coomassie brilliant blue, 7.5% v:v acetic acid, 50% methanol). Antibodies

specific for mammalian BI-1 and cIAP1/2 were purchased from Santa Cruz, xIAP was from

Stressgen, and all others were from Cell Signaling including phospho-specific antibodies

detecting Bcl-2 phosphorylated on S70 or T65 and p53 phosphorylated on S46. Antibodies

each cross-reacted with single strong bands on the immunoblots at the expected molecular

masses for Bcl-2 (26 kDa), Bcl-xL (30 kDa), cIAP (69 kDa), xIAP (53 kDa), p53 (53 kDa),

Mcl-1 (40 kDa), and BI-1 (27 kDa) (Fig. 2). Using online bioinformatics tools, it was

confirmed that the predicted molecular weight of the target ground squirrel proteins are

similar to those from other model organisms.

Quantification and statistics
Band densities on chemiluminescent immunoblots were visualized using a Chemi-Genius

BioImaging system (Syngene, Frederick, MD) and quantified using the associated Gene

Tools software. Immunoblot band density in each lane was standardized against the

summed intensity of a group of Coomassie stained protein bands in the same lane; these

were chosen because they did not show variation between different experimental states and

were not located close to the protein bands of interest. Data are expressed as means± SEM,

n = 3–4 independent samples from different animals. Statistical testing of standardized

band intensities used the Student’s t-test (p< 0.05).
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Figure 3 Levels of mitochondria-associated pro-survival proteins in brown adipose tissue of eu-
thermic (EC) and torpid (LT) thirteen-lined ground squirrels. (A) Histogram showing mean relative
expression levels of Bcl-2, p-Bcl-2 T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1 (± S.E.M., n= 4 independent
protein isolations from different animals). (B) Representative Western blots are shown and sampling
points are labeled to the left and right of the gel; sample numbers (lanes) are labeled along the top
indicating 4 control samples (i.e. EC lanes 1, 2, 3, 4) and 4 torpid samples (i.e. LT lanes 5, 6, 7, 8). Data
were analyzed using the Student’s t-test; * values are significantly different from EC, p< 0.05.

RESULTS
Mitochondria-associated anti-apoptotic proteins in brown adipose
tissue
Relative levels of pro-survival proteins in brown adipose tissue were measured by

immunoblotting comparing euthermic control squirrels (EC) with animals in deep

torpor (LT) (Fig. 3). As compared with EC controls, levels of the BI-1 pro-survival protein

decreased significantly by 50% during deep torpor. However, total Bcl-2, Bcl-xL and Mcl-1

protein levels did not change. Bcl-2 can be regulated by phosphorylation on selected

sites; serine 70 is the best-studied but threonine 56 is another known target (Ruvolo,

Deng & May, 2001; Deng et al., 2004). Relative phosphorylation at these two sites was

also evaluated. Compared with EC, the relative level of Bcl-2 phosphorylation at T56 in

brown adipose increased significantly in deep torpor (by 1.5 fold) whereas phospho-S70

content was unaltered.
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Figure 4 Levels of mitochondria-associated pro-survival proteins in skeletal muscle of euthermic
(EC) and torpid (LT) ground squirrels. (A) Histogram showing mean relative expression levels of Bcl-2,
p-Bcl-2 T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1. (B) Representative Western blots. Other information
as in Fig. 3.

