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Abstract

Drug resistance in breast cancer cell populations has been shown to arise through pheno-

typic transition of cancer cells to a drug-tolerant state, for example through epithelial-to-mes-

enchymal transition or transition to a cancer stem cell state. However, many breast tumors

are a heterogeneous mixture of cell types with numerous epigenetic states in addition to

stem-like and mesenchymal phenotypes, and the dynamic behavior of this heterogeneous

mixture in response to drug treatment is not well-understood. Recently, we showed that

plasticity between differentiation states, as identified with intracellular markers such as cyto-

keratins, is linked to resistance to specific targeted therapeutics. Understanding the dynam-

ics of differentiation-state transitions in this context could facilitate the development of more

effective treatments for cancers that exhibit phenotypic heterogeneity and plasticity. In this

work, we develop computational models of a drug-treated, phenotypically heterogeneous tri-

ple-negative breast cancer (TNBC) cell line to elucidate the feasibility of differentiation-state

transition as a mechanism for therapeutic escape in this tumor subtype. Specifically, we use

modeling to predict the changes in differentiation-state transitions that underlie specific ther-

apy-induced changes in differentiation-state marker expression that we recently observed in

the HCC1143 cell line. We report several statistically significant therapy-induced changes in

transition rates between basal, luminal, mesenchymal, and non-basal/non-luminal/non-

mesenchymal differentiation states in HCC1143 cell populations. Moreover, we validate

model predictions on cell division and cell death empirically, and we test our models on an

independent data set. Overall, we demonstrate that changes in differentiation-state transi-

tion rates induced by targeted therapy can provoke distinct differentiation-state aggrega-

tions of drug-resistant cells, which may be fundamental to the design of improved

therapeutic regimens for cancers with phenotypic heterogeneity.
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Author summary

Some classes of breast cancer tumors are composed of cells with different sets of observ-

able traits, or phenotypes. The phenotype corresponds to particular cellular functionality

and can arise due to the genetic/epigenetic code inside the cell, the environment outside

the cell, and the genotype-environment interaction. Interestingly, treating a population of

cancer cells with specific targeted therapies can stimulate changes in the phenotypic

make-up of the population, contributing to resistance against the drug. Previous studies

have indicated that changes in phenotypic composition of cancer cell populations might

be caused by cells transitioning between phenotypes, but details of the transitions are not

well-understood due to lack of sufficient time series data. Using a novel data set with well-

established numerical methods, the results presented here improve our understanding of

the phenotypic transitions occurring between drug-treated triple-negative breast cancer

cells and have the potential to inform the design of improved cancer treatment strategies.

Introduction

Heterogeneity of phenotypic states in cancer cell populations is likely driven by both genetic

[1] [2] [3] and epigenetic [4] [5] [3] mechanisms, and is linked to the aggressiveness of cancer

and its response to therapy. In particular, different phenotypic states of breast cancer cells

within a tumor are associated with increased tumorigenic and metastatic capacity [6] [7], dif-

ferential sensitivity to chemotherapy [8], and the development of drug resistance [7] [9] [4]

[5]. There is growing evidence that dynamic interactions between phenotypic states occur in

cancer cell populations, such as cells transitioning from one phenotypic state to another. Can-

cer stem cells, a small subset of cancer cells hypothesized to drive tumorigenesis, were initially

implicated as a primary source of phenotypic heterogeneity, since they differentiate generating

daughter cells with diverse phenotypic traits [10] [11]. This hierarchical explanation for phe-

notypic heterogeneity, however, does not necessarily agree with more recent empirical studies,

which suggest that cell-state transition can occur more generally between several types of can-

cer cells, both stem and non-stem. For example, breast cancer stem-like cells were determined

to arise de novo from non-stem-like basal and luminal cells using a Markov model and empiri-

cal validation [12], and sequencing of breast cancer stem cell populations demonstrated the

existence of bidirectional transition between cancer stem cells and differentiated tumor cells

[13]. Moreover, the same four epithelial differentiation states (two luminal phenotypes and

two basal phenotypes) were identified in normal human breast tissues and in human breast

cancer tissues, though in altered proportions [14], indicating that the phenotypic states of

some epithelial cells switch to different states after the onset of the disease.

Phenotypic-state transition can also play a major role in the development of drug resistance

in cancer cell populations, implicating such dynamic behavior as a therapeutic escape mecha-

nism. The chemotherapy Adriamycin was found to prompt epithelial-to-mesenchymal transi-

tion (EMT) and apoptosis depending on cell cycle in the human breast adenocarcinoma cell

line MCF7, but only transitioning cells exhibited multi-drug resistance and enhanced invasive

potential [15]. Resistance to HER2-targeted therapies was discovered following spontaneous

EMT in HER2+ luminal breast cancer [16]. Interestingly, treating HER2+ PTEN- breast cancer

cells continually with the HER2-targeting antibody Trastuzumab was observed to induce

EMT, convert the disease to a triple-negative breast cancer, increase cancer stem cell fre-

quency, and enhance metastatic potential [17]. Importantly, some studies have shown that

such phenotypic transitions can be reversible, indicating that a better understanding of
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Figure Data.

Funding: MPC is supported by a National Science

Foundation Graduate Research Fellowship (www.

nsfgrfp.org), and was supported by the Berkeley

Fellowship for Graduate Study (grad.berkeley.edu)

and the Tau Beta Pi Engineering Honors Society,

Williams No. 35 (www.tbp.org). CJT and MPC

were supported by the National Institutes of Health

(NIH) Center “Systems Biology of Collective Cells

Decisions” through Stanford University NIH

#P50GM107615, and by the National Cancer

Institute (NCI) CSBC consortia “Model-Based

Predictions of Responses to RTK Pathway

Therapies” through OHSU NCI #U54CA112970 and

“Measuring, Modeling and Controlling

Heterogeneity” through OHSU NCI

#1U54CA209988-01A1. TR was supported by

the Ruth L. Kirschstein T32 Program in Molecular

and Cellular Biosciences Training Grant

5T32GM071338-09, Vertex Pharmaceuticals

Scholarship (www.vrtx.com), and Tartar Trust

Fellowship (www.ohsu.edu). EML was supported

by the American Cancer Society Postdoctoral

Fellowship (www.cancer.org). RCS is supported by

the National Institutes of Health, National Cancer

Institute R01-CA196228, R01-CA186241, and

U54-CA209988, the Department of Defense Breast

Cancer Research Program BC160550P1, the

Colson Family Foundation (Vancouver, WA), and

the Prospect Creek Foundation (Minneapolis, MN).

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1006840
http://www.nsfgrfp.org
http://www.nsfgrfp.org
http://www.tbp.org
http://www.vrtx.com
http://www.ohsu.edu
http://www.cancer.org


plasticity might suggest how to trap or drive cells into a state vulnerable to treatment. For

example, one study that examined several drug-sensitive cancer cell lines in response to anti-

cancer therapies (e.g., non-small cell lung cancer cell line PC9 treated with Erlotinib) repeat-

edly found a small fraction of cells occupying a reversible drug-tolerant state [5]. In addition,

treating breast cancer cells with a taxane was shown to bring about transition to a transient

CD44hiCD24hi chemotherapy-tolerant state, and administering a sequence of anti-cancer

agents was able to weaken this resistance [9].

In parallel with empirical work, computational models have been built to examine pheno-

typic-state dynamics in cancer cell populations and the role of these dynamics in the develop-

ment of drug resistance [9] [12] [18] [19] [20] [21] [22] [23] [24]. A Markov chain model

predicted that cancer stem-like cells can arise from non-stem-like cells using probabilities

identified from observations at two time points [12]. Although parameter estimation error was

not examined, the prediction was validated in an experiment [12]. Another pivotal study used

ordinary differential equation (ODE) modeling to predict that cells expressing a transient

drug-tolerant phenotype arise from non-stem-like cells [9]. While the model itself was not

tested on independent data, the prediction deduced from the model was validated empirically

[9]. Further, an ODE model was developed using the principles of biochemical reactions to

represent cell-state birth, death, and transition [21] [22]. A dynamical model that generalized

prior cell-state transition models [12] [21] [22] was constructed using a Markov process with a

finite number of cell divisions [23], and phenotypic-state equilibria and stability properties

were studied [23]. In the related field of clonal tumor evolution, a stochastic genotypic-state

birth-death process model with mutations and a corresponding deterministic ODE model

were developed [20]. The models along with Monte Carlo sampling and observations at two

time points informed parameter sensitivity analysis, a treatment window approximation, and

investigations of therapeutic scheduling [20]. Although our first modeling effort in the

HCC1143 cell line of basal, mesenchymal, and non-basal/non-mesenchymal states included

estimation of parameter variabilities, the training data set was small for the number of parame-

ters that required identification, and no statistically significant drug-induced effects on pheno-

typic-state transitions were detected [19]. Studies with cell-state dynamical models rarely

include statistical analysis of model parameters (refs. [19] and [20] are exceptions) because the

available data often lacks sufficient quality and quantity at multiple time points. However, in

the current paper, we leverage novel data sets to estimate model parameter variations, infer sta-

tistically significant drug-induced effects on phenotypic-state transitions, and test model

generalizability.

