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A major recent advance in cell biology is the mechanistic and kinetic understanding of
biogenesis of many membrane-less condensates. As membrane-less condensates and
membrane-bound organelles are two major approaches used by the eukaryotic cells to
organize cellular contents, it is not surprising that these membrane-less condensates
interact with the membrane-bound organelles and are dynamically regulated by the cellular
signaling, metabolic states, and proteostasis network. In this review, I will discuss recent
progress in the biogenesis of membrane-less condensates and their connections with
well-studied membrane-bound organelles. Future work will reveal the molecular and
functional connectome among different condensates and membrane-bound organelles.
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INTRODUCTION

Onemajor goal of cell biology is to understand the principles and mechanistic details behind the self-
organization of cellular contents into individual functional units of different scales. For example,
most cell biologists study the biogenesis and functions of membrane-bound organelles in eukaryotic
cells, which spatiotemporally and dynamically compartmentalize unique parts of proteome, nucleic
acids, lipids, and metabolites to efficiently and specifically carry out different cellular functions. The
studies on each individual organelles are now gradually continued by the efforts to elucidate the
interaction among different membrane-bound organelles, mainly motivated by the intention to
better understand cellular physiology as most cellular functions are fulfilled by multiple steps across
different organelles. Although the prototypical organelles are membrane-bound, membrane-less
cellular compartments (now often called condensates) have been observed since the very beginning
of cell biology research (Montgomery, 1898; Wilson, 1899). The recent years have seen an explosive
interest in these membrane-less condensates in the light of their biogenesis through liquid-liquid
phase separation (LLPS). With the maturation of the theories behind the biogenesis of membrane-
less condensates, it is of great interest to study the inter-connectome of these cellular structures, with
and without membrane, to fully understand how the contents and information exchange between
them to achieve certain cellular functions. Here I review the biogenesis mechanisms of the
membrane-less condensates and their known interactions with membrane-bound organelles.
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THE BIOGENESIS OF MEMBRANE-LESS
CONDENSATES

Our interest on the membrane-less condensates dates back to the
discovery of nucleolus (Montgomery, 1898; Wilson, 1899) and
centrosomes (Boveri, 1888). This also makes nucleolus and
centrosome the most studied condensates. While nucleolus
and centrosome represent the common condensates found in
almost all eukaryotic cells, other membrane-less condensates are
usually found in specific cell types, developmental stages, or
induced by certain stresses. For example, post-synaptic density
is found in the neurons (Zeng et al., 2016), paraspeckles are found
in some epithelial cells (Nakagawa et al., 2011), germline P
granules are formed during C. elegans embryonic development
(Brangwynne et al., 2009), and stress granules (SG) are induced
by various stress conditions (Collier and Schlesinger, 1986;
Anderson and Kedersha, 2008; Gwon et al., 2021). Except for
a few cases, such as the centrosome and post-synaptic density,
most of the condensates consist of both proteins and RNA.

The biogenesis of various condensates was initially studied
separately to understand the key components and the protein-
protein/protein-RNA interactions inside. For example, the
formation of SGs was proposed to be nucleated by specific
protein-mRNA interaction that forms oligomers which are
crosslinked by PABP-1 into microscopically visible SGs
(Anderson and Kedersha, 2008). Similarly, a number of
nuclear bodies, including nucleolus, histone locus bodies
(HLBs), Cajal body, Nuclear splicing speckles, paraspeckle, and
nuclear stress bodies (nSB) were nucleated by specific RNAs
which recruit additional proteins to form microscopically visible
granules (Mao et al., 2011; Shevtsov and Dundr, 2011; Falahati
et al., 2016; Falahati and Wieschaus, 2017; Erhardt and Stoecklin,
2020). However, most of these condensates contain hundreds of
proteins that their recruitment and interactions remain
uncharacterized. For example, nucleolus selectively enrich
>700 different nuclear proteins via unknown mechanisms.

The recent resurgence of interest on LLPS provides a fresh
perspective on the selective enrichment of different components
in a membrane-less condensate. Inspired by the examples such as
the P granule and nucleolus with liquid properties (Brangwynne
et al., 2011, 2009), a surge of publications revisited different
membrane-less condensates and propose that LLPS drives the
selective condensation and enrichment of different proteins and
mRNAs into each membrane-less compartment. LLPS arises
from the supersaturation of molecules: given a specific
condition, a molecule in a solution will partition into two
separate high-concentration and low-concentration phases
when its concentration rises above the critical concentration
(Banani et al., 2017). It has been shown that multivalent
interactions, either from multidomain proteins or intrinsically
disordered regions (IDRs), drive the condensation of molecules
(Banani et al., 2017). In this model, multivalent proteins, or
scaffold proteins, crosslink with each other to setup the
framework which recruits client proteins with lower valency
(Banani et al., 2016). Although classical cases of LLPS driven
by multidomain proteins have been reported, such as the
Nephrin-Nck-N-WASP (Li et al., 2012), most of the