Mitochondria-associated anti-apoptotic proteins in skeletal and
cardiac muscles

Relative levels of pro-survival proteins were analyzed in ground squirrel skeletal muscle

(Fig. 4) and cardiac muscle (Fig. 5) comparing EC and LT states. As compared with

controls, none of the pro-survival proteins changed in skeletal muscle during torpor,

demonstrating a unified expression pattern in response to torpor. Conversely, cardiac

muscle showed the opposite pattern with significant changes recorded during deep torpor

for all proteins assessed except Mcl-1. As compared with EC controls, total levels of Bcl-2

and BI-1 increased by 2.0 and 2.2 fold, respectively, during LT whereas Bcl-xL levels

decreased to 60% of the control values. Phosphorylation of Bcl-2 was also enhanced during

torpor with the relative content of p-Bcl-2 T56 and p-Bcl-2 S70 rising by 1.6 and 1.4 fold,

respectively, during LT.
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Figure 5 Levels of mitochondria-associated pro-survival proteins in heart of euthermic (EC) and
torpid (LT) ground squirrels. (A) Histogram showing mean relative expression levels of Bcl-2, p-Bcl-2
T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1. (B) Representative Western blots are shown and sampling
points are labeled to the left and right of the gel; sample numbers (lanes) are labeled along the top
indicating 4 control samples (i.e. EC lanes 1, 2, 3, 4) and 3–4 torpid samples (i.e. LT lanes 5, 6, 7, 8).
Other information as in Fig. 3.

Mitochondria-associated anti-apoptotic proteins in liver and
kidney
The effect of torpor on pro-survival proteins in liver and kidney are shown in Figs. 6 and

7, respectively. In liver, the only significant change was a 2.8 fold increase in BI-1 content

during LT. In kidney, BI-1 also increased strongly by 1.9 fold during LT whereas Bcl-xL

levels decreased to 47%. Phosphorylation of Bcl-2 at T56 also decreased significantly

during torpor to 80% of the control value.

Mitochondria-associated anti-apoptotic proteins in brain
Relative levels of pro-survival proteins in brain are shown in Fig. 8 comparing EC and

LT states. Brain showed the strongest and most unified response of all the tissues with

significant increases in all pro-survival proteins studied. Bcl-2 was strongly affected with

a 2.9 fold increase in total protein as well as comparable increases in p-Bcl-2 S70 (3.3 fold
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Figure 6 Levels of mitochondria-associated pro-survival proteins in liver of euthermic (EC) and
torpid (LT) ground squirrels. (A) Histogram showing mean relative expression levels of Bcl-2, p-Bcl-2
T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1. (B) Representative Western blots. Other information as in
Fig. 3.

higher) and p-Bcl-2 T56 (2.5 fold higher) contents. Levels of Bcl-xL, Mcl-1, and BI-1 also

increased significantly during torpor by 1.9, 1.5, and 1.4 fold, respectively.

Inhibitor of apoptosis proteins in hibernator tissues
Relative levels of pro-survival IAP proteins involved in the regulation of caspase activity

were also quantified during EC and LT (Fig. 9). In brown adipose tissue, levels of cIAP1/2

(Fig. 9A) and xIAP (Fig. 9B) decreased significantly during deep torpor to levels that

were just 20 and 60% of EC values, respectively. In skeletal muscle, xIAP levels increased

by 1.4 fold during torpor but cIAP1/2 was unchanged. However, in cardiac muscle,

cIAP1/2 and xIAP showed opposite expression patterns; cIAP1/2 increased by 1.3 fold

and xIAP decreased in LT to 70% as compared with the EC value. In liver, cIAP1/2

expression levels decreased significantly during torpor to just 40% of EC values whereas

xIAP was unchanged. A concerted expression profile was observed in kidney with

both cIAP1/2 and xIAP increasing significantly in LT by 2.6 and 1.3 fold, respectively.

Similarly, both proteins increased significantly in brain during torpor by 1.4 and 1.3 fold,

respectively.
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Figure 7 Levels of mitochondria-associated pro-survival proteins in kidney of euthermic (EC) and
torpid (LT) ground squirrels. (A) Histogram showing mean relative expression levels of Bcl-2, p-Bcl-2
T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1. (B) Representative Western blots. Other information as in
Fig. 3.