In our recent work, we performed a large-scale phenotypic profiling study of triple-negative

breast cancers exposed to a library of targeted therapeutics [18]. This study demonstrated

that some targeted therapies affect the frequencies of luminal, basal, and mesenchymal states

in heterogeneous triple-negative breast cancer cell lines, aggregating cells into particular drug-

tolerant differentiation states [18]. The aggregated state identity was found to depend on the

therapeutic target [18]. MEK and PI3K/mTOR inhibitors exemplified this effect, aggregating

cells into distinct basal-differentiated and luminal-differentiated drug-tolerant persister states,

respectively [18]. Using quantitative models of two states (basal, non-basal), we verified experi-

mental evidence suggesting that these differentiation-state aggregations occur through pheno-

typic-state transition rather than Darwinian selection of pre-existing basal or non-basal cells

[18].

However, these basal-specific models do not provide insights into the behaviors of mesen-

chymal-differentiated or luminal-differentiated breast cancer cells. Improved understanding

of the dynamic nature of basal, mesenchymal, luminal, and non-basal/non-mesenchymal/

non-luminal tumor cell states is needed to advance patient-specific clinical treatment of breast
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cancer. Specifically, the first three states predominate “basal-like” triple-negative tumors,

“claudin-low” triple-negative tumors, and “luminal” ER+ tumors respectively [25] [26] [6], and

many triple-negative tumors harbor a heterogeneous mixture of cells occupying all four states

[18] [27]. This paper undertakes the important problem of examining the feasibility of transi-

tions between any two of the four key differentiation states in triple-negative breast cancer cell

populations under different treatment conditions.

To address this problem, we leverage two time series data sets of HCC1143-derived cell

populations from Risom et al. that were acquired in two experiments conducted about one

year apart [18]. Each data set contains numbers of cells occupying each differentiation state

and numbers of cells where the dying cells are also specified following a particular treatment.

There were four different treatment conditions: 1μM Trametinib (MEK inhibitor), 1μM

BEZ235 (PI3K/mTOR inhibitor), 1μM Trametinib+1μM BEZ235 (equal-ratio combination),

and DMSO (baseline).

The specific purpose of this paper is to develop and justify quantitative dynamic models of

basal, mesenchymal, luminal, and non-basal/non-mesenchymal/non-luminal (DSNS for “dif-

ferentiation-state non-specified”) states and to examine how different treatment conditions

affect the dynamics of these four differentiation states in the HCC1143 cell line. We use our

models to infer new biological insights: 1) how often HCC1143-derived cells may transition

between any two of the four differentiation states following treatment with therapy or DMSO,

2) the statistical significance or insignificance of therapy-induced differences in the transition

rates, and 3) how changes in transition rates may underlie certain differentiation-state aggre-

gations of drug-tolerant cells reported in [18]. Taken together, these insights demonstrate the

feasibility of transitions in the context of the four key differentiation states in triple-negative

breast cancer and how different treatments can distinctly affect the behaviors of these

transitions.

Our computational models are novel in particular because they were trained on an unprec-

edented amount of HCC1143 time series data using well-established numerical methods, spe-

cifically alternating minimization [28] wrapped around convex optimization [29]. Further, we

evaluated our models on test data that was collected in a separate experiment from the training

data, and we estimated variations of the model parameters due to measurement noise (via

resampling residuals “wild” bootstrap [30]) to detect statistically significant effects. Notably,

we leverage our models to predict how differentiation-state transitions change in response to

targeted or combined therapy and to infer how these changes are linked to therapeutic escape

in triple-negative breast cancer cell populations.

Results

Drug-specific differentiation-state dynamic models

We identified a dynamic model of the form depicted in Fig 1 to characterize the evolution of

the four differentiation-state subpopulations in response to a given treatment condition (Tra-

metinib, BEZ235, Trametinib+BEZ235, or DMSO). These models quantify how the number of

live cells in each differentiation state and the number of dead or dying cells in total change

over the time horizon (0h, 12h, . . ., 72h) following initial treatment. The key feature of each

drug-specific model is the dynamics matrix, which contains the average rates of cell division,

cell death, and transition between the four differentiation states. Specifically, these dynamics
parameters are defined as follows: ρi is the division gain of differentiation state i; ρiD is the

death gain of differentiation state i; ρij is the transition gain from differentiation state i to differ-

entiation state j. (A gain is a proportional value that quantifies the relationship between the

magnitude of an input and the magnitude of an output and is a discrete-time analog of a rate).
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We defined the four differentiation states according to binary expression levels of the basal

marker Cytokeratin 14 (K14), the mesenchymal marker Vimentin (VIM), and the luminal

marker Cytokeratin 19 (K19), as follows: 1) K14hi (basal), 2) VIMhiK14low (mesenchymal), 3)

K19hiK14lowVIMlow (luminal), and 4) K19lowK14lowVIMlow (non-basal/non-mesenchymal/

non-luminal, or DSNS for brevity). For example, ρ12 is the transition gain from K14hi to

VIMhiK14low, and ρ3 is the division gain of K19hiK14lowVIMlow. Cells defined by dominant

expression of luminal (K19), basal (K14), and mesenchymal (VIM) markers make up the

majority of cells found in normal and neoplastic breast tissue, and luminal, basal, and mesen-

chymal tumor cell states predominate specific breast tumor subtypes [6] [25] [26]. Moreover,

recent work from our group [18] and others [27] demonstrates that many triple-negative

tumors contain heterogeneous cell populations characterized by the four states that we have

defined. Functionally, mesenchymal-differentiated cells have been associated with enhanced

stemness [10] and resistance to numerous therapeutics [15] [16] [17]. Likewise, luminal-differ-

entiated and basal-differentiated breast cancer cells have particular drug sensitivities [31] [25]

[27], and cells have been shown to transition between these states in vitro [9] [12] [32] and in
vivo [32] [27]. These four differentiation states therefore represent major biologically signifi-

cant cell states of breast tumors, and understanding their rates of growth, death, and transition

during treatment is key to improving therapeutic strategies.

Our system identification problem is to estimate a representative ensemble of sets of

dynamics parameters using the training data for each treatment condition. An ensemble of

representative models can be useful for predicting trends when not all parameters are fully

constrained by the available data, which is commonplace in systems biology [33] [34] [35]

[36]. First, we identified a dynamics matrix and a data matrix using an alternating minimiza-

tion (AM) algorithm [28] in which a convex optimization program [29] was solved at each

iteration to reduce measurement error, process error, and estimation error; we specify the

dynamics matrix and the data matrix returned by the algorithm at this stage as AM-optimized.

Fig 1. Drug-specific model. Live cells occupy four differentiation states and can transition, divide, or die. The

dynamics parameters {ρij, ρi, ρiD}i6¼j are the average rates of these actions taken by live cells in each differentiation state

following treatment.

https://doi.org/10.1371/journal.pcbi.1006840.g001
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By applying resampling residuals bootstrap [30] to the AM-optimized data matrix, we then

generated multiple representative training data sets to identify an ensemble of dynamics matri-

ces, or model ensemble. (We will later analyze the values of the dynamics parameters provided

by the AM-optimized dynamics matrix and the 95% confidence intervals provided by the

model ensemble for each treatment condition).

Predictions using the model ensemble in comparison to training data are shown in Fig 2

for each treatment. The model ensemble predicts the training data well, which is evident by

qualitative and quantitative agreement. The predictions and the training data display compara-

ble first-order trends (Fig 2). Further, few significant differences between predictions and

training data were detected: most p-values in Fig 2 are larger than the 5% significance thresh-

old, and these larger p-values indicate lack of significant disagreement between predictions and

training data.

