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Abstract: A challenge in the field of polymer network synthesis by a step-growth mechanism is
the quantification of the relative importance of inter- vs. intramolecular reactions. Here we use a
matrix-based kinetic Monte Carlo (kMC) framework to demonstrate that the variation of the chain
length distribution and its averages (e.g., number average chain length xn), are largely affected by
intramolecular reactions, as mostly ignored in theoretical studies. We showcase that a conventional
approach based on equations derived by Carothers, Flory and Stockmayer, assuming constant
reactivities and ignoring intramolecular reactions, is very approximate, and the use of asymptotic
limits is biased. Intramolecular reactions stretch the functional group (FG) conversion range and
reduce the average chain lengths. In the likely case of restricted mobilities due to diffusional
limitations because of a viscosity increase during polymerization, a complex xn profile with possible
plateau formation may arise. The joint consideration of stoichiometric and non-stoichiometric
conditions allows the validation of hypotheses for both the intrinsic and apparent reactivities of inter-
and intramolecular reactions. The kMC framework is also utilized for reverse engineering purposes,
aiming at the identification of advanced (pseudo-)analytical equations, dimensionless numbers and
mechanistic insights. We highlight that assuming average molecules by equally distributing A and
B FGs is unsuited, and the number of AB intramolecular combinations is affected by the number
of monomer units in the molecules, specifically at high FG conversions. In the absence of mobility
constraints, dimensionless numbers can be considered to map the time variation of the fraction
of intramolecular reactions, but still, a complex solution results, making a kMC approach overall
most elegant.

Keywords: polymer networks; kinetic Monte Carlo; step-growth polymerization; diffusional limitations;
ring formation

1. Introduction

Step-growth polymerization involves gradual ligation reactions between either bifunc-
tional or multifunctional components with the possible liberation of small molecules, such
as water and alcohol [1]. In the former case of only bifunctional moieties, one refers to linear
step-growth polymerization (e.g., monomeric reactants A2 and B2; Figure 1a), whereas in
the latter case with multifunctional moieties, one considers the term network step-growth
polymerization (e.g., monomeric reactants A4 and B4; Figure 1b). Each time one reacted
functional group pair (“AB”) is formed, the remaining functionalities allow (in principle)
for further growth so that in a theoretical limit, one large molecule results. In the presence of
byproduct formation, one refers to polycondensation, with many examples both for natural
and synthetic polymers [2–5]. The synthesis of the first synthetic step-growth polymeric
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material, i.e., bakelite, which was introduced in 1907 by Leo Baekeland, considered phenol
and formaldehyde groups as the building blocks [6]. The largest-volume polymers made
via step-growth polymerization are polyesters and polyamides, with main applications
as the production of fibers, wire coatings and composites [1,7–11]. Well-known examples
are polyester plastic bottles made from poly(ethylene terephthalate) and polyamide nylon
6,6. Furthermore, polycarbonates are used as digital-storage-media substrates and for
electronic devices due to their transparency and high toughness [1,12]. Other commercial
examples are polyurethanes and cured epoxy resins [11,13].

Figure 1. Principle of step-growth polymerization for (a) two bifunctional monomers (A2: white and B2: black) and (b) two mul-
tifunctional monomers (A4: white and B4: black); inter- and intramolecular bond formation are highlighted by purple arrows.

For the characterization of step-growth polymerization, the main focus is on the chain
length distribution (CLD), i.e., the number or mass fraction of macrospecies with a given
number of monomers incorporated (x values in the present work) and its corresponding
averages (e.g., the number/mass average chain length xn/m). Important dependencies here
are (i) the functionality degree of the monomers, i.e., the so-called f values representing
the maximum number of functional groups (FGs) that participate in the polymerization
per original monomer (e.g., f 1 = f 2 = 4 in Figure 1b), and (ii) the stoichiometry, i.e., the
so-called r value reflecting the relative presence of certain FGs at the start. In the present
work, r = NA,0/NB,0 with NA,0 and NB,0 as the initial number of A and B FGs, considering
r ≤ 1 making A the limiting FG. Due to the nature of the step-growth polymerization
mechanism with a gradual formation of dimers (x = 2), trimers (x = 3) and ultimately
x-mers with x >> 1, a high extent of reaction and thus FG conversion (>>0.95) is required
to achieve high average chain lengths [1,14]. Impurities and molar imbalances, which are
often aggravated by different volatility tendencies, have a deleterious effect on the quality
of the final polymer product. High average chain lengths can only be obtained under ideal
polymerization conditions (r = 1) and, in practice, can require a series of reactors, with
the last frequently being a so-called solid-state reactor, operated at a lower temperature
to minimize polymer degradation, but still at a sufficiently high reaction temperature to
allow for sufficient FG mobility [15–17]. For CLD determination, experimental limitations
exist, as it is non-trivial to obtain absolute CLDs and to perform reliable and time-efficient
analysis, specifically for highly branched network systems. Therefore, the step-growth
polymer community also employs theory to understand the success of a synthesis recipe.
Originally emphasis has been on linear step-growth polymerization with AB monomers
inherently minimizing the impact of a stoichiometric imbalance. However, commercially,
the use of AA and BB monomers is more cost-effective, explaining why one also considers,
in theoretical developments, r values below 1. In most theoretical work, intramolecular
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reactions are ignored (so no “intra”, as specified in Figure 1), and the focus is on molecular
properties as a function of functional group conversion and not the reaction time.

To describe the behavior of linear step-growth polymerization systems, in 1930,
Carothers proposed a pioneering equation, later denoted as the Carothers equation [18].
This equation is based on general stochastic insights and gives the degree of polymerization
or number average chain length, i.e., xn, for a given (A or equivalently B) FG conversion p
with r = 1 ignoring intramolecular reactions:

xn =
1

1 − p
(1)

This equation reaches an asymptotic value at p = p* = 1 and requires, in practice, a final
evaluation at p = 0.99. The monomers AA and BB (or AB) are considered having a chain
length of 1, and it is assumed that potential byproduct is removed from the reaction mixture
so that equilibrium settings can be ignored (so-called kinetically controlled step-growth
polymerization) [19]. Similar expressions are available to describe xm and the dispersity (Ð;
ratio of xm and xn) as a function of p:

xm =
1 + p
1 − p

(2)

D = 1 + p (3)

Flory [20–22] collaborated, later on, to calculate the associated mass CLD by a statistical
approach based on equal reactivity of FGs:

mx = x(1 − p)2 px−1 (4)

The extension of the Carothers equation (Equation (1)) to account for a stoichiometric
imbalance (r < 1) with pA the FG conversion of the limiting FG A has been reported as:

xn =
1 + r

1 + r − 2rpA
(5)

and has been confirmed (as well as the previous equations) by kinetic (modeling) ap-
proaches, in which time dependencies are accounted for by integrating continuity (or
moment) equations or sampling reaction probabilities based on concentration variations,
e.g., kinetic Monte Carlo simulations [23–26].