Pro-apoptotic proteins in heart and brain
Relative levels of the pro-apoptotic protein p53 phosphorylated at S46 were quantified in

tissues which showed a strong, concerted anti-apoptosis response comparing EC and LT

(Fig. 10). Phosphorylation of p53 at S46 is correlated with cells directed towards apoptosis

(Smeenk et al., 2011); therefore, the relative expression levels were used as an indicator of

apoptosis in heart and brain. In both tissues, there was no change in p-p53 S46 protein

levels comparing EC and LT.

DISCUSSION
The ground squirrel represents a natural, stress-tolerant model system that may shed

light on multiple processes relevant to human health and disease. Cellular mechanisms

employed by squirrels that counter, for example, the damaging effects of low body

temperatures, ischemia/reperfusion, or muscle disuse could help biomedical researchers

to design new preservation techniques to use in tissue/organ storage and transplantation

or identify new therapeutic targets for counteracting effects of hypothermia, reperfusion

injury, metabolic diseases, atrophy, etc. The present study highlights the responses of
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Figure 8 Levels of mitochondria-associated pro-survival proteins in brain of euthermic (EC) and
torpid (LT) ground squirrels. (A) Histogram showing mean relative expression levels of Bcl-2, p-Bcl-2
T56, p-Bcl-2 S70, Bcl-xL, Mcl-1, and BI-1. (B) Representative Western blots. Other information as in
Fig. 3.

pro-survival anti-apoptotic proteins in organs of a mammalian hibernator. Hibernator

organs face different challenges over the torpor-arousal cycle. Heart must continue to

pump throughout, adjusting to both low body temperature and the increase in force of

contraction needed at low heart rates and high blood viscosities during torpor (Dawe &

Morrison, 1955; Fahlman, Storey & Storey, 2000; Brauch et al., 2005). Brown adipose tissue

and skeletal muscle have limited roles during torpor but are critical to the arousal phase

that returns the animal to euthermia, being responsible for nonshivering and shivering

thermogenesis, respectively (Wang & Lee, 1996). Other tissues also face unique challenges;

the kidneys experience minimal renal flow and reduced urine production (Deavers &

Musacchia, 1980), the liver must orchestrate lipolysis, gluconeogenesis from amino

acids/glycerol, and urea recycling (Storey & Storey, 2010), and the brain faces strongly

reduced cerebral blood flow while remaining crucial for the control of torpor-arousal

cycles (Frerichs et al., 1994). The essential roles that these tissues play in the physiological

regulation of hibernating mammals suggest the importance of molecular controls that

ensure their preservation under stressful conditions. Anti-apoptosis actions may be crucial

to long term cell survival in the hypometabolic torpid state, joining other cytoprotective
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Figure 9 Changes in the protein levels of members of the inhibitor of apoptosis (IAP) protein family comparing euthermic (EC) and hibernating
(LT) conditions in ground squirrel tissues. (A) The relative expression levels of cIAP1/2. (B) The relative expression levels of xIAP. Tissues are
brown adipose tissue (BAT), skeletal muscle (MUS), heart (HRT), liver (LIV), kidney (KID) and brain (BRN) of thirteen-lined ground squirrels.
Representative Western blots are shown with sampling points labeled to the left and tissues labeled above the bands. Histograms show mean
standardized band densities (±S.E.M., n= 4 independent protein isolations from different animals). Data were analyzed using the Student’s t-test;
* values are significantly different from EC, p< 0.05.

mechanisms (e.g. UPR, heat shock proteins, antioxidant defenses) to help preserve cellular

macromolecules and extend viability. This is necessary because the hypometabolic state is

characterized by a reduced capacity to replace damaged macromolecules due to the global

suppression of transcription and translation. We hypothesized a two-pronged mode of

action whereby pro-survival targets involved in the inhibition of MOMP (Blc-2, Bcl-xL,

Mcl-1, BI-1) and caspase activity (cIAP1/2, xIAP) would help to sustain tissue viability in

the torpid state.