System identification for this paper requires time series data of the numbers of live cells in

each differentiation state and the numbers of dead or dying cells summed over all states. How-

ever, the available time series data contain (a) numbers of live and dying cells in total occupy-

ing each differentiation state and (b) numbers of live and dying cells in total along with

numbers of dying cells, with the caveat that the totals in these two subsets do not necessarily

match (data (a) and data (b) were acquired from separate plates [18]). Specifically, differentia-

tion-state marker expression of a cell and whether that cell was alive or dying could not be

observed simultaneously since dying cells show false positivity for all markers. Thus, we under-

took preliminary work to infer from the available data how death might be distributed across

Fig 2. Ensemble model predictions in comparison to training data. The training samples (black stars) and predictions by the model ensemble (gray bands) are

shown for each treatment condition: DMSO (row 1), Trametinib (row 2), BEZ235 (row 3), and Trametinib+BEZ235 (row 4). The model ensemble is a collection of

models that were identified from the training data via resampling residuals bootstrap [30] for each treatment condition. In each plot, we show a 95% confidence

interval (gray band) around the median (black dotted line) of the ensemble model predictions. Higher p-values indicate better consistency between predictions and

training data over the time horizon (12h, 24h, . . ., 72h).

https://doi.org/10.1371/journal.pcbi.1006840.g002
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the differentiation states, which S1 Appendix presents in detail. To summarize, we distributed

the observed death across the differentiation states in distinct ways to compute different sets of

estimates of the numbers of live cells occupying each state. (The number of dead/dying cells

over all states was assigned to the observed death fraction times the number of cells counted in

all differentiation states). We trained and tested models on these different sets and found that

model fitting errors were similar for different death distributions for each treatment condition

(S1 Appendix). This finding may be attributed to the more prominent mechanism of differen-

tiation-state transition in HCC1143 cells [18]. In view of this preliminary work, we distributed

the observed death evenly across the differentiation states to compute the data samples (num-

bers of live cells in each differentiation state and numbers of dead/dying cells in all states) for

the current paper.

We used existing knowledge to impose constraints for system identification. For each treat-

ment condition, we assumed that the four differentiation states have equal division gains (ρ1 =

ρ2 = ρ3 = ρ4) because the HCC1143 cell line data generally showed similar percentages of EdU-

positive cells for the distinct differentiation-state marker expression levels at any given time

point under any given treatment. (EdU is incorporated into dividing cells as an indicator of

proliferation. S1 Figure provides EdU+ data for each marker expression level under DMSO.

Ref. [18] Figure 3b provides EdU+ data for each marker expression level under Trametinib or

BEZ235. Ref. [18] Supplementary Figure 10c provides EdU+ data for each marker expression

level under Trametinib+BEZ235). For each treatment condition, we also assumed that the four

differentiation states have equal death gains (ρ1D = ρ2D = ρ3D = ρ4D) in view of our preliminary

work (see previous paragraph), in addition to the conclusion that drug-tolerant persister states

induced by MEK or PI3K/mTOR inhibitors arise through differentiation-state transitions

rather than state-specific death of pre-existing subpopulations [18]. This conclusion is sup-

ported by an empirical observation suggesting that cell death is independent of the differentia-

tion-state changes induced by targeted therapy. Specifically, the combination of the pan-

caspase inhibitor Z-VAD-FMK with Trametinib or BEZ235 significantly reduced the cell

death incurred by these drugs, but negligible effects on the differentiation-state changes were

observed [18]. The conclusion is further supported by simulations of basal/non-basal differen-

tiation-state dynamic models [18]. The above assumptions cannot be relaxed by adding more

parameters because the quantitative data necessary to estimate the additional parameters is not

available.

Modeling predicts drug-induced changes in differentiation-state

transitions linked to therapeutic escape

While the relevance of basal/non-basal transitions to the emergence of drug-tolerant persister

cell subpopulations has been reported [18], the nature of the transitions between the four differ-

entiation states in triple-negative breast cancer (basal, mesenchymal, luminal, DSNS) is not

well-understood. Here we predict the changes in differentiation-state transitions that underlie

the six major differences in marker expressions induced by therapy in the HCC1143 cell line: 1)

Trametinib-induced K14hi enrichment, 2) BEZ235-induced K14hi de-enrichment, 3) BEZ235-

induced K19lowVIMlowK14low enrichment, 4) Trametinib-induced K19lowVIMlowK14low de-

enrichment, 5) Trametinib+BEZ235-induced K19hiVIMlowK14low enrichment, and 6) Trameti-

nib+BEZ235-induced VIMhiK14
low

de-enrichment (see [18], Figures 3a and 4f). Specifically, we

analyze the transition gains that were identified under therapy (Trametinib, BEZ235, or Trame-

tinib+BEZ235) in comparison to DMSO, using the values from each drug-specific AM-opti-

mized dynamics matrix (Fig 3) and the 95% confidence intervals from each drug-specific
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model ensemble (Fig 4). (AM-optimized and model ensemble were formerly specified in the

“Drug-specific differentiation-state dynamic models” subsection).

Trametinib-induced K14hi enrichment (vs. DMSO). Our results indicate that reduced

K14hi-to-VIMhiK14low transition is fundamental to the K14hi enrichment that follows Trameti-

nib treatment. The K14hi-to-VIMhiK14low transition gain ρ12 is significantly reduced under

Trametinib versus DMSO because the ρ12-confidence interval for Trametinib is strictly below

that for DMSO (Fig 4). No significant difference in the reverse direction, VIMhiK14low to

K14hi, was detected under Trametinib versus DMSO since the ρ21-confidence intervals for

Trametinib and DMSO overlap (Fig 4).

Increased transition from K19hiVIMlowK14low to K14hi may also underlie the K14hi enrich-

ment in Trametinib-treated cells. In particular, the associated transition gain is maximal for

Trametinib, ρ31 = 1, and five times smaller for DMSO, ρ31 = 0.19 (Fig 3). No significant

increase was detected because the ρ31-confidence intervals for Trametinib and DMSO

overlap, but the amount of overlap is small compared to the length of either interval. The

Fig 3. Drug-specific transition gains. For each treatment condition, values of the transition gains from the AM-

optimized dynamics matrix are shown (units:
# cells at ðkþ1Þ multiples of 12 hours

# cells at k multiples of 12 hours ). Each transition gain from differentiation state

i to differentiation state j of sufficient magnitude (ρij� 0.10) is depicted as an arrow directed from i to j. Arrow style

specifies gain magnitude. A dotted arrow means ρij 2 [0.10, 0.30), a dashed arrow means ρij 2 [0.30, 0.70), and a solid

arrow means ρij 2 [0.70, 1.00].

https://doi.org/10.1371/journal.pcbi.1006840.g003
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ρ31-confidence interval for Trametinib is [0.32, 1], and the ρ31-confidence interval for DMSO

is [0, 0.39] (Fig 4).

To further examine our predictions, we trained another dynamics matrix for Trametinib

with two additional constraints: (i) ρ12� 0.59, which is the value of the DMSO K14hi-to-

VIMhiK14low transition gain, and (ii) ρ31� 0.19, which is the value of the DMSO K19hi

VIMlowK14low-to-K14hi transition gain (Fig 3). The top row of Fig 5 shows the K14hi live cell

trajectories predicted by the further constrained dynamics matrix and those predicted by the

(Trametinib) AM-optimized dynamics matrix in comparison to test data. The AM-optimized

dynamics matrix provides trajectories that demonstrate qualitative and quantitative consis-

tency with the test data, whereas the further constrained dynamics matrix fails in these regards.

This simulation result supports our prediction that decreased K14hi-to-VIMhiK14low transition

or increased K19hiVIMlowK14low-to-K14hi transition underlie the K14hi enrichment that fol-

lows Trametinib treatment in comparison to DMSO.