condensation events are made possible by the IDRs-mediated
multivalent weak interactions. Indeed, proteomes of different
membrane-less condensates are enriched in IDRs, such as
RNA-binding proteins, which can search multiple
conformations (Crick et al., 2006; Mukhopadhyay et al., 2007;
Tran et al., 2008; Darling et al., 2018) and form weak
intermolecular interactions through the cation-pi, electrostatic,
and polypeptide backbone interactions (Xiang et al., 2015;
Hughes et al., 2018). It is important to note that although
most studies focused on the IDRs-mediated multivalent
protein-protein interactions (PPIs), many condensates are
dominated by RNAs (Van Treeck and Parker, 2018; Roden
and Gladfelter, 2021). For example, the G3BP1 and RNA in
the SG is about 1 mg/ml and 64 mg/ml, respectively (Guillén-
Boixet et al., 2020). As mRNAs are at least three times longer than
polypeptides, it has been suggested that multivalent RNA-RNA
and RNA-protein interactions likely dominate the nucleation and
condensation of molecules (Zhang et al., 2015; Langdon et al.,
2018; Van Treeck and Parker, 2018; Roden and Gladfelter, 2021).
These multivalent RNAs and scaffold proteins provide the
attractive model in which different client proteins can be
recruited to the membrane-less condensates through non-
specific weak interactions and LLPS, thus potentially explain
the selective recruitment of hundreds of different proteins.

Although the IDR-based multivalent weak interaction and LLPS
now are the default explanations for the condensation ofmembrane-
less compartments, we should note that the traditional specific
protein-protein/protein-RNA interactions among folded protein
and RNA domains also play critical roles (McSwiggen et al.,
2019b). For example, although some of the nucleolar proteins
can automatically associate and condense into microscopically
visible structure, their spatiotemporal localization are nucleated
by specific protein-RNA interactions (Falahati et al., 2016).
Additionally, some nucleolar proteins are recruited through active
process instead of thermodynamic LLPS (Falahati and Wieschaus,
2017). Thus, for a membrane-less condensate that shows phase
separation behavior for some of its components, there are many
proteins that are recruited via alternative mechanisms. In another
case, live-cell single-molecule imaging revealed that transcription
factors (TFs) form hubs via multivalent interactions between IDRs
without showing LLPS, which happens only when the TFs are
overexpressed (Boija et al., 2018; Chong et al., 2018). A recent
study on Herpes Simplex Virus replication compartment (RC)
showed that although RC displays hallmarks of LLPS, including
roundness, fission and fusion, and speedy fluorescence recovery,
single particle tracking suggested that RC is formed through non-
specific protein-DNA interaction without forming two different
phases (McSwiggen et al., 2019a).

The contribution of both thermodynamic LLPS and other
alternative mechanisms to the formation of membrane-less
condensates are probably best illustrated by the heterogeneity
within the condensates formed in vivo, while LLPS alone predicts
largely homogenous constitution throughout the condensate. Super
resolution studies showed that SGs, P granules, paraspeckles, and
RCs have anisotropic properties across the compartment (West
et al., 2016; Jain et al., 2016; Wheeler et al., 2016; McSwiggen et al.,
2019a; Wang et al., 2014). In the case of SGs, the condensates are
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composed of stable cores surrounded by a phase separated shell (Jain
et al., 2016) (Figure 1). Although such stable cores can be explained
by the aging of liquid condensates following LLPS (Molliex et al.,
2015; Patel et al., 2015; Xiang et al., 2015), evidence showed that weak
nonspecific interactions underlying LLPS are not required for the
formation of stable cores, and importantly, the size of these stable
cores does not change overtime (Wheeler et al., 2016). In addition,
early results showed that the formation of microscopically visible
SGs relies on multiple cellular factors, including dynein and kinesin
(Loschi et al., 2009; Kwon et al., 2007). The dependence of SG
formation on these motors contradicts to the LLPS-aging model and
instead, is consistent with a model in which the stable cores of SGs
are nucleated through active process into which additional factors
are recruited via LLPS (Figure 1). This LLPS independent
mechanism seems not unique to SG, as the isolation of
endogenously formed p-bodies (PB) and nucleoli into protein-
free buffers does not cause the dissolution of these condensates
as predicted by LLPS and previously showed with in vitro
reconstituted condensates (Hubstenberger et al., 2017; Hayes

et al., 2018). Consistently, while LLPS predicts a dynamic
exchange of components between different phases, quantification
of different PB components revealed that some of the key
components show little to no exchange with the surrounding
cytosol (Xing et al., 2020). Similarly, the LLPS-mediated
condensations of endocytic factors and ZO proteins are initiated
by scaffold proteins (Syp1 or tight junction receptors) vis a LLPS-
independent process (Beutel et al., 2019; Bergeron-Sandoval et al.,
2021).