For branched step-growth polymerization systems, Carothers [18] modified his orig-
inal equation stating that xn is dependent on the average functionality per monomer fav

(Equation (6); fav =
Nmon,A,0 fA+Nmon,B,0 fB

Nmon,A,0+Nmon,B,0
with Nmon,A,0 and Nmon,B,0 being the initial num-

ber of monomer molecules based on FG A and B, respectively, and fA and fB the related
functionality degrees, respectively). The equation is limited to stoichiometrically balanced
reactions (r = 1), describing the synthesis up to the asymptotic value located at p* = 2/fav,
which is denoted as the critical degree of FG conversion.

xn =
2

2 − p fav
(6)

It can be expected that this asymptotic value (2/fav) is only a rough estimate to describe
gelation. In this respect, Flory [20–22] and Stockmayer [27–29] derived an equation to
predict the gel point, i.e., the point at which a polymer network is formed, resulting in an
abrupt change in viscosity, which is theoretically associated with the limit of one network
molecule. This was specifically done for systems consisting of the following three types
of monomers: branched A-based monomer with f (=f 1) > 2, linear BB monomer (f 2 = 2),
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and linear AA monomer (f 3 = 2), by introducing the discriminator αc, called the critical
coefficient of branching:

αc =
1

f − 1
(7)

The Flory–Stockmayer theory [20–22,27–29], which assumes only intermolecular re-
actions and equal reactivities for FGs, as in the derivation of Equations (1)–(6), states that
gelation occurs if α > αc as a function of pA:

α =
rp2

Aρ

1 − rp2
A(1 − ρ)

(8)

with ρ being the initial ratio of the number of A FGs in the branched monomers to the total
number of A FGs and α the coefficient of branching, which is defined by the probability that
a certain branched unit will be joined to a second branched unit rather than to a terminal
group. As derived by Flory [22], the associated xn follows from:

xn =
f
(

1 − ρ + 1
r

)
+ 2ρ

f
(

1 − ρ + 1
r − 2pA

)
+ 2ρ

(9)

Equation (9) results in an asymptote if p∗A = ρ
f +

1
2r +

1−ρ
2 representing the maximal A

FG conversion that can be obtained without ring (or loop) formation due to intramolecular
reactions. This is consistent with earlier findings by Carothers [18], who pointed out that
if one intermolecular linkage is formed per initial monomer, all the monomers must be
bound into one large molecule so that no further intermolecular reactions are possible.
In this way, no full FG conversion can be reached, with for instance in the stoichiometric
reaction of a bifunctional and a trifunctional monomer (f 1 = f = 3; f 2 = 2; ρ = 1; r = 1), pA*
according to Equation (9) being 83%, which is 5/6 *100 as six potential AB linkages exist
for five monomers (3 B2 and 2 A3). Furthermore, Stockmayer derived the corresponding
equation for xm assuming ρ = 1, again highlighting the concept of asymptotic values:

xm =

2r
f
(
1 + rp2

A
)
+
(
1 + ( f − 1)rp2

A
)
+ 4rpA(

2r
f + 1

)(
1 − r( f − 1)p2

A
) (10)

Stockmayer [29] also developed an equation for the distribution representing the vari-
ation in the number fraction of molecules with y f -functional monomers and z bifunctional
monomers incorporated (r = 1 and ρ = 1):

fn;y,z = f
(

NA,0

NA,0 + NB,0

)y−1( NB,0

NA,0 + NB,0

)z
py+z−1

A (1 − pA)
f y−2y+2 ( f y − y + z)!

y!z!( f y − 2y + 2)!
(11)

Flory [22] and Stockmayer [27–29] studied well-defined step-growth polymerizations
by determining the probabilities of finding various branched molecular structures in the
reaction system at given FG conversions using combinatorial arguments. Starting with
the assumptions of equal reactivity of FGs and no intramolecular reactions, they used
probability distributions to derive expressions for the CLD and to compute xn and xm up
to the theoretical limit of one molecule. For more complex systems, as encountered in
industrial formulations (e.g., ABf monomers), complex combinatorial analysis is required.
Gordon [30] therefore adapted Good’s theory of stochastic branching, i.e., the cascade
theory [31,32], in which the connectivity of chemical structures in network molecules is
visually represented by rooted trees. The generation of the trees at a given FG conversion
occurs by means of probability generating functions:

F(θ) = ∑
y

pyθy (12)
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with py denoting the probability of event y and θ a dummy variable. These functions
generate all possible treelike molecules with proper weighing compatible with random
combinations of reacted FGs. As the molecules are still generated from FGs at any extent of
reaction, no information is stored on sequence order in the generated structures. Never-
theless, chain length averages can still be determined without first determining the CLD,
and more recent results have been reported by Beginn et al. [33] and Cheng et al. [34,35].
Hillegers et al. [36] used, in turn, this approach to calculate path length—the number of
chemical bonds in the path connecting two monomeric units in a molecule—distributions
in an A1 + A2 + A3 type polymerization. However, the technique based on Equation (12)
involves abstract mathematics and, as such, is difficult to use. That is why Macosko and
Miller [37,38] developed a new method for calculating averages before and beyond the gel
point, starting from elementary probability theory and utilizing the recursive nature of the
branching process and conditional expectations. Their technique is mathematically easier
to implement and yields results that are identical to those obtained by Gordon but still
considers the initial assumptions of Flory and Stockmayer with no tracking of the reaction
event history.

More promising is the so-called rate theory, as proposed by Stanford and Stepto [39]
for linear step-growth polymerizations, in which concentration and FG dependencies are
mapped as a function of reaction time and the FG conversion is calculated in parallel.
This method is based on the principle that species with size i and with size j merge to
form species with size i + j. In this way, the evolution of species can be described by a set
of differential equations. For example, Ziff [40] confirmed that the distribution obtained
by the Stockmayer theory (Equation (11)) is the solution of the corresponding (dynamic)
differential equations. Furthermore, the rate theory has been used to predict CLDs and the
onset of gelation both for batch reactors [41–44] and for perfectly mixed continuous flow
stirred tank reactors [45,46]. More recently, the rate theory was applied by other groups
as well [47–54]. Finally, Schamboeck et al. [55] applied the theory of percolation [56] on a
directed random graph to derive analytical expressions describing the molecular structure
of branched polymers synthesized via irreversible step-growth polymerization.

The main shortcoming of Equation (9) (and thus also Equations (1), (5) and (10)),
and most more recently developed theories, as described above, is the neglecting of
intramolecular or cyclization reactions (ring formation). It is clear from Figure 2 that
Equation (9) does not hold if intramolecular reactions occur. A highly functional monomer
(A12; f 1 = f = 12, ρ = 1; Figure 2a) is depicted as fully reactive and focus is on linkage
with a bifunctional monomer (B2; f 2 = 2; Figure 2a), assuming no mobility restrictions as
facilitated by selecting FGs for intramolecular reactions that are at short distance. For three
values of r (Figure 2b–d), it is demonstrated that the predicted pA* according to Equation (9)
is only representative if the (cumulative) fraction of intramolecular reactions fintra, which
is defined as the ratio of the number of intramolecular reactions to the total number of
reactions or AB-linkages formed, is zero. With a non-zero fintra, the real FG conversion of A
(pA) can become 1, while Equation (9) contradicts this specifically if one assumes a high
fintra, as in Figure 2d (pA* = 0.75 whereas pA = 1).

In linear step-growth polymerizations, intramolecular reactions are rarely considered
in modeling studies, as they are rather unlikely to happen, although small rings have been
mentioned [57–60], causing deviations from Equation (5) (and Equation (1)). The same
holds for free radical polymerization (FRP) systems, where the occurrence of cyclization
reactions has been confirmed for a limited number of cases, including, for instance, short-
chain biradicals [61,62]. The situation is different if one uses multifunctional instead of
bifunctional monomers in step-growth polymerization, where it is expected that intramolec-
ular reactions play a more important role, as many FG combinations for intramolecular
reactions can be identified, especially close to the “gel point”. Experimentally, the determi-
nation of this point has been investigated thoroughly. Specifically, Stafford [41] has made a
summary of experimentally determined gel points, comparing them to typical theoretical
values (e.g., based on Equations (8) and (9)). The deviation between experimental results
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and theoretical predictions has been attributed to the occurrence of intramolecular reactions.
Several experimental investigations have revealed that intramolecular reactions can indeed
not be neglected during network formation [63–68]. It has been further shown that the
macroscopic properties of network materials are affected by these reactions [64,65].