BEZ235-induced K14hi de-enrichment (vs. DMSO). Consider the collection of transi-

tion gains that involve the K14hi differentiation state, {(ρ12, ρ21), (ρ13, ρ31), (ρ14, ρ41)}. Interest-

ingly, for DMSO, the gains of any such pair have comparable non-zero magnitudes. For

example, ρ13 = 0.22 and ρ31 = 0.19 for DMSO (Fig 3). But, the values of ρ13 and ρ31 are both

zero for BEZ235 (S1 Table), suggesting negligible transition in either direction between K14hi

and K19hiVIMlowK14low in BEZ235-treated cells. For DMSO, the transition gains between

K14hi and VIMhiK14low have values near one-half, ρ12 = 0.59 and ρ21 = 0.38, but for BEZ235

these gains have much smaller values, ρ12 = 0 and ρ21 = 0.05 (S1 Table). The BEZ235-induced

Fig 4. Uncertainty analysis of the dynamics parameters. For each treatment condition, 95% confidence intervals computed from the model

ensemble are shown. These intervals indicate variations of the dynamics parameters due to measurement noise. Non-overlapping intervals of a

given parameter specify a statistically significant difference. For example, a statistically significant reduction in K14hi-to-VIMhiK14low transition

was detected under Trametinib versus DMSO because the ρ12-interval for Trametinib is strictly below the ρ12-interval for DMSO. A p-value for

each dynamics parameter is also provided in S2 Appendix.

https://doi.org/10.1371/journal.pcbi.1006840.g004
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reductions in these particular transitions are statistically significant because the ρ12-confi-

dence interval and the ρ21-confidence interval for BEZ235 are strictly below those for DMSO

(Fig 4). Further, for DMSO, the magnitudes of the transition gains between K14hi and

K19lowVIMlowK14low are comparable and non-zero: ρ14 = 0.24 and ρ41 = 0.21 (Fig 3). For

BEZ235, no transition is predicted from K19lowVIMlowK14low to K14hi, ρ41 = 0, but some tran-

sition is predicted in the reverse direction, ρ14 = 0.34 (S1 Table, Fig 3).

Fig 5. Further investigations of Trametinib-induced K14hi enrichment hypothesis and Trametinib+BEZ235-induced VIMhiK14low de-

enrichment hypothesis. Top left: Trametinib K14hi live cell predictions by the AM-optimized dynamics matrix (pink band) are shown in

comparison to test data (black stars). Top right: Trametinib K14hi live cell predictions by a dynamics matrix identified with additional constraints

(pink band) in comparison to test data (black stars). The additional constraints are ρ12� 0.59, the value of ρ12 for DMSO, and ρ31� 0.19, the value

of ρ31 for DMSO. (ρ12 is the K14hi-to-VIMhiK14low transition gain, and ρ31 is the K19hiVIMlowK14low-to-K14hi transition gain). Bottom left:

Trametinib+BEZ235 VIMhiK14low live cell predictions by the AM-optimized dynamics matrix (pink band) are shown in comparison to test data

(black stars). Bottom right: Trametinib+BEZ235 VIMhiK14low live cell predictions by a dynamics matrix identified with additional constraints (pink

band) are shown in comparison to test data (black stars). In this setting, the additional constraints are ρ12� 0.59, the value of ρ12 for DMSO, and ρ32

� 0.63, the value of ρ32 for DMSO. (ρ12 is the K14hi-to-VIMhiK14low transition gain, and ρ32 is the K19hiVIMlowK14low-to-VIMhiK14low transition

gain). In each plot, the pink band extends between the maximum prediction and the minimum prediction out of four predictions in total at each

time point (0h, 12h, . . ., 72h). The dotted line indicates the median of the predictions. Higher p-values indicate better consistency between

predictions and test data over the time horizon (12h, 24h, . . ., 60h).

https://doi.org/10.1371/journal.pcbi.1006840.g005
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Our modeling suggests that DMSO exhibits a balancing effect on the K14hi differentiation

state. Indeed, for DMSO, the proportion of cells transitioning from K14hi to another differenti-

ation state is predicted to be similar to the proportion of cells transitioning in the reverse direc-

tion over a 12h period. Our modeling predicts that BEZ235 treatment destabilizes this balance

towards de-enrichment of the K14hi state. BEZ235-treated cells are predicted to transition out

of K14hi to K19lowVIMlowK14low, and the rates of transition back into the K14hi state are pre-

dicted to be near zero.

BEZ235-induced K19lowVIMlowK14low enrichment (vs. DMSO). BEZ235 treatment

enriches the K19lowVIMlowK14low state at the expense of the K14hi state in the HCC1143 cell

line [18]. The modeling predicts increased transition from K14hi to K19lowVIMlowK14low and

reduced transition in the reverse due to BEZ235 therapy; ρ14 = 0.34 and ρ41 = 0 for BEZ235,

but ρ14 = 0.24 and ρ41 = 0.21 for DMSO (S1 Table, Fig 3). Further, a statistically significant

increase in transition from K19hiVIMlowK14low to K19lowVIMlowK14low was detected under

BEZ235 versus DMSO, enriching the latter state directly; the ρ34-confidence interval for

BEZ235 is positioned above the ρ34-confidence interval for DMSO without overlap (Fig 4).

Moreover, our results indicate decreased transition from K19hiVIMlowK14low to VIMhiK14low

in BEZ235-treated cells, which may permit more cells to transition from K19hiVIMlowK14low

to K19lowVIMlowK14low instead. The ρ32-confidence interval for BEZ235 is situated below the

ρ32-confidence interval for DMSO without overlap, indicting a statistically significant result

(Fig 4). To summarize, our modeling indicates that: (i) increased K14hi-to-K19lowVIMlow

K14low transition, (ii) decreased K19lowVIMlowK14low-to-K14hi transition, (iii) increased

K19hiVIMlowK14low-to-K19lowVIMlowK14low transition, or (iv) decreased K19hiVIMlowK14low-

to-VIMhiK14low transition underlie the K19lowVIMlowK14low enrichment in BEZ235-treated

cells relative to DMSO.

Trametinib-induced K19lowVIMlowK14low de-enrichment (vs. DMSO). For DMSO, our

modeling predicts similar non-zero rates of transitions between K19lowVIMlowK14low and

K19hiVIMlowK14low (ρ34 = 0.19, ρ43 = 0.30) and between K19lowVIMlowK14low and K14hi (ρ14 =

0.24, ρ41 = 0.21) (Fig 3). In contrast, for Trametinib, our results indicate minimal transitions

between these two pairs of differentiation states; ρ34 = 0 and ρ43 = 0.03 as well as ρ14 = 0.03

and ρ41 = 0 (S1 Table). The K19lowVIMlowK14low-to-VIMhiK14low transition gain for DMSO

(ρ42 = 0.54) and the one for Trametinib (ρ42 = 0.85) are both large, though the latter is greater

than the former (Fig 3). Together, these results suggest that increased transition from K19low

VIMlowK14low to VIMhiK14low or reduced transition into K19lowVIMlowK14low may be funda-

mental to the K19lowVIMlowK14low de-enrichment that follows Trametinib treatment relative

to DMSO.

To provide more insight, we analyzed our results for Trametinib in comparison to those for

BEZ235, since K19lowVIMlowK14low is de-enriched in Trametinib but enriched in BEZ235 rela-

tive to DMSO [18]. In particular, the ρ42-confidence interval for Trametinib is [0.35, 1], and the

ρ42-confidence interval for BEZ235 is [0.19, 0.37] (Fig 4). The intervals overlap, though only

slightly, which supports our prediction that increased K19lowVIMlowK14low-to-VIMhiK14low

transition may underlie the Trametinib-induced K19lowVIMlowK14low de-enrichment. Further,

statistically significant reductions in transitions were detected between K19lowVIMlowK14low

and K19hiVIMlowK14low under Trametinib versus BEZ235; the ρ43-confidence interval and the

ρ34-confidence interval for Trametinib are both strictly beneath those for BEZ235 (Fig 4).

Because both ρ43 and ρ34 decrease significantly under Trametinib versus BEZ235, any changes

in the transition rates between K19lowVIMlowK14low and K19hiVIMlowK14low are not likely to

contribute to the K19lowVIMlowK14low de-enrichment. However, significant decreases in ρ14

and ρ24 were detected under Trametinib versus BEZ235 (Fig 4).
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Taken together, our results suggest that increased K19lowVIMlowK14low-to-VIMhiK14low

transition, or decreased transition into K19lowVIMlowK14low, feasibly from K14hi or VIM-
hiK14low, underlie the Trametinib-induced K19lowVIMlowK14low de-enrichment relative to

DMSO.