While this study evaluates the response of pro-survival proteins, mounting evidence

suggests pro-apoptotic stimuli are suppressed and/or remain constant between control

and torpid conditions in the tissues presently studied. In the current study, heart and

brain showed no change in the relative expression levels of p-p53 S46 suggesting that

apoptotic pathways are not activated. In a stressed state, p53 may be phosphorylated at

several key residues resulting in the stabilization and/or activation of transcription factor

activity (Smeenk et al., 2011). Although some phosphorylation sites are thought to serve

a more general purpose, serine 46 phosphorylation directs the transcription of target

genes favoring the pro-apoptotic response (Smeenk et al., 2011). Pro-apoptotic data in

other tissues include the following; caspase-3 activity was no different between hibernating

and summer kidneys (Jani et al., 2011) and relative expression levels of the pro-apoptotic

Bcl-2-associated death promoter (BAD) did not change between hibernating (LT) and

control (EC) animals in heart and muscle (H Mamady & KB Storey, unpublished). Studies
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Figure 10 Levels of phospho-p53 (S46) in heart (HRT) and brain (BRN) of thirteen-lined ground
squirrels comparing euthermic (EC) and hibernating (LT) conditions. (A) Histogram showing mean
relative expression levels of p-p53 (S46) (±S.E.M., n= 3–4 independent protein isolations from different
animals). (B) Representative Western blots are shown and sampling points are labeled to the left and right
of the gel; sample numbers (lanes) are labeled along the top indicating 3 control samples (i.e. EC lanes
1, 2, 3) and 3–4 torpid samples (i.e. LT lanes 4, 5, 6, 7). Data were analyzed using the Student’s t-test; *
values are significantly different from EC, p< 0.05.

which evaluate the regulatory mechanisms of pro-apoptotic pathways are still required;

however, this data for thirteen-lined ground squirrel in multiple tissues suggests that

pro-apoptotic pathways are not activated.

The responses by mitochondria-associated anti-apoptotic proteins varied substantially

between the six tissues examined. Total protein levels of Bcl-2, Bcl-xL, Mcl-1 and BI-1

did not change in skeletal muscle of ground squirrels, and three other tissues showed

responses by only 1 protein (BI-1 in brown adipose and liver) or two proteins (BI-1, Bcl-xL

in kidney). By contrast, changes in mitochondria-associated anti-apoptotic proteins were

substantial in heart and brain. Cardiac muscle showed a strong pro-survival response with

a significant increase in all mitochondria-associated proteins measured except for Bcl-xL

(significant decrease) and Mcl-1 (unaltered) (Fig. 5). Generally, these data suggest that

anti-apoptotic mechanisms help preserve the integrity of heart tissue during hibernation,

possibly in response to increased stress experienced as a result of cold temperatures and/or

elevated cardiac muscle contraction strength during this period. In brain, expression levels

of all four proteins increased during LT to levels that were 1.4–2.9 fold higher than in EC.

The concerted and strong response by all of these anti-apoptotic proteins in brain may
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reflect a need for focused neuroprotection during torpor. Furthermore, both heart and

brain showed increased phosphorylation of Bcl-2 at both the T56 and S70 sites.

The most prominent response to torpor across ground squirrel tissues was a significant

change in BI-1 levels in four of the six tissues examined; levels rose significantly by

1.4–2.8 fold in heart, liver, kidney and brain but decreased by 50% in brown adipose

and remained unchanged in muscle. BI-1 protects cells against BAX-induced apoptosis,

and given the elevation of BI-1 in four tissues during torpor, this argues that attention

to BAX regulation may be one of the most important anti-apoptotic actions needed in

hibernator organs. BI-1 is important in regulating Ca2+ release from intracellular stores

and a negative regulator of the endoplasmic reticulum (ER) stress sensor IRE1α (Henke

et al., 2011). Sustained release of Ca2+ from ER stores is well-known to trigger apoptosis

and the inability to maintain Ca2+ homeostasis at low temperatures is a major cause

of hypothermic injury in nonhibernating mammals, including man (Hochachka, 1986).