Figure 2. Comparison between real maximal limiting A functional group (FG) conversion (pA) being
always 1 (top of each box), and as calculated by Equation (9) with ρ = 1 (bottom of each box; p∗A; no
intramolecular reactions allowed), reacting a multifunctional monomer (f 1 = f = 12) and a bifunctional
monomer (f 2 = 2) as depicted in (a) for three (cumulative) fractions of intramolecular reactions (fintra):
fintra = 0 (b), fintra << (c) and fintra >> (d). Equation (9) fails if intramolecular reactions are present
as in (c,d) (cases with fintra > 0); rings and thus loops resulting from intramolecular reactions are
highlighted in grey and are for illustration purposes formed based on short FG distances.

It is thus clear that models to describe step-growth polymerization can be improved
by including the occurrence of intramolecular reactions. Unfortunately, only very few
attempts to treat the challenge of mapping competitive inter- and intramolecular reactions
have been reported, with most of them based on the cascade theory and often focusing
on the determination of the critical gelation conversion [69,70]. For instance, Jacobsen
and Stockmayer [71] put forward the probability of ring formation in the step-growth
polymerization of a bifunctional monomer using Gaussian conformational statistics for
the growing chain. The probability that a chain is in a ring formation is claimed to be
proportional to nl

−3/2 with nl the number of links. The ring-chain equilibria are obtained
by comparing stochastic variations of meeting ends of different chains and of the same
chain in a small volume element. Furthermore, Gordon et al. [69] and Dusek et al. [70]
combined the cascade theory with Gaussian statistics to include the probability of ring
formation. This approach has been later discussed by Kricheldorf et al. [59], who were able
to identify cyclic products by means of matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) mass spectrometry.

The deterministic kinetic approach has also been extended to account for intramolec-
ular reactions [72–80], but is typically limited to very low FG conversions due to the
complexity of integrating the associated differential equations. A comparison with the cas-
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cade theory revealed that the simulated impact of intramolecular reactions is lower, as also
shown by Mikes and Dusek [81], using in silico generation of polymer chains. In the work
of Kumar et al. [73,74], next to the gel point, the CLD has been calculated in the presence
of intramolecular reactions for the polymerization of Af-type monomers with themselves.
In their kinetic model based on integrating continuity equations, they defined Pp,x as the
species having chain length x with p intramolecular bonds, and the rate coefficient for
the intramolecular reaction was determined using the percolation theory [56]. Another
approach relates to lattice-based simulations, in which FGs are placed at fixed positions to
mimic the structure of the network molecules [82–84]. For instance, Cameron et al. [83,84]
developed a computer-based lattice model for the step-growth polymerization of an AB2
monomer that allows the simultaneous and explicit occurrence of inter- and intramolecular
reactions of A and B FGs according to stochastic selections of pairs adjacent on the lattice.
However, conventional lattice-based models are treating time dependencies in a simplified
manner. They are preferably extended considering kinetic rules such as varying reaction
probabilities, as recently done in the field of polymer brush synthesis [85,86].

Despite the progress made in the field, kinetic modeling tools for step-growth network
synthesis, with a limited number of assumptions and focusing both on FG conversion and
time dependencies, remain scarce. In such studies, one strives not only for a differentiation
between inter- and intramolecular reaction rates but also for automated validation if
network synthesis reactions can take place upon a random selection of FGs. For example,
FGs belonging to separate molecules that are incapable to diffuse will not react, but in
a model with constant intermolecular reactivities and no time-dependent tracking of
connectivities, as is commonly the case, this physical constraint will be ignored. Similarly,
intramolecular reactions can be expected not to go on forever with the same reactivity,
opposed to what is assumed in most more advanced models. Polymerization media are
viscous, certainly for network systems at high FG yield. Variable, thus apparent, inter- and
intramolecular rate coefficients, are therefore desired in model implementations [87–91].

With the recent advent of matrix-based kinetic Monte Carlo (kMC) simulations, it
is possible to explicitly track the connectivities of (co)monomer units [92–95], therefore
allowing the calculation of time-dependent CLDs, differentiating between the contribution
of linear and branched/crosslinked species, and acknowledging the apparent nature of rate
coefficients. Such high-level modeling platforms facilitate reverse engineering, in which the
model output can be compared with simplified but pragmatic theories that consist only of a
limited number of equations. In the present work, we demonstrate that matrix-based kMC
simulations allow the grasping of the interplay between inter- and intramolecular reactions
at any time and FG conversion, considering theoretical cases of constant and varying
reactivities. The main focus is on the reaction between Af and B2, but examples for other f
combinations are also considered. It is shown that the use of asymptotes from commonly
applied theories is biased if intramolecular reactions matter. This bias is even stronger if
mobility restrictions, and thus, diffusional limitations are relevant. Reverse engineering is
also applied to test hypotheses regarding the future development of advanced (pseudo-
)analytical approaches. Guidelines are additionally provided for the experimentalist to
verify the actual value for the ratio of the rate coefficient for intramolecular reactions,
compared to that for intermolecular reactions. The present work, therefore, contributes
to a dedicated kinetic understanding of step-growth polymer synthesis up to very high
FG conversions.

2. Kinetic Monte Carlo Modeling Details

The main steps of the matrix-based kMC model to study the kinetics of step-growth
polymer network synthesis are given in Figure 3 and build on the principles as outlined in
previous work [92,96–101], with the core being the storage of individual reaction events and
the associated compositions molecule by molecule. The reactions are defined based on the
FGs that need to chemically rearrange, but of course, need to be linked to specific molecules
due to the multifunctional nature of network synthesis. The steps that are related to the
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differences in the treatment of the selection of FGs to execute inter- and intramolecular
reactions, as important for this work, are highlighted in purple. The source code was
written in Fortran programming language (IBN, New York, NY, USA) and compiled using
an Intel Fortran Compiler.

Figure 3. Flowsheet of kinetic Monte Carlo (kMC) model to follow the kinetics during network synthesis on the level of the
individual segment/molecule. In purple, the specific steps related to the selection of FGs for an inter- and intramolecular
reaction in polymer network synthesis. For comparison with simplified models, one can skip the calculation of apparent
intermolecular reactivities (kapp values) and the distance rule for intramolecular reactions. FG: functional group; n’/Nc’:
amount of monomer units/crosslinking points between the selected FGs; nX: number of X type molecules; R/P: MC reaction
rate/probability; ri: random number; t(tot): (total) time; ν: MC reaction channel. Figure S3 in the Supplementary Materials
gives extra information on the selection of the specific FGs in a molecule.