Trametinib+BEZ235-induced K19hiVIMlowK14low enrichment and VIMhiK14low de-

enrichment (vs. DMSO). Given the divergent differentiation-state enrichments following

Trametinib and BEZ235 (K14hi and K19lowVIMlowK14low, respectively) [18], it is not surprising

that a combination of these drugs causes the residual cells to aggregate into a distinct state. Tra-

metinib+BEZ235 treatment enriches the K19hiVIMlowK14low differentiation state at the

expense of the VIMhiK14low state in the HCC1143 cell line [18]. Reduced transition from

K19hiVIMlowK14low to VIMhiK14low is predicted to play a significant role in these changes. The

ρ32-confidence interval for Trametinib+BEZ235 hovers near zero, while the ρ32-confidence

interval for DMSO extends from 0.39 to 1 (Fig 4). Our modeling also indicates that reduced

transition from K14hi to VIMhiK14low contributes to the VIMhiK14low de-enrichment following

Trametinib+BEZ235 treatment. The ρ12-confidence interval for Trametinib+BEZ235 is posi-

tioned below the ρ12-confidence interval for DMSO without overlap, indicating a statistically

significant result (Fig 4). Thus, we predict that decreased K14hi-to-VIMhiK14low transition or

decreased K19hiVIMlowK14low-to-VIMhiK14low transition underlie the VIMhiK14low de-enrich-

ment that occurs under Trametinib+BEZ235 relative to DMSO.

To further test this prediction, we trained another dynamics matrix for Trametinib+BEZ235

with additional constraints: (i) ρ12� 0.59, which is the value of the DMSO K14hi-to-VIMhi

K14low transition gain, and (ii) ρ32� 0.63, which is the value of the DMSO K19hiVIMlowK14low-

to-VIMhiK14low transition gain (Fig 3). The bottom row of Fig 5 shows the VIMhiK14low live

cell trajectories predicted by the further constrained dynamics matrix and those predicted by

the (Trametinib+BEZ235) AM-optimized dynamics matrix in comparison to test data. The tra-

jectories predicted by the further constrained matrix do not demonstrate quantitative or quali-

tative consistency with the test data, while the trajectories predicted by the AM-optimized

dynamics matrix are consistent with the test data, evident by comparable trends and a suffi-

ciently large p-value (p = 0.13> 0.05). This simulation result supports our prediction that

decreased K14hi-to-VIMhiK14low transition or decreased K19hiVIMlowK14low-to-VIMhiK14low

transition are fundamental to Trametinib+BEZ235-induced VIMhiK14low de-enrichment.

Empirical validation of division gains

The value of the division gain from each drug-specific AM-optimized dynamics matrix and the

associated 95% confidence interval from each drug-specific model ensemble are shown in

Table 1. The values indicate that cell division occurs most often under DMSO followed by

Table 1. Drug-specific division gains and death gains.

Drug Division gain ρi Death gain ρiD
DMSO 1.34 [1.27, 1.36] 0.0057 [0.0045, 0.0063]

Trametinib 1.07 [1.06, 1.08] 0.019 [0.017, 0.021]

BEZ235 1.09 [1.08, 1.10] 0.0083 [0.0067, 0.0091]

Trametinib+BEZ235 1.00 [1.00, 1.00] 0.068 [0.066, 0.071]

The value of the division gains ρi and the value of the death gains ρiD from each drug-specific AM-optimized

dynamics matrix are provided (units:
# cells at ðkþ1Þ multiples of 12 hours

# cells at k multiples of 12 hours ), where i 2 {1,2,3,4} is a differentiation-state index,

ρ1 = ρ2 = ρ3 = ρ4, and ρ1D = ρ2D = ρ3D = ρ4D. 95% confidence intervals from each drug-specific model ensemble are

also shown. Higher values indicate more frequent division or death on average over time compared to lower values.

https://doi.org/10.1371/journal.pcbi.1006840.t001
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BEZ235, Trametinib, and Trametinib+BEZ235 in decreasing order (Table 1). This ordering is

consistent with empirical observations of the percentages of EdU-positive cells following these

treatments (see [18], Figure 4c). The division gains of the cytotoxic therapies are significantly

reduced compared to the DMSO division gain, indicated by non-overlapping ρi-confidence

intervals (Table 1). Consistent with these computational findings, smaller percentages

of EdU-positive cells were detected 24h after treatment with Trametinib, BEZ235, and Trameti-

nib+BEZ235 compared to DMSO, and these trends persisted over time [18]. In parallel, Gene

Set Enrichment Analysis [37] revealed de-enrichment of proliferation gene sets in cells treated

with Trametinib+BEZ235 relative to DMSO (see [18], Figure 4g). Further, the Trametinib

+BEZ235 division gain is significantly reduced compared to the Trametinib division gain

and the BEZ235 division gain (Table 1). Similarly, the percentages of EdU-positive cells are

significantly reduced from 48h to 72h following Trametinib+BEZ235 treatment versus

BEZ235 treatment, and these percentages are significantly reduced from 12h to 48h under Tra-

metinib+BEZ235 versus Trametinib [18]. The above computational-empirical consistencies

provide empirical validation for the representation of cell division in our models.

Empirical validation of death gains

Our modeling indicates that Trametinib induces more death on average compared to BEZ235

(Table 1). Our models were trained using data consistent with this conclusion shown in Fig 6.

However, additional data that was not used for training shows that BEZ235 generally induces

more cell death than Trametinib (see [18], Figure 4b).

Our modeling specifies that HCC1143 cells undergo apoptosis most often under Trameti-

nib+BEZ235 treatment, according to the death gain values in Table 1. Further, the Trametinib

+BEZ235 death gain is statistically significantly higher compared to the Trametinib death gain

and the BEZ235 death gain; see the ρiD-confidence intervals in Table 1. Similarly, the percent-

ages of dying cells detected via YO-PRO-1 staining under Trametinib+BEZ235 are signifi-

cantly higher relative to those under Trametinib or BEZ235 from 36h to 72h in the additional

data (see [18], Figure 4b). This computational-empirical consistency provides experimental

validation for the representation of cell death in our models, namely with respect to the supe-

rior cell-kill ability of the Trametinib+BEZ235 condition.

Fig 6. Death time series data for model training. The YO-PRO-1 dye was used to quantify the proportion of dying

cells every 12h in response to drug treatment [18]. The cells were treated with DMSO (baseline), 1μM Trametinib,

1μM BEZ235, or the combination of 1μM Trametinib + 1μM BEZ235.

https://doi.org/10.1371/journal.pcbi.1006840.g006
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Model testing on independent data

The 14 dynamics parameters of each drug-specific model were trained on 90 to 99 samples,

depending on the drug, of HCC1143 cell line data (S1 Appendix), and the variations of these

parameters were estimated by bootstrapping [30] the training data, providing statistically sig-

nificant findings that we analyzed in prior sections (Fig 4). We further evaluated the models

on test data (24 samples per treatment condition) that was collected roughly one year before

the training data.

While the experiment that provided the test data and the experiment that provided the

training data were intended to be identical, a brief examination of the trends in these data

reveals clear qualitative differences for the differentiation states defined by the K19 or VIM

markers. We show the differentiation-state time series portion of the test data in Fig 7, and

please see Risom et al., Figures 3a and 4f, for the differentiation-state time series portion of the

training data [18]. For example, the training data indicates that the VIMhiK14low BEZ235-ver-

sus-DMSO fold change stays below 1 after 24h [18]. However, the test data indicates that the

VIMhiK14low BEZ235-versus-DMSO fold change stays above 1 after 24h (Fig 7). To specify

another example, the K19lowK14lowVIMlow Trametinib+BEZ235-versus-DMSO fold change is

generally above 1 in the training data [18], whereas this is not true in the test data (Fig 7).

Predictions using the model ensemble in comparison to the test data are shown in Fig 8 for

each treatment condition. This is a stringent assessment of the models since there are qualita-

tive differences between the training data and the test data. Nonetheless, the ensemble model

predictions and the test data demonstrate consistency in the number of K14hi live cells under

DMSO, the number of K14hi live cells under Trametinib, and the number of VIMhiK14low live

cells under Trametinib+BEZ235, evident by comparable trends and lack of significant differ-

ences (Fig 8). There is also qualitative agreement between the predictions and the test data in

the number of dead/dying cells for each treatment condition (Fig 8). In certain cases, the pre-

dictions and the test data both increase overall, although their respective rates of change differ;

e.g., see VIMhiK14low and K19lowK14lowVIMlow for DMSO (Fig 8). The most severe discrepan-

cies involve the differentiation states defined by VIM or K19 (Fig 8), which can be explained

partly by existing biological knowledge.