A consistent element of metabolic rate depression across phylogeny is the coordinated

regulation and suppression of ion channels and ATP-driven membrane ion pumps so

that ion homeostasis and membrane potential difference is maintained across both

plasma and organelle membranes (Hochachka, 1986; Storey & Storey, 2007). Controlled

suppression of both the Na+K+ ATPase and the sarco(endo)plasmic reticulum Ca2+

pump (SERCA) that returns Ca2+ into the ER has been well-documented in multiple

hypometabolic systems, including hibernators. Indeed, ground squirrels show coordinated

regulation of SERCA and other Ca2+-related proteins in the ER (Malysheva et al., 2001).

Hence, we can propose that BI-1 may be involved not just in anti-apoptosis action at the

mitochondria but also in the regulation of Ca2+ fluxes in the ER, potentially contributing

to the temperature-dependent regulation of Ca2+ fluxes that could otherwise cause

damage to hibernator cells as their Tb changes over a wide range from 37 ◦C down

to near 4 ◦C. Additionally, Chae et al. (2004) discovered that mouse cells deficient in

BI-1 displayed a hypersensitivity to apoptosis induced specifically by ER stress. Indeed,

studies of selected ground squirrel tissues measured markers of ER stress such as the ATF4

transcription factor (activates genes that participate in the UPR), its nuclear co-activator

(the phosphorylated form of CREB-1), and GRP78 (the main ER chaperone), all of which

provided evidence of ER-related stress during torpor (Mamady & Storey, 2006; Mamady &

Storey, 2008).

Notably, however, BI-1 responded differently in the two thermogenic organs, decreasing

in brown adipose and not changing in skeletal muscle. Furthermore, total protein levels of

the other mitochondria-associated anti-apoptotic targets that are involved in MOMP were

unaltered (Bcl-2, Bcl-xL, Mcl-1) in these two tissues during torpor. This may suggest

a different approach to anti-apoptotic regulation in the thermogenic organs such as

reliance on different anti-apoptotic regulators or a controlled suppression of pro-apoptotic

proteins. In line with the idea of alternative anti-apoptotic mechanisms, selected heat

shock proteins (Hsp27, Hsp70, Hsp90) have been implicated in the inhibition of apoptosis

via a physical interaction with Apaf-1, resulting in caspase inhibition (Saleh et al., 2000;

Xanthoudakis & Nicholson, 2000). Notably, HSP70 levels in skeletal muscle of torpid
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ground squirrels were 50% higher than in euthermic controls, providing some initial

support for the idea that an alternative mode of anti-apoptosis may be present in muscle

(K Yan & KB Storey, unpublished data; Storey & Storey, 2011).

Protein phosphorylation is an important regulatory mechanism in the pro-survival

function of Bcl-2 (Ruvolo, Deng & May, 2001). The best consensus of available data is

that Bcl-2 phosphorylation at serine 70 enhances its anti-apoptotic potential (Horiuchi

et al., 1997; Ito et al., 1997; Deng et al., 2000; Deng et al., 2004) but the consequences

of threonine-56 phosphorylation are still being debated (Srivastava et al., 1999; Deng

et al., 2004; Muscarella & Bloom, 2008). These conflicting responses at different sites

might be resolved when it is considered that phosphorylation at multiple sites may be

present at any given time and that these modifications must be collectively considered

when attempting to isolate their functional significance. Other possible explanations

may stem from the intimate relationship between apoptosis and other stress-responsive

pathways. For example, Furukawa et al. (2000) discovered that Bcl-2 phosphorylation at

T56 by Cdc2 kinase correlated with the accumulation of cells in G(2)/M phase and did

not relate to levels of apoptosis. Since cell cycle inhibition commonly occurs in response to

cellular stress as well as during multiple forms of hypometabolism, including hibernation

(Wu & Storey, 2012), Bcl-2 may actually have a dual function, acting to inhibit both

apoptosis and cell proliferation when conditions are unfavorable. This could contribute

to both metabolic arrest and extending the half-life of macromolecules and cells in the

torpid state.