As can be seen in Figure 3, the kMC model requires as input: (i) a list of all reaction
types and their corresponding chemical and diffusion parameters (including the polymer-
ization temperature), (ii) the initial number of all types of molecules with the possibility to
select monomers with different functionality degrees (e.g., f 1 = 3, f 2 = 4; . . . ), (iii) the total
synthesis time (ttot) and (iv) properties of all types of molecules (e.g., molar masses and
densities). In the present work, the volume is fixed at 1.0 × 10−15 L, checking numerical
convergence for the associated initial number of molecules, as shown in Figure S1 of the
Supplementary Materials as a function of pA, and Figure S2 of the Supplementary Materials
as a function of time for a reference condition. Subsequently, for every reaction type, the
corresponding MC rate (s−1) is calculated based on the reaction possibilities and the con-
ventional rate coefficient, correcting with the simulation volume and the Avogadro number
for intermolecular reactions and without such correction for intramolecular reactions. For
intermolecular reactions, apparent rate coefficients are generally used, as calculated using
so-called encounter pair models [90,102,103], to account for viscosity effects and depen-
dencies on the number of monomer units. To allow for comparison with models with
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constant (intrinsic) intermolecular reactivities (e.g., the analytical approach of Flory), such a
switch from intrinsic to apparent rate coefficients can be omitted in the algorithm (kinter,intr
is formally taken as 1 mol L−1 s−1 in this work). The time step between randomly selected
reaction events is then calculated using a first random number r1 and normalization with
the total MC reaction rate. In the next step, the selection of the reaction type to be executed
(e.g., an intermolecular reaction between the specific FG A and B) is performed using a
second random number r2, favoring reaction types with a higher probability in line with
the original algorithm for elemental and thus non-distributed systems as pioneered by
Gillespie [104].

If FGs are involved for the reaction type selected, which are present multiple times
in the same molecule, one needs to ideally know the structure of all the molecules in the
reaction mixture. In the present work, information about the composition of all individual
network segments and dangling chains (thus free FGs) and their connectivities are stored
in an additionally included so-called composite topology matrix (see Figure S3 in the
Supplementary Materials), consisting of the core topology matrix (rows: compositions of
segments) and two additional connectivity arrays (rows: information to which connectivity
points segments belong). Extra sampling matrices (see Figure S3 in the Supplementary
Materials) are used for each type of FG to store the position of unreacted FGs of that type
in the topology matrix. For the selection of the FGs involved in the selected reaction, binary
sampling trees are used [97] (see Figure S3 in the Supplementary Materials). A binary
sampling tree is created for every type of FG storing molecular information, in which the
tree leaf nodes represent the number of FGs of that type in a certain molecule. By randomly
selecting a FG, a certain network molecule is selected. The position of the FG in the topology
matrix is found using a so-called sampling matrix. In this way, the topology matrix and the
connectivities can be properly updated. Similarly, this is done for a possible second reaction
partner. Here, for intermolecular reactions, it is checked if the FGs belong to two different
molecules, and for intramolecular reactions, it is analogously verified if the sampled FGs
belong to the same molecule. For the intramolecular reactions, mobility restrictions are
also accounted for by a distance rule based on the local root mean squared end-to-end
distance [105]. This rule verifies if the FGs selected for the intramolecular reaction are close
enough to each other based on a calculation of the compactness of the local region of the
FGs, as accessible from the molecular information in the composite topology matrix. Only
if the compactness is high enough with respect to a tunable system-dependent target value,
the intramolecular reaction is allowed. As the current work is of a purely illustrative nature,
a default value of 0.5 is considered. For comparison with simplified (kinetic) models, in
which constant intramolecular reactivities are assumed, the application of this distance
rule can be skipped, and thus, the algorithm simplified.

In the last step, all related sample trees, sample matrices, number of molecules,
diffusion coefficients and the reaction time are updated. If the final synthesis time (or a
certain FG conversion) is reached, the algorithm iteration is closed. If not, the algorithm
continues so that the next reaction event can occur at the next selected time. At any
synthesis time (or FG conversion), the desired molecular characteristics can be plotted.
In the present work, the emphasis is only on basic molecular properties as defined in the
introduction, such as xn, xm, Ð and the number/mass CLD.

3. Results and Discussion
3.1. From Flory(-Stockmayer) Analytical Equations to kMC Prediction of the “Inter-Intra Competition”

For step-growth network synthesis with Af (f > 2) and B2 (ρ = 1), Equation (9), which
reflects the variation of xn as a function of pA without intramolecular reactions and diffu-
sional limitations, thereby considering only (constant) intermolecular reactivities, results in
a vertical asymptote located at p∗A = 1

f +
1
2r . This value represents the maximal A FG con-

version that can be obtained without the presence of ring formation due to intramolecular
reactions. In Figure 4, the effect of f and r on pA* is shown by a contour plot. It can be seen
that very-high to complete A FG conversion can be reached for all f values if r is sufficiently
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low (dark green area). Mathematically speaking, values above one can even be obtained
based on Equation (9), indicating the physical absence of an asymptote (shaded area below
the dark green area). The lowest pA* values (red area) are obtained for high f values under
initial stoichiometric conditions (r = 1). Here, a limited number of intermolecular linkages
(without the possibility of intramolecular reactions) already brings in the limit of one large
network molecule, inducing many free A FGs in the final structure (i.e., a low pA*). This is,
for instance, the case in Figure 2d, as also highlighted by a box in Figure 4.

Figure 4. Analytically obtained contour plot for the effect of r (r = NA,0/NB,0 with NA,0 and NB,0 the
initial number of A and B functional groups (FGs)) and f (functionality degree of multifunctional
monomer; Af; other monomer is bifunctional; B2) on the limiting FG conversion of A (p∗A) using the
equation derived by Flory [22] (ρ = 1 in Equation (9); no consideration of intramolecular reactions); in
the shaded area the equation is not applicable as no asymptote exists. The specific (f,r) combinations
considered in other figures are also indicated.

As indicated above, the kMC model considered in this work (Figure 3) enables to
account for both inter- and intramolecular reactions, as well as diffusional limitations or
equivalently mobility constraints. A natural first step is to validate if, under simplified
model assumptions, the detailed kMC model is consistent with earlier developments in the
theoretical field. The focus here is on network synthesis with a 3-functional monomer (A3)
and a bifunctional monomer B2. In Figure 5a,b, it is shown that the developed kMC model
benchmarks with the formulas for xn and xm developed by Flory [22] (Equation (9)) and
Stockmayer [27,28] (Equation (10)) under the assumption that no intramolecular reactions
take place, diffusional limitations are absent, and stoichiometry of A and B FGs holds (r = 1
and ρ = 1). For both xn (Figure 5a) and xm (Figure 5b), an excellent match between the black
dashed (analytical) and green (kMC) solutions can be witnessed, highlighting the accuracy
of the stochastic modeling framework. For completeness, the dispersity (Ð) variation is
also shown in Figure 5c, and as both xn and xm variations match, it is not surprising that
there is also a match observed between the black dashed and green solid line. Notably, at
high pA, Ð values much larger than 2, as maximally accessible based on linear step-growth
polymerizations, result (Equation (3)), indicative of a larger molecular heterogeneity in
step-growth network synthesis.
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Figure 5. Benchmark between equations derived by Flory [22] and/or Stockmayer [27,28] (black)
and the kinetic Monte Carlo (kMC) model in the present work without intramolecular reactions and
diffusional limitations for network synthesis, and thus, constant intermolecular reactivities (green),
starting from a multifunctional (f = 3; A based; A3) and bifunctional monomer (B2) and stoichiometry
of A and B functional groups (FGs; r = 1): (a) number average chain length xn as a function of the
A FG conversion pA, (b) mass average chain length xm as a function of pA, (c) dispersity Ð as a
function of pA, and (d) fn;y,z distribution (pA = 0.3) with fn;y,z the number fraction of molecules with
y f -functional monomers and z bifunctional monomers incorporated. Other pA: Figure S4 in the
Supplementary Materials.