Vimentin and Cytokeratin 19 display a continuum of low expression to high expression in

HCC1143 cells, which makes the low and high cutoffs more variable across replicate experi-

ments and introduces noise into the subpopulation fractions (S2 Figure). Cytokeratin 14, how-

ever, is strongly expressed by a subset of cells and is weakly expressed, or lacks expression, in

the other subset of cells (S2 Figure). This biphasic expression pattern forms distinct high and

Fig 7. Differentiation-state time series portion of the test data. The sample mean and the sample standard deviation

of fold change for each differentiation state are shown at each time point, computed from 4 samples. Fold change is
fraction differentiation state i; well w; time k; therapy
average fraction differentiation state i; time k; DMSO, where fraction differentiation state i is the number of cells counted in that state

divided by the population total.

https://doi.org/10.1371/journal.pcbi.1006840.g007
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low subpopulations, so the fraction of cells in each subpopulation is more similar across repli-

cate experiments.

Driven by these findings, for each treatment condition we identified a lower-dimensional

dynamics matrix on the training data using K14hi and K14low as the differentiation-state defi-

nitions, and then evaluated how well this matrix could predict the test data. As shown in Fig 9,

the predictions and the test data in this setting demonstrate qualitative consistency (compara-

ble trends) and quantitative consistency (sufficiently large p-values, p> 0.05) for most cell

types (K14hi live, K14low live, dead/dying) and treatment conditions.

Discussion

In this study, we developed novel quantitative dynamic models to demonstrate how different

treatments can distinctly affect the rates of differentiation-state transitions in the context of the

four key states in triple-negative breast cancer. Using existing time series data of HCC1143-

derived cell populations, we applied optimization algorithms to estimate dynamics parameters

and their variations due to measurement noise (Figs 3 and 4, Table 1). We used these varia-

tions to detect statistically significant drug-induced effects on the rates of differentiation-state

transition, cell division, and cell death. We validated several model predictions on cell division

and cell death empirically. Our models predict how changes in transition rates may underlie

specific differentiation-state aggregations of drug-tolerant cells reported by Risom et al. [18].

Simulations with respect to test data further substantiate certain predictions on drug-induced

changes in differentiation-state transition rates (Fig 5).

Fig 8. Ensemble model predictions in comparison to test data. The test samples (black stars) and ensemble model predictions (gray bands) are

shown for each treatment condition: DMSO (row 1), Trametinib (row 2), BEZ235 (row 3), and Trametinib+BEZ235 (row 4). The model

ensemble is a collection of models that were identified from the training data via resampling residuals bootstrap [30] for each treatment

condition. In each plot, we show a 95% confidence interval (gray band) around the median (black dotted line) of the ensemble model predictions.

Higher p-values indicate better consistency between predictions and test data over the time horizon (12h, 24h, . . ., 60h).

https://doi.org/10.1371/journal.pcbi.1006840.g008

Modeling differentiation-state dynamics in TNBC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006840 March 11, 2019 15 / 26

https://doi.org/10.1371/journal.pcbi.1006840.g008
https://doi.org/10.1371/journal.pcbi.1006840


Our model predictions indicate that small-molecule targeted therapy strongly affects differ-

entiation-state transition rates relative to DMSO in the HCC1143 cell line (Fig 3). Robust but

reciprocal transitions continually occurring under DMSO provides an environment where

therapy-induced changes in the balance of transitions can provoke differentiation-state aggre-

gations. Indeed, differentiation-state transitions are predicted to occur in the DMSO condi-

tion, and many pairwise transition rates are similar (Fig 3; e.g., ρ14 = 0.24 and ρ41 = 0.21, where

state 1 is K14hi and state 4 is K19lowVIMlowK14low). Both Trametinib and BEZ235 are pre-

dicted to reduce the rates of particular state-to-state transitions and increase the rates of

others, leading to the distinct differentiation-state aggregations of drug-tolerant cells reported

Fig 9. Single model predictions in comparison to test data, where the differentiation states are defined by K14 only. The test samples (black

stars) and single model predictions (pink bands) are shown for each treatment condition: DMSO (row 1), Trametinib (row 2), BEZ235 (row 3),

and Trametinib+BEZ235 (row 4). The single model was identified on the training data using K14hi and K14low as the differentiation states for

each treatment condition. The pink band extends between the maximum prediction and the minimum prediction out of four predictions in

total at each time point (0h, 12h, . . ., 72h). The dotted line indicates the median of the predictions. Higher p-values indicate better consistency

between predictions and test data over the time horizon (12h, 24h, . . ., 60h).

https://doi.org/10.1371/journal.pcbi.1006840.g009
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in [18]. Specifically, we found that reduced K14hi-to-VIMhiK14low transition or increased

K19hiVIMlowK14low-to-K14hi transition are key to the K14hi enrichment that was observed in

response to Trametinib (Fig 3 shows predicted transitions under Trametinib and DMSO; see

[18], Figure 3a, for Trametinib vs. DMSO data). Secondly, increased K14hi-to-K19low

VIMlowK14low transition, decreased K19lowVIMlowK14low-to-K14hi transition, increased

K19hiVIMlowK14low-to-K19lowVIMlowK14low transition, or decreased K19hiVIMlowK14low-to-

VIMhiK14low transition are predicted to underlie the K19lowVIMlowK14low enrichment

observed after BEZ235 treatment (Fig 3 shows predicted transitions under BEZ235 and

DMSO; see [18], Figure 3a, for BEZ235 vs. DMSO data). Also, reduced K19hiVIMlowK14low-

to-VIMhiK14low transition is predicted to be critical to the K19hiVIMlowK14low enrichment fol-

lowing Trametinib+BEZ235 treatment (Fig 3 shows predicted transitions under Trametinib

+BEZ235 and DMSO; see [18], Figure 4f, for Trametinib+BEZ235 vs. DMSO data).

We evaluated our models using a test data set that was collected separately from the training

data set. The differentiation-state time series portion of the test data is presented in Fig 7, and

the differentiation-state time series portion of the training data is presented in [18], Figures 3a

and 4f. (These data are provided in spreadsheets in S1 Code/Training Data/Test Data) The

K14hi trends are similar in the training data and the test data, but this is not necessarily true for

the trends of the other states. Thus, the model predictions and the test data are generally more

consistent for the K14hi live cells and less consistent for the live cells in the states defined by

K19 or VIM (Fig 8). The latter outcome is likely due to the continuum of expression levels of

K19 and VIM (S2 Figure), making “high” state calls more noisy and suggesting that identifica-

tion of more robust, differentially expressed lineage markers could improve consistency

between model predictions and test data in the future. Lower-dimensional models of two dif-

ferentiation states, K14hi and K14low, yielded predictions that demonstrate improved consis-

tency with the test data (Fig 9); this result is not surprising due to the biphasic expression

pattern of K14 (S2 Figure) and the reduction in the number of parameters that required identi-

fication. Our higher-dimensional models are also valid in a statistical sense because between

90 to 99 samples (depending on the particular drug) were used to train the 14 parameters of

each model (S1 Appendix). Further, variations of these parameters were estimated via resam-

pling residuals “wild” bootstrap [30], and several statistically significant differences were

detected (Fig 4). It is important that we identified a moderate number of parameters to help

mitigate overfitting the data available for each treatment condition [38].

It should be noted that evaluating the generalizability of the models on test data that was

collected separately from the training data is a stringent approach. (If enough data from a sin-

gle experiment is available, it is common to choose the training set and the test set from this

one experiment to avoid inter-experimental variability). Nonetheless, our testing results

substantiate our prediction that decreased K14hi-to-VIMhiK14low transition or increased

K19hiVIMlowK14low-to-K14hi transition underlie Trametinib-induced K14hi enrichment in

HCC1143 cells. When both changes were inhibited computationally, the model predictions

and the test data are inconsistent (Fig 5, top right); otherwise, the predictions and the test data

are consistent qualitatively and quantitatively (Fig 5, top left). Our testing results also affirm

that decreased K14hi-to-VIMhiK14low transition or decreased K19hiVIMlowK14low-to-

VIMhiK14low transition lead to VIMhiK14low de-enrichment in Trametinib+BEZ235-treated

cells. Indeed, the model predictions and the test data are inconsistent when both changes were

inhibited in the model (Fig 5, bottom right), but the predictions and the test data demonstrate

improved qualitative and quantitative consistency otherwise (Fig 5, bottom left).