Increases in the phosphorylation state of Bcl-2 at S70 and T56 occurred in both heart

and brain during torpor together with similar increases in total Bcl-2 protein levels. It

seems significant that the two organs (brain, heart) with elevated Bcl-2 and phospho-Bcl-2

contents are also the two most oxygen-dependent organs as well as being critically

important organs that must remain functional and viable throughout torpor to ensure

animal survival. Chen & Pervaiz (2007) proposed that Bcl-2 was involved in fine-tuning the

balance between mitochondrial oxygen consumption for energy production and reactive

oxygen species (ROS) generation. Cells overexpressing Bcl-2 had higher cytochrome

oxidase (COX) activity and respiration and Bcl-2 was also able to regulate these in the face

of rising ROS levels. They proposed that Bcl-2 helps to adjust mitochondrial respiration

to the demands for energy without incurring harmful increases in ROS. Significantly,

previous studies with ground squirrels have documented enhanced expression of the

mitochondria-encoded subunits of electron transport chain (ETS) enzymes in heart

during torpor including COX 1 (complex IV) (Hittel & Storey, 2002) and subunit 2 of

NADH–ubiquinone oxidoreductase (ND2; complex I), complex I being the main site of

superoxide production (Fahlman, Storey & Storey, 2000). Thus, we can propose that in

addition to anti-apoptosis action, elevated expression of Bcl-2 in hibernator heart (and

probably brain as well) may be intimately involved in adjusting the balance of oxygen

consumption between complexes I and IV of the ETS that may otherwise be disrupted by

the effects of low Tb and/or entry into the hypometabolic state. Indeed, altered expression
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of mitochondria-encoded subunits of ETS complexes is widespread among hypometabolic

systems (Storey & Storey, 2004).

Members of the IAP protein family also showed tissue specific responses to hibernation

in ground squirrels. Three tissues showed an increase in xIAP protein levels (muscle,

kidney, brain) and/or cIAP1/2 protein levels (heart, kidney, brain), suggesting the

possibility that inhibition of caspase activity is a critical regulatory mechanism which

enhances survival in these tissues. This regulatory mechanism may be especially important

for hibernator skeletal muscle since xIAP was the only anti-apoptotic protein that

increased in this tissue, among all of the mitochondria-associated and IAP-related

proteins that were measured. In addition, increases in IAP protein levels may be related

to inhibiting ER-induced apoptosis through caspase-7 which is activated under ER stress

and binds directly to xIAP (Gyrd-Hansen & Meier, 2010). As a result, these data may

highlight yet another important point of convergence between apoptosis and ER-stress

during hibernation whereby xIAP and BI-1 expression may promote survival as a result of

ER-induced stress. Conversely, heart showed a decrease in xIAP expression, liver showed

no change in xIAP and a decrease in cIAP1/2, and brown adipose tissue showed a decrease

in both IAPs. These data suggest the possibility that maintaining stable levels of xIAP/cIAP

is sufficient to inhibit caspase activity, caspase activity is inhibited by other mechanisms or

a decrease in IAPs is matched with a decrease in the activity/expression of the downstream

effectors.

The current data suggest tissue-specific regulation of anti-apoptotic pathways during

hibernation, with a prominent potential need for anti-apoptotic action in cardiac muscle

and brain. The activation of pro-survival pathways may function as a mechanism to help

preserve hibernator cells from stresses associated with the torpid state. The molecular

mechanism of preservation involves both the regulation of mitochondria-associated

proteins and the inhibitor of apoptosis protein family. Of particular importance during

torpor may be protection of cells from apoptosis as a result of ER-stress, but protection

from other inducers of cell death is also likely involved.
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