Furthermore, the number distribution for pA = 0.3, according to Stockmayer [29],
is shown in Figure 5d as black symbols (Equation (11)) and is compared with the kMC
prediction (green symbols). Results at other FG conversions are shown in Figure S4 in
the Supplementary Materials. It follows that both calculation methods are in agreement,
but some slight deviations can be observed, which can be associated with the numerical
evaluation of Equation (11) involving large powers and the factorial function of large
integer values. Preference should therefore be given to the kMC outcome as it inherently
tracks all y-z combinations discretely.

With a successful benchmark under idealized conditions in Figure 5, one can now
gradually increase the complexity of the network synthesis kMC modeling to mimic the
real situation more. In the first phase, emphasis is on accounting for the competition of
inter- and intramolecular reactions, still ignoring mobility restrictions and, thus, diffusional
limitations. In other words, for both types of reactions, constant reactivities are still
considered during the kMC simulations. In Figure 6, it is shown how the xn profile
predicted by Flory [22] (Equation (9); ρ = 1) is altered if intramolecular reactions are
accounted for, still considering the reaction of A3 and B2 (f = 3, r = 1 and ρ = 1). This
is done by considering different values of the dimensionless parameter kintraVNAv

kinter
, with

kinter/intra the intermolecular/intramolecular rate coefficient, V the simulation volume and
NAv the Avogadro number. A variation of kintraVNAv

kinter
between 1.0 × 10−4 and 1.0 × 101 is
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included, thus addressing both cases of low and high relative importance of intra- versus
intermolecular reactions. Figure 6a highlights the invalidity of the Flory equation [22] for
most kintraVNAv

kinter
parameter values. In more detail, it can be seen, in the zoom of this subfigure

(Figure 6b), that deviations of more than 5%, with respect to the Flory equation (fuchsia
line) [22], occur already if kintraVNAv

kinter
is higher than 1.0 × 10−3. Accordingly, considering

sufficiently long reaction times (see Figure S5a in the Supplementary Materials), pA can be
increased. In any case, for extremely long reaction times, one obtains the limit of complete
A FG conversion (pA = 1), but for larger kintraVNAv

kinter
one remains with a strong restriction

in xn. A similar conclusion can be made for the xm profile starting from the Stockmayer
equation [27,28] (Equation (10)), as illustrated in Figure S5c in the Supplementary Materials.

Figure 6. Going beyond the Flory equation [22] for step-growth network synthesis with a multifunctional monomer A3 and
a bifunctional monomer B2 by including intramolecular reactions in the kinetic Monte Carlo (kMC) simulations, for the case
of stoichiometry in A and B functional groups (FGs; r = 1) and without mobility restrictions or diffusional limitations, and
thus considering constant reactivities. This is done by evaluating the effect of kintraVNav

kinter
on the number average chain length

xn as a function of the A FG conversion (pA); the Flory equation [22] (Equation (9); ρ = 1) is depicted as a grey dashed line;
subplot (b) is a zoom of (a) for a small pA range with a 5% deviation from the equation by Flory, additionally indicated by a
fuchsia dashed line; kintra/inter: intra/intermolecular rate coefficient; V: simulation volume; NAv: Avogadro number; kMC
simulations based on Figure 3.

3.2. Reverse Engineering and Dimensionless Analysis for (Pseudo-)Analytical Descriptions

As the kMC results in Figure 6 with no mobility constraints highlight that deviations
from conventional theory are obtained if one also considers intramolecular reactions, one
can apply reverse engineering to identify advanced (pseudo-)analytical descriptions under
the assumption of constant reactivities for both inter- and intramolecular reactions. A good
starting point is a set of two types of differential equations regarding number variations
with respect to reaction time t. To study the overall kinetics of network synthesis, one
needs to know at least the variation of the number of molecules (N) and the variation of the
number of free or unreacted FGs, either of type of A or B (NA or NB). Interestingly, N varies
as a function of t due to intermolecular reactions but not due to intramolecular reactions:

dN
dt

= −rinter(VNAv) = −kinter(VNAv)
−1(NANB)di f f (13)

in which rinter represents the volumetric reaction rate (mol L−1 s−1) of intermolecular
reaction and (NANB)di f f represents the total number of combinations of A and B FGs
belonging to different molecules. This number codetermines the total number of A and B
remaining FG combinations (NANB), with the principle of conservation allowing to write
at any t:

NANB = (NANB)di f f + (NANB)same (14)
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in which (NANB)same represents the total number of combinations of A and B FGs belonging
to the same molecules. The variation of the number of unreacted FGs A and B follows in
turn by considering both (NANB)di f f and (NANB)same:

dNA
dt

=
dNB
dt

= −(rinter + rintra)(VNAv) = −kinter(VNAv)
−1(NANB)di f f − kintra(NANB)same (15)

in which rintra represents the volumetric reaction rate (mol L−1 s−1) of intramolecular
reaction. To integrate Equations (13) and (15), an explicit expression for (NANB)di f f and
(NANB)same is needed, which from an analytical point of view requires simplifications. It
can, for example, be assumed that all molecules have the same number of unreacted A FGs
and the same number of unreacted B FGs so that every molecule behaves as an average
molecule. With such averaging, as typical in the field of the method of moments [106,107],
each molecule has NA

N FGs A and NB
N FGs B so that the following expressions are obtained:

(NANB)same =
NA
N

NB
N

N =
NANB

N
(16)

(NANB)di f f = NANB − NANB
N

(17)

Substitution of these equations in Equations (13) and (15) leads to the following
differential equations with only N, NA and NB varying with t:

dN
dt

= −kinter(VNAv)
−1
[(

N − 1
N

)
NANB

]
(18)

dNA
dt

=
dNB
dt

= −kinter(VNAv)
−1
[(

N − 1
N

)
NANB

]
− kintra

(
1
N

)
NANB (19)

If kintra = 0 s−1, the (instantaneous) depletion of the number of molecules and A/B FGs
is identical, as in this case for each intermolecular reaction between A and B, the number of
molecules decreases by one, as was also derived by Flory [22]. If one molecule is left (N = 1),
only the second term in Equation (19) remains and only intramolecular reactions can take
place. At the start, the opposite situation exists with almost exclusively intermolecular
reactions taking place (1/N -> 0; (N − 1)/N -> 1). In between, at most t values, one thus
observes a competition between inter- and intramolecular reactions. Note that to obtain
the conventional volumetric reaction rate rtot (= rinter + rintra) in mol L−1 s−1, one needs
divisions by the product VNAv on the left and right hand side in Equations (18) and (19).