Our models of the four differentiation states are powerful tools to infer the transition

behaviors that may underlie differentiation-state aggregations of drug-tolerant cells induced

by therapy. MEK and PI3K/mTOR inhibitors have been found to aggregate HCC1143 cells
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into distinct basal-differentiated and luminal-differentiated drug-tolerant persister states,

respectively, evident by changed levels of K14, VIM, or K19 expression [18]. Immunofluores-

cent imaging and image cytometry have shown that treatment-naive TNBC tumors have high

phenotypic heterogeneity, harboring subpopulations of cells that express the basal marker

K14, the mesenchymal marker VIM, the luminal marker K19, or a combination of these inter-

mediate filament markers [18]. These differentiation states have been shown to possess distinct

sensitivity to therapeutics [31] [25] [16], making it critical to identify which states are aggre-

gated post-treatment, and from which states these transitions occurred, in order to design

improved therapeutic regimens. Quantitative models of the four states defined by K14, VIM,

or K19 are necessary to better understand the differentiation-state heterogeneity of triple-neg-

ative breast cancer and more specifically, to predict the dynamics of differentiation-state

transitions.

As well as predicting how targeted therapy affects transitions, another crucial prediction

that we could not determine empirically—but is provided by our modeling—is that differentia-

tion-state transitions occur continually under DMSO. This finding may be specific to the

TNBC plasticity phenotype, as we found previously that other breast cancer subtypes (e.g.,

luminal breast cancers) do not display differentiation-state heterogeneity to the same extent

[18]. In addition, if the baseline ability to transition between states is critical for the ability of

these cells to survive therapeutic treatment, this could explain why the TNBC basal-like sub-

type is particularly sensitive to combinations of such state-aggregating drugs with the BET

inhibitor JQ1, which prevents efficient chromatin rewiring [18].

Empirical validation of our predictions regarding differentiation-state transitions poses

particular challenges. Current antibody-based techniques for assessing intracellular protein

expression in cells grown in 2D require the permeabilization of the cell to permit antibody

access to its antigens. To maintain structural integrity of the cell during this process, cell fixa-

tion is required. So, our phenotypic assessment of cells based on intermediate filament expres-

sion can be performed only in fixed cells. But, if cell-surface markers were found to correlate

well with the four differentiation states in our study, then existing methods could be used to

validate our hypotheses. A given state could be isolated via Fluorescence-Activated Cell Sorting

[12], and then the homogeneous cell population could be treated and observed for changes in

cell-surface marker expression.

The accuracy and the predictive power of differentiation-state dynamic models will

improve as experimental methods improve. Since dying cells show false positivity for all mark-

ers, our instruments could not simultaneously detect the differentiation-state marker expres-

sion of a single cell and whether that cell was alive or dying. To manage this limitation, we

distributed the observed death fractions evenly across the observed numbers of cells occupying

each differentiation state to estimate the data samples required for modeling and subsequent

analyses (S1 Appendix). Moreover, our instruments can only detect cells with intact nuclei, so

dying cells can fade from view. This is one reason why the number of dead or dying cells in the

data may decrease (e.g., see Fig 9). While empirical observations indicate time-varying rates of

cell division and death, our models are restricted to encoding these rates on average (see [18],

Figure 4c, for cell division data; Fig 6 shows death data; Table 1 provides division and death

gains). There will be potential to relax the time-invariance assumption when more time series

data is available to help mitigate overfitting [38].

Although more experiments are required to identify optimal strategies for targeted therapy

in the HCC1143 cell line, administering therapies in moderate doses one-by-one, where the

next drug and the waiting time before its application are chosen according to model predic-

tions and recent measurements of the cells being treated, may effectively manage cancer

growth, drug toxicity, and therapeutic resistance. In particular, it may be important to apply
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the next drug at the time of maximal signaling pathway activity induced by the previous drug

[9] and take into account uncertainty due to unmodeled drug-drug interactions [39].

This paper predicts that treating HCC1143 cells with a MEK inhibitor, a PI3K/mTOR

inhibitor, or a combination of these inhibitors alters specific rates of transitions between basal,

mesenchymal, luminal, and DSNS states relative to DMSO. These predictions provide new

biological insights into how changes in transition rates may underlie certain differentiation-

state aggregations of drug-tolerant persister cells recently reported by [18]. In particular, our

findings support differentiation-state transition as the major mechanism underlying resistance

to MEK and PI3K/mTOR inhibitors. Our modeling work demonstrates the feasibility of this

mechanism by predicting—with statistical rigor—the directionality of state transition in the

absence of, and in the presence of, therapeutic pressure. Improved understanding of the direc-

tionality of state transition may inform the design of mechanistic studies that promote the

development of superior treatment strategies for heterogeneous plastic cancers.

Methods

HCC1143 cell line experiments

Numbers of cells in each differentiation state, numbers of live and dying cells in total, and

numbers of dying cells were observed from 15 replicate wells of the HCC1143 triple-negative

breast cancer cell line every 12 hours over 7 time points following initial drug treatment [18].

The drugs were the MEK inhibitor Trametinib (1μM), the PI3K/mTOR inhibitor BEZ235

(1μM), the combination of 1μM Trametinib + 1μM BEZ235, and DMSO (baseline). Cellular

phenotype was assessed by immunofluorescent imaging, using the combined expression of the

basal marker Cytokeratin 14, the mesenchymal marker Vimentin, and the luminal marker

Cytokeratin 19 to identify cellular phenotype [18]. The YO-PRO-1 cell death dye along with

phase imaging were used to measure the numbers of live and dying cells in total and the num-

bers of dying cells [18]. Between 90 to 99 samples (depending on the particular drug) were

used for training for each treatment condition (S1 Appendix). Although 105 samples were col-

lected for each drug (15 wells × 7 time points per well = 105), several samples had to be dis-

carded because of instrument errors. The primary error was loss of the imaging focal plane

during plate scanning. Out-of-focus images failed automated single cell segmentation, were

flagged, and were removed from the data set.

An independent data set was used for model testing. It was collected a year prior to the

training data set and included 6 time points of measurements with 4 replicate wells imaged

every 12 hours following initial drug treatment.

System model

We modeled the evolution of differentiation-state heterogeneity in response to drug treatment

as a switched linear time-invariant positive dynamical system [39] [40] [41] [42],

xðk þ 1Þ ¼ Adk
� xðkÞ; k ¼ 0; 1; 2; � � � ;

Adk
2 A; dk 2 D:

ð1Þ

x 2 R5
is the nonnegative cell type vector; x = [x1, . . ., x5]T with xi� 0 for each i. If i< 5, xi is

the number of live cells in differentiation state i. x5 is the number of dead or dying cells in

total. We adopted a fluid-like representation of cell populations, where xi is not necessarily

integer-valued [43], to accommodate the limitations of the data which does not distinguish

between the live cells and the dying cells occupying a given differentiation state. Ad 2 A is the

Modeling differentiation-state dynamics in TNBC

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006840 March 11, 2019 19 / 26

https://doi.org/10.1371/journal.pcbi.1006840


dynamics matrix for drug d 2 D, where A � R5�5
is the set of dynamics constraints and D is

the set of drugs. The dynamics parameters—transition gains, division gains, and death gains—

are encoded in the dynamics matrix (S1 Appendix). The discrete-time interval [k, k + 1) is the

duration between two consecutive measurements, or 12 hours.