However, as shown in Figure 7, the assumption of the same number of NA and NB
in each molecule is only representative at the lower times before intramolecular reactions
start to really play a role. In this figure, for four kintraVNAv

kinter
values, a comparison is made

between the solution obtained upon numerical integration of Equations (18) and (19) (solid
lines), and the solution from the kMC model for the network synthesis (dashed lines),
still considering f = 3, r = 1 and ρ = 1 and still ignoring mobility constraints. It follows
that, by numerical integration with average molecules, intramolecular reactions are only
important once intermolecular reactions no longer occur, leading to incorrect second-
order discontinuities. In the kMC simulations, while explicitly acknowledging molecular
variations, intramolecular reactions start to play a role earlier. The corresponding results
as a function of pA are shown in Figure S6, in the Supplementary Materials, and confirm
that the deviations are manifested at the very high pA range. The deviations in Figure 7
indicate that at many t values, the consideration of an average number of A/B FGs per
molecule is incorrect. In other words, it follows that the number of unreacted A and B FGs
in the molecules, and thus (NANB)same, depends on the size of the molecule or its number
of monomer units.
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Figure 7. Comparison between simplified analytical descriptions in the presence of intramolecular reactions assuming that
unreacted FGs A and B are evenly distributed over the molecules (solid lines; integration of Equations (18) and (19) with
Maple) and the solution obtained from kMC simulations (dotted lines, Figure 3) for the number of molecules N (blue) and
the number of unreacted FGs A (red) as a function of time (s) for different values of kintraVNAv

kinter
: (a) kintraVNAv

kinter
= 1.0 × 10−2,

(b) kintraVNAv
kinter

= 1.0 × 10−1, (c) kintraVNAv
kinter

= 1.0 and (d) kintraVNAv
kinter

= 1.0 × 101; no mobility restrictions are accounted for; V:
volume; NAv: Avogadro number; the assumption of average molecules is incorrect as no match is observed between the
dashed and solid lines.

To see which distribution is needed to properly calculate (NANB)same, one can rely on
the kMC simulations, in which the combinations per molecule size can be retrieved, as the
structure of each separate molecule is stored as a function of t. This distribution is shown in
Figure 8 (right) for four values of pA (0.5; 0.7; 0.8; 0.9) for kintra(VNAv)

kinter
equal to 1.0 × 101. For

completeness, in Figure 8 (left), the corresponding number CLDs are provided, with (Ntot)
the total number of molecules at the given pA. At any pA an increase in (NANB)same per
molecule is observed with increasing molecule size. With increasing pA, the distributions
on the right become more complex due to the increasing impact of intramolecular reactions.
But, as can be seen, even at the lower pA, a significant variation exists, demonstrating that
the assumption of an average number of FGs per molecule indeed is invalid.

At the larger pA, the distribution in Figure 8 (right) is thus less-defined, with a broader
scatter in both the x and y direction so that it is not straightforward to introduce a sin-
gle fitting equation type to describe the distribution at each pA and introducing it in the
integration of Equations (13) and (15). This also implies that so-called conditional MC
tools [108], assuming predefined distributions for sampling, are simplified and not recom-
mended for detailed kinetic analysis. Overall, it can thus be concluded that the approach
behind Equations (18) and (19) is too approximate as molecular heterogeneity matters in
step-growth polymer network synthesis once the relative contribution of intramolecular
reactions starts to become kinetically relevant.
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Figure 8. Chain length distribution (CLD; left) and the (absolute) distribution of the number of combinations of A and B
functional groups (FGs) belonging to the same molecule (NA NB)same according to number of monomer units (right) for four
A FG conversions: (a,b) pA = 0.5, (c,d) pA = 0.7, (e,f) pA = 0.8 and (g,h) pA = 0.9, considering kintraVNAv

kinter
= 1.0 × 101; kintra/inter:

intra/intermolecular rate coefficient; V: simulation volume; NAv: Avogadro number; kinetic Monte Carlo simulations based
on Figure 3 (simplification with no mobility restrictions).

An alternative approach toward a pseudo-analytical solution is to investigate the
t dependent variation of the cumulative fraction of intramolecular reactions (fintra(cum)),
aiming at the identification of a generic (simplified) t dependent formula, still considering
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constant inter- and intramolecular reactivities (no mobility constraints) and linking it with
the t variation for N. In the derivation of Flory [22], the decrease of N as a function of pA
is linear. However, if intramolecular reactions are occurring, this is no longer true. The
decrease in N is then:

N = N0 − (1 − fintra)NA,0 pA (20)

As only a fraction 1 − fintra of the reactions between the functional groups A and B
contribute to the decrease in N. Information on the variation of the instantaneous fraction
of intramolecular reactions, fintra,inst, being the time derivative of fintra, is thus required, so
that solving of Equation (20) together with Equations (13) and (15), taking into account the
definition of fintra,inst ( fintra,inst =

rintra
rinter+rintra

) and pA (pA =
NA,0−NA

NA,0
), results in the t varia-

tion of N and NA/B. Bearing in mind the complex subplots in Figure 8 (right), dimensional
analysis is recommended to elegantly predict fintra,inst, with the most important theorem,
the Buckingham π theorem, which can be formally stated as “If a physically meaningful
equation involving a certain number of physical variables exists, then this equation can be rewritten
in terms of a set of dimensionless parameters (π1, π2,...) constructed from the original variables”.
Applied to the polymerization case at hand, the quantities kintra (s−1), kinter (L mol−1 s−1),
t (s), V (L), CA,0 (mol L−1) and CB,0 (mol L−1) can be listed and combined at first sight,
formally acknowledging the probability for inter- and intramolecular reactions, as follows:

π1,0 = kintra(CA,0CB,0)same(VNAv)
2t (21)

π2,0 = kinter(CA,0CB,0)di f f (VNAv)t (22)

in which the subscript “0” is considered to highlight the initial attempt. As shown in Section S2
of the Supplementary Materials, relying on typical relations (e.g., NA,0 = fANmon,A,0 in which
Nmon,A,0 represents the initial number of molecules with FG A) and using the kMC model
for verification, these two dimensionless numbers can be further updated as follows:

π1 = kintra

(
r fA fB − r fB − fA

fA + r fB

)(
fA fB − r fB − fA

fA + r fB

)
N2

0 t (23)

π2 = kinter

 1(
MMFG

ρFG

)
 r fA fB

(r + 1)( fA + r fB)
N0t (24)

in which MMFG (g mol−1) and ρFG (g L−1) represent, respectively, the molar mass and
the density of FG A and B (for simplicity these are considered equal for FG A and B,
thus: MMFG,A = MMFG,B = MMFG and ρFG,A = ρFG,B = ρFG). To validate these updates, in
Section S2 of the Supplementary Materials, it is demonstrated that with these two more
advanced numbers, an increase of the rate coefficients, kinter/intra, with a certain given factor
combined with a decrease of t with that same factor, lead to dimensionally equivalent
polymerization outcomes, as expected. Other illustrations in the same section constitute the
cases of imposed changes in the monomer functionalities, fA and fB, or the initial number
of molecules, N0, or the stoichiometric imbalance factor, r. These changes are less trivial
because they skew the competition between the intra- and the intermolecular reactions in a
complex manner. For instance, a change from a system with fA = 12 and fB = 10 to a system
with fA = 12 and fB = 12, maintaining everything else equal, promotes the intramolecular
reaction by 25% (c2

1 = 1.25; see Section S2 in the Supplementary Materials) and the inter-
molecular reaction only by 10% (c2 = 1.1; see Section S2 in the Supplementary Materials).
As shown in the Supplementary Materials, dividing the rate coefficients respectively by the
factors 1.25 and 1.1 leads to a dimensionally similar solution. Hence, π1 and π2 as defined
by Equations (23) and (24) can be assumed as reliable dimensionless groups that determine
the competition between inter- and intramolecular reaction for the polymerization system
at hand, suggesting that a relationship for fintra,inst as a function of π1 and π2 should exist.
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Indeed, as shown in Figure 9, a surface is obtained for fintra,inst in the analytical form

exp
(
−exp

(
−π1−c1

c2

))
∗ exp

(
−exp

(
−π2−c3

c4

))
(with ci, i = 1 . . . 4 representing constant

numbers), by fitting to the kMC simulation results over a broad range of input variable
variations, as represented by symbols. The reported surface can be utilized to grasp the
relation between initial conditions and product outcome, and one can also implement it to
stepwise integrate Equations (13), (15) and (20). However, this procedure remains tedious,
and a major caveat is still that the derivation of the dimensionless numbers has been
performed in the absence of mobility constraints, which are highly relevant (as illustrated
in the next subsection).