System identification

The core numerical problem is to estimate a dynamics matrix for each treatment condition

that fits the empirical data well under the form specified by the system model (1). This problem

cannot be solved exactly due to the limitations of the data: (i) the data does not distinguish

between the live cells and the dying cells occupying a given differentiation state, and (ii) mea-

surements from certain wells at certain time points were not available due to instrument

errors. To address the first challenge, we combined the observed numbers of cells in each dif-

ferentiation state and the observed death fractions into the form of the cell type vector x, where

death was distributed evenly across the differentiation states in view of the preliminary work

(S1 Appendix). To address the second challenge, we inserted these data samples into an alter-

nating minimization (AM) algorithm to obtain an estimate of Aδ, which we refer to as the AM-
optimized dynamics matrix (Âd). Alternating minimization [28] is a local optimization method

that reduces the value of a given cost function by alternating the role of the optimization vari-

able between two variables; in our setting, these two variables are a data variable X and a

dynamics matrix variable A. (Expectation maximization is a special case of alternating minimi-

zation [44] [45] [46] [47] [48]). Initialization for local optimization [29] was used to help miti-

gate the possibility of converging to a local minimum that poorly represented the cancer

dynamics. Specifically, we initialized the alternating minimization with the dynamics matrix

that solved a convex problem exactly within numerical accuracy, where the convex problem

approximates our original non-convex problem [29]. This convex problem is the minimization

of our cost function in which the data variable was set to an appropriate estimate X̂ of its true

value. Each column of X̂ is a training data sample for a particular time point-well pair, or the

sample mean of the available training data for the time point when training data for the time

point-well pair was not available. The values of the dynamics parameters converge within

numerical accuracy during the iterative process of the alternating minimization algorithm (S3

Appendix). S4 Appendix assesses the sensitivity of the dynamics matrix returned by the algo-

rithm with respect to the initialization of the data variable.

The cost function for the alternating minimization algorithm was designed to reduce mea-

surement error, process error, and estimation error measured in the l2-norm. This norm was

chosen because, as a general measure of length, it is well-suited to identify networks without

known structural characteristics, such as sparsity. The penalties applied to measurement error

and process error were set equal in view of the preliminary analysis (S1 Appendix). The cost

function incorporated l2-regularization to induce element-wise shrinkage of the dynamics

matrix to zero in order to reduce estimation error of the dynamics parameters [49] [50].

Uncertainty analysis of dynamics parameters

Variations of the dynamics parameters due to measurement error were estimated using the

resampling residuals “wild” bootstrap proposed by Wu [30]. We used the resampling method

proposed by Davidson and Flachaire [51]. Measurement errors were assumed to be homoske-

dastic and independent across cell types conditioned on time point and well index in the data

generating process. For each treatment condition, 120 bootstrapped dynamics matrices were

generated. From these 120 bootstrapped matrices, 120 samples of each dynamics parameter
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were obtained, and a 95% confidence interval of each parameter was computed by discarding

the 3 largest samples and the 3 smallest samples (Fig 4). For each treatment, we also conducted

a two-sided one-sample sign test for each dynamics parameter using the corresponding 120

bootstrapped samples; S2 Appendix provides details.

Comparisons between predictions and data

Methods regarding the computations of data samples, predictions, and p-values in Figs 2, 5, 8

and 9 are provided here. Training or test data samples take the form of x specified in (1) and

were computed by distributing the observed death fractions evenly across the observed num-

bers of cells in each differentiation state. Given a dynamics matrix A, trajectories predicted by

A were computed of the form, (x0, Ax0, Ax1, Ax2, . . .), where x0 is a data sample at time 0h, x1

is a data sample at time 12h, x2 is a data sample at time 24h, etc. Predictions were chosen to

equal the data samples at time 0h. Predictions at time 12h take the form of Ax0, and predictions

at time 24h take the form of Ax1, etc. Analysis of variance (MATLAB function: anovan) was

used to compute a p-value to quantify the degree of consistency between predictions and data

samples over the time horizon starting at time 12h. Higher p-values indicate better consistency

between predictions and data.

Ensemble model predictions

Ensemble modeling was used to evaluate the degree of consistency between predictions and

data samples in Figs 2 and 8 (see also Comparisons between Predictions and Data). An ensem-

ble of representative models can be useful for predicting trends when not all parameters are

fully constrained by the available data [33] [34] [35] [36]. For a given treatment condition, tra-

jectories predicted by the ensemble of bootstrapped dynamics matrices were computed. At

each time point, we computed a 95% confidence interval of the predictions by discarding the

2.5% largest predictions and the 2.5% smallest predictions (rounded down to the nearest inte-

ger). Predictions were computed with respect to training data samples in Fig 2 and with respect

to test data samples in Fig 8.

Further investigations of hypotheses

Details regarding Fig 5 are provided below (see also Comparisons between Predictions and

Data). The predictions on the left were obtained using the AM-optimized dynamics matrix Âd

for the particular treatment condition δ 2 {Trametinib, Trametinib+ BEZ235}. The predic-

tions on the right were obtained using a drug-specific dynamics matrix that was trained under

additional constraints. Predictions were computed with respect to test data samples. The maxi-

mum prediction, the minimum prediction, and the median prediction out of four predictions

in total are shown in each plot at each time point.

Single model predictions

Details regarding Fig 9 are provided below (see also Comparisons between Predictions and

Data). A lower-dimensional dynamics matrix was identified via the alternating minimization

procedure on the training data with the differentiation-state definitions K14hi and K14low,

where the observed death was evenly distributed between these two states. The numbers of

cells in VIMhiK14low, K19hiVIMlowK14low, and K19lowVIMlowK14low were summed to com-

pute the numbers of cells in the K14low state. Predictions by the lower-dimensional dynamics

matrix were computed with respect to the test data samples. The maximum prediction, the
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minimum prediction, and the median prediction out of four predictions in total are shown at

each time point.

Software/Hardware

Computations were executed using commercial software that specializes in linear algebraic

computing (MATLAB R2016b, The MathWorks, Inc., Natick, MA). Optimization routines

were performed using a convex optimization software package that interfaces with MATLAB

(CVX [52], Version 2.1, Build 1116) with the solvers SeDuMi [53] and SDPT3 [54]. Comput-

ing was completed on a 64-bit operating system with 16.0 GB RAM, and Intel Core i7-

4700MQ CPU @ 2.40GHz processor. Execution time for system identification was roughly

one half-hour, and execution time for uncertainty analysis (bootstrapping) was roughly 3 days.

Code, training data, and test data are provided in S1 Code/Training Data/Test Data.

Supporting information

S1 Code/Training Data/Test Data. MATLAB Code with Training and Test Data. The

experimental data and code used to generate the computational results of this paper are

provided. MATLAB (The MathWorks, Inc.) and CVX software [52] are required. The raw

training data is in the file Timeseries_Raw_15wells.xlsx, and the raw test data is in the file

Timeseries_Raw_4wells.xlsx.

(ZIP)

S1 Table. Dynamics parameters. This table provides the values of the dynamics parameters

from each drug-specific AM-optimized dynamics matrix.

(XLSX)

S1 Figure. EdU-positivity of DMSO-treated HCC1143 cells. The percentages of EdU-posi-

tive DMSO-treated HCC1143 cells for each differentiation-state marker expression level are

shown. The data were collected via the cell cycle analysis methods of [18].

(TIF)

S2 Figure. Single-cell mean-fluorescent intensities of Cytokeratin 19, Cytokeratin 14, and

Vimentin in the HCC1143 cell line. HCC1143 cells were treated with either DMSO (gray),

1μM Trametinib (green), or 1μM BEZ235 (blue) for 72h, then fixed and stained with antibod-

ies against Cytokeratin 19 (K19), Cytokeratin 14 (K14), and Vimentin (VIM). Cells were

imaged and single-cell mean-fluorescent intensities were calculated using image cytometry

software [18] and displayed in a histogram.

(TIF)

S1 Figure Data. HCC1143 DMSO EdU data. The data for S1 Figure is provided here.

(XLSX)

S2 Figure Data. HCC1143 marker histogram data. The data for S2 Figure is provided here.

(XLSX)

S1 Appendix. Mathematical and numerical methods. This document provides additional

details on the mathematical and numerical methods.

(PDF)

S2 Appendix. P-values for dynamics parameters. This appendix provides the outcome of a

two-sided one-sample sign test for each dynamics parameter.

(PDF)
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S3 Appendix. Evolution of dynamics parameters during alternating minimization. This

appendix shows how the values of the dynamics parameters evolve during the iterative process

of the alternating minimization algorithm.

(PDF)

S4 Appendix. Multi-initialization system identification. This appendix assesses the sensitiv-

ity of the dynamics matrix returned by the alternating minimization algorithm with respect to

the initialization.

(PDF)
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