Figure 9. Surface fitting to represent the instantaneous fraction of intramolecular reactions, fintra,inst,
as a function of two dimensionless numbers (π1 and π2; Equations (23) and (24)) covering the initial
synthesis parameters (no mobility constraints taken into account); symbols represent kinetic Monte
Carlo (kMC) simulation results.

For completeness, variations of fintra,inst as a function of t are shown in Figure S7 (left)
in the Supplementary Materials for several kintraVNAv

kinter
, considering the output facilities of the

detailed kMC model but neglecting mobility constraints and thus diffusional limitations.
In Figure S7 (right) in the Supplementary Materials, the corresponding variations of N
and the raw data on MC probabilities for inter- and intramolecular reactions are provided
as well. It follows that, consistent with the results in Figure 7, at the lower times, only
intermolecular reactions are relevant. At those times, both the intermolecular MC rate
and N gradually decrease up to the moment that more, large-molecules are formed, and
thus more intramolecular FG combinations are possible, which is consistent with the
trend in the right column of Figure 8 from top to bottom. The intramolecular MC rate
then increases, and once intramolecular reactions are frequently occurring, the relevance
of the intermolecular reactions becomes less. For larger kintraVNAv

kinter
this increase in the

intramolecular MC rate is more evident, explaining the more rapid increase in fintra,inst.
Eventually, also the intramolecular MC rate decreases, and the system starts to converge to
the allowed limit of A FG conversion, consistent with a flattening of the fintra,inst profile.

3.3. Competitive Inter- and Intramolecular Reactions Accounting for Restrictions in Mobility

During polymerization processes, the viscosity of the reaction mixture increases. As
a result, the observed reactivity of intermolecular reactions is determined by both the
(for simplicity constant) intrinsic rate coefficient and the diffusion rate coefficient, which
is depending on the diffusivity of the reactants and their individual FGs. With higher
viscosity, the diffusivity at both the molecule and FG level decreases, and the observed
(or apparent) reactivity drops. Similarly, intramolecular reactions can be affected as FGs
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can be too far away from each other due to an increased network rigidity. In other words,
apparent kinetics can be active due to diffusional limitations leading to restrictions in
mobility, lowering the efficiency of the step-growth polymer network synthesis. In this
context, it is worthwhile to theoretically distinguish between the effect of such restrictions
on the inter- and intramolecular reaction rates. In what follows this is addressed as effect 1
and effect 2 respectively.

In Figure 10 it can be seen that diffusional limitations on intermolecular reactions
have a huge effect on the molecular structure of the polymer product. For simplicity, it
is assumed that intramolecular reactions are still unaffected by diffusional limitations.
In the left panel of this figure, emphasis is on r = 1 and in the right panel, on r = 0.75,
in both cases considering the polymer network synthesis between A3 and B2 monomers
(ρ = 1). The top row relates to a low kintraVNAv

kinter
value and the bottom row to a large one.

The decrease of kinter,app due to diffusional limitations, compared to the constant/intrinsic
kinter(,intr), as a function of pA is given in Figure S8 in the Supplementary Materials. Under
stoichiometric conditions (Figure 10a,c): orange solid lines; left axis), it can be seen that
at higher A FG conversions, a plateau is established in the xn profile, meaning that only
intramolecular reactions take place as they do not change the number of monomer units
per molecule. The number of monomer units per molecule (and thus also xn) only starts to
go up again if no further intramolecular reactions can take place, as kinter,app still possesses
a non-zero value. For the intrinsic case in Figure 10 (red solid lines; left axis) such a plateau
is absent, highlighting the relevance of diffusional limitations on intermolecular reactions.
For comparison, the Flory [22] equation (Equation (9)) results are also included as full
black lines, further demonstrating that they are not representative. Even for a low kintraVNAv

kinter
a mismatch results as the plateau is lacking. The existence of a Flory asymptote is thus
overruled, which is reflected in the large increase of fintra (dotted lines; right axis) upon
going from the intrinsic to the apparent case (red vs. orange dotted lines; right axis in
Figure 10). Similar observations can be made for the non-stoichiometric case (Figure 10b,d):
orange solid lines; left axis). The plateau formation is less pronounced and the number of
intramolecular linkages less; but despite that, the xn values are still largely reduced.

A second effect that needs to be evaluated is that, for a sampled intramolecular
reaction to actually happen, the selected FGs need to be sufficiently close to each other.
For this, a so-called distance rule is applied in Figure 3 based on the compactness of the
environment of the chosen FGs, and thus the local degree of rigidity. In Figure 11, this effect
is added to the kMC model, starting from the results in Figure 10 without such restrictions
for the intramolecular reactions (green lines from detailed model vs. repeated orange lines
from Figure 10 without mobility restrictions on intramolecular reactions). It can be seen
that this extra restriction in mobility further influences the xn evolution (left axis) and
counteracts the first effect. If intramolecular reactions are affected by the distance rule,
intermolecular reactions gain in relative importance, therefore increasing xn specifically
at higher pA. This is consistent with a decrease for fintra in Figure 11 (right axis). This
decrease is relatively more pronounced under non-stoichiometric conditions (Figure 11b,d),
as can also be derived from Figure S9 in the Supplementary Materials, showing the ratio of
the cumulative number of failures upon applying the distance rule for reselecting a new
molecule to the cumulative number of intramolecular reactions sampled for kintraVNAv

kinter
= 1.0.

As long as not enough crosslinking points are formed in the molecules, no intramolecular
reactions occur, explaining the zero values at the lower pA values in Figure S9 in the
Supplementary Materials. Under stoichiometric conditions, larger molecules are more
easily formed, for which the probability of finding possible intramolecular reacting partners
is higher, explaining the trends in Figure S9. In any case, fintra remains a disturbing factor
and thus, to study step-growth kinetics, the competition between inter- and intramolecular
reactions needs to be considered.
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Figure 10. Influence of restricted mobility, and thus, varying (apparent) reactivities for intermolecular reactions (red
line vs. orange line) without mobility restrictions for intramolecular reactions for the reaction of an A3 monomer and
a bifunctional monomer B2. Focus is on the effect of the number average chain length xn as a function of the A FG
conversion pA (left axis; solid lines) for different ratios of kintraVNAv

kinter
and different r values: (a) kintraVNAv

kinter
= 1.0× 10−2 and r = 1,

(b) kintraVNAv
kinter

= 1.0 × 10−2 and r = 0.75, (c) kintraVNAv
kinter

= 1.0 and r = 1 and (d) kintraVNAv
kinter

= 1.0 and r = 0.75. Also given are the
conventional results according to Equation (9) (Flory equation [22]; black line; no intramolecular reactions). Furthermore, in
the same colors, the corresponding variations of the cumulative fraction of intramolecular AB linkages (fintra variations;
right axis; dotted lines); V: simulation volume; NAv: Avogadro number; kinetic Monte Carlo simulations based on Figure 3
(simplification with no mobility restriction for intramolecular reactions; no distance rule).

It should be realized that the green solid lines, obtained from simulation in Figure 11
are thus closest to an actual synthesis situation, as both restricted mobility for inter- and
intramolecular reactions are expected. Again the Flory [22] equation (Equation (9)) is
included (black solid lines), and it is further confirmed that its inherent assumptions limit
its applicability to the very low pA region only. In Figure 12, the corresponding chain length
distributions (CLDs) for Figures 10 and 11 at a final pA are shown, differentiation between
the ideal Flory case (no intramolecular reactions), the kMC case with intramolecular reac-
tions but no mobility restrictions and the two extended cases with diffusional limitations,
first for intermolecular reactions only and then additionally for intramolecular reactions.
It follows that the starting Flory distributions (black symbols) are perturbed because of
intramolecular reactions (black to red symbols), with a shift to the left, but also due to
diffusional limitations on intermolecular reactions (red to orange symbols) with again a
shift to the left, and ultimately due to diffusional limitations on intramolecular reactions
(orange to green symbols), with oppositely a shift to the right. A complex interplay of
chemical and diffusion phenomena is therefore observed, leading to a complex shape for
the CLD in a real case. To further illustrate the deviations from the traditional equations
in Figure S10 in the Supplementary Materials, emphasis is also on a step-growth network
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synthesis between A3 and B3, considering again r = 1 and r = 0.75. It can be seen that, again,
diffusional limitations have a huge impact on molecular growth and product heterogeneity.

In general, it follows from the theoretical results in Figures 10–12 and Figure S10 in the
Supplementary Materials that the (experimental) variation of xn as a function of pA allows
the retrieval of information on the relative importance of inter- and intramolecular reactions.
A clear shift beyond the Flory asymptote indicates that intramolecular reactions cannot
be ignored. A strong reduction in xn implies a high (intrinsic) intramolecular reactivity.
A clear plateau for xn further indicates that intramolecular reactions are not strongly
affected by mobility restrictions. The consideration of various r values facilitates the
further validation of the hypothesis made regarding the relative inter- and intramolecular
(apparent) reactivities.

Figure 11. Influence of restricted mobility for intramolecular reactions (orange line vs. green line) for the reaction of an
A3 monomer and a bifunctional monomer B2; same simulation conditions as in Figure 10, thereby also accounting for
restricted mobility or varying (apparent) reactivities for intermolecular reactions. Focus is on the effect of the number
average chain length xn as a function of the A FG conversion pA (left axis; solid lines) for different ratios of kintraVNAv

kinter
and

different r values: (a) kintraVNAv
kinter

= 1.0 × 10−2 and r = 1, (b) kintraVNAv
kinter

= 1.0 × 10−2 and r = 0.75, (c) kintraVNAv
kinter

= 1.0 and r = 1

and (d) kintraVNAv
kinter

= 1.0 and r = 0.75. Also given are the conventional results according to Equation (9) (Flory equation [22];
black line; no intramolecular reactions). Furthermore, in the same colors, the corresponding variations of the cumulative
fraction of intramolecular AB linkages (fintra variations; right axis; dotted lines); V: simulation volume; NAv: Avogadro
number; kinetic Monte Carlo simulations based on Figure 3.
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Figure 12. Corresponding number chain length distributions for Figures 10 and 11 at a final pA: (a) kintraVNAv
kinter

= 1.0 × 10−2

and r = 1, (b) kintraVNAv
kinter

= 1.0 × 10−2 and r = 0.75, (c) kintraVNAv
kinter

= 1.0 and r = 1 and (d) kintraVNAv
kinter

= 1.0 and r = 0.75.

4. Conclusions

The well-established analytical equations that describe step-growth polymerization
in the absence of intramolecular reactions and with equal reactivities, as developed by
Flory and Stockmayer, are useful to form an idea of the relation between the maximal
functional group (FG) conversion and the functionality degree (f value) and level of
stoichiometry (r value). An associate contour plot, for example, predicts that for f = 2,
no stoichiometric imbalance is allowed to reach a high FG conversion (r = 1), while for
f = 12, initial compositions with r = 0.6 are sufficient to obtain a FG conversion equal
to unity. However, in the presence of intramolecular reactions, it is demonstrated that
these simplified equations involving asymptotes and ignoring such reactions are biased.
As demonstrated using matrix-based kinetic Monte Carlo (kMC) simulations, a value of
kintraVNAv

kinter
equal to 5.0 × 10−3, for instance, already introduces an error of 5% on the Flory

profile, still assuming constant reactivities. Such kMC simulations are a strong tool to
fully grasp the interaction between inter- and intramolecular reactions, as they enable the
tracking of the connectivity of each separate molecule as a function of time according to
kinetic rules.

If mobility restrictions and thus diffusional limitations are relevant, the functional
group conversion increases and specifically, the xn profile is affected. The consideration
of stoichiometric and non-stoichiometric conditions allows the identification of not only
the actual relative importance in inter- and intramolecular reactivity at the lower reaction
times but also at the higher times, at which diffusional limitations kick in.

It has been further shown that reverse engineering allows the testing of mechanistic
or modeling hypotheses to improve the understanding of step-growth network synthesis.
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The present work evaluated two such hypotheses. The first one is the consideration of an
average molecule at each functional group conversion, as defined by dividing the total
number of A/B functional groups by the number of molecules. This hypothesis proved to
be unworkable as a strong relationship exists between the number of intramolecular AB
combinations per molecule and the size of the molecule or its number of monomer units.
The second one relates to the potential of simplified formulas using dimensionless numbers
to describe the instantaneous fraction of intramolecular reactions. It follows that basic
formulas are unsuited already in the case of constant reactivities, and preference should
be given to the processing of model output directly coming from a detailed matrix-based
kMC model.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13152410/s1, Section S1: Additional simulation results for network synthesis, with
Figures S1 and S2: Check on numerical convergence of the kinetic Monte Carlo (kMC) simulations,
Figure S3: Sampling tree, sampling matrix and composite topology matrix for the illustrative system
consisting of the molecules M1, M2 and M3, Figure S4: Benchmark between equation derived by
Stockmayer (Equation (11) in main text) and the kinetic Monte Carlo (kMC) model in the present work
without intramolecular reactions and diffusional limitations for network synthesis, Figure S5: Going
beyond the Flory and Stockmayer equation for step-growth network synthesis with a multifunctional
monomer A3 and a bifunctional monomer B2 by including intramolecular reactions in the kinetic
Monte Carlo (kMC) simulations, Figure S6: Comparison between simplified analytical description in
the presence of intramolecular reactions assuming that unreacted FGs A and B are evenly distributed
over the molecules (integration of Equations (16) and (17) in main text with Maple) and the solution
obtained from kMC simulations for the number of molecules N and the number of unreacted FGs
A as function of functional group conversion of A pA, Figure S7: Approach towards finding a
pseudo-analytical solution to go beyond the Flory equation for step-growth network synthesis with a
multifunctional monomer A3 and a bifunctional monomer B2 by including intramolecular reactions
in the kinetic Monte Carlo (kMC) simulations, Figure S8: kinter,app (L mol−1 s−1) as function of the
functional group conversion of A pA compared to the intrinsic one, Figure S9: Importance of distance
rule, Figure S10: Influence of restricted mobility for intramolecular reactions for the reaction of an A3
monomer and a B3 monomer and Section S2: Construction of dimensionless parameters π1 and π2.
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