THE INTERACTIONS BETWEEN
MEMBRANE-LESS CONDENSATES AND
MEMBRANE-BOUND ORGANELLES
Many membrane-less condensates are spatially close to or
interact with each other, such as paraspeckles vs. nuclear
speckles and PB vs. SG (Kedersha et al., 2005; Kedersha and
Anderson, 2007; Fox and Lamond, 2010; Sanders et al., 2020).

FIGURE 1 | The biogenesis and interaction of membrane-less condensates with organelles. P-body and stress granule interact with membrane-bound organelles
in different organisms. The spatially localized biogenesis of these condensates suggests certain key membrane-bound molecules initiate their assembly. The recruitment
of different components to the condensates happens via both LLPS and alternative mechanisms, such as the active transport by molecular motors. The abundant RNAs
in these condensates likely dominate the multivalent weak interactions required to assemble and stabilize these membrane-less structures with help from IDP-
containing scaffold proteins. The heterogeneity of endogenously assembled condensates is reflected by the anisotropic properties within each individual condensate
(e.g., shell and core in SG) and the heterogenous molecular composition across different condensates in the same cell. The recruitment of nascent and misfolded
proteins into the core of SG likely solidifies the structure. The condensate-membrane interaction allows some misfolded proteins to get imported into and degraded
inside the mitochondria or hitchhike on lysosomes for long-distance transport.
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The mechanisms behind the physical interactions of different
condensates are currently under extensive exploration, with
recent results highlighting the contribution of overlapping PPI
networks between different condensates to their physical
connectivity (Sanders et al., 2020). There are also cases where
the membrane-less condensate binds to the membrane-bound
organelles. For example, the P granules tightly associate with the
nuclear membrane and the nuclear pore complex in the germ
cells of C. elegans (Pitt et al., 2000). A TIS11B-enriched protein-
RNA condensate (TIS granule) interacts with endoplasmic
reticulum (ER) (Ma and Mayr, 2018). In addition, the
intercellular junctions, such as tight junctions between
epithelium cells and nephrin between podocytes, form plasma
membrane associated protein condensates that recruit
downstream effectors (Banjade and Rosen, 2014; Beutel et al.,
2019; Case et al., 2019). A recent paper reported the liquid phase
separation behind the recruitment of multiple components of the
endocytic coat on the plasma membrane which drive the
deformation and internalization of plasma membrane during
endocytosis (Bergeron-Sandoval et al., 2021).

PB and SG are archetypal membrane-less condensates used to
study the interaction between membrane-less and membrane-bound
structures (Figure 1). Early studies in yeast revealed that PB tend to
dock on ER (Kilchert et al., 2010). Proteomics study of the PB
interacting proteins discovered two ER-associated proteins (Scp160
and Bfr1) that known to interact with polysome (Weidner et al.,
2014). However, Scp160 and Bfr1 are not required for the localization
of PB to the ER. PB was also found to dynamically associate with ER
in mammalian cells (Lee et al., 2020). This recent study showed that
the translational capacity on the cisternal ER sheets correlates with the
amount of PB and their ER association. As PB are storage sites of
dormant mRNAs, it was speculated that the contact between PB and
ER allows mRNA to shuffle between repressive and active translation
status (Lee et al., 2020). However, PBs did not tend to associate with
the cisternal ER where the mRNA is abundant and strippingmRNA/
polysomes fromERby puromycin did not detach PB fromER. As the
transcriptome inside PB does not enrich mRNAs related to ER or
secretory pathway (Hubstenberger et al., 2017), it remains unclear
regarding why and how PB interact with ER.

SGs also interact with membrane-bound organelles. Early studies
in yeast showed that SGs, or protein aggregates/Q-bodies, that
induced by different stresses are associated with ER and
mitochondria (Escusa-Toret et al., 2013; Zhou et al., 2014; Böckler
et al., 2017). Recent studies in mammalian cells showed that SGs also
associate with membrane-bound organelles, such as lysosomes and
ER (Lee et al., 2020; Liao et al., 2019; Gwon et al., 2021). The
molecular identities of SG-ER/mitochondria/lysosome interaction
remain largely unknown. In the case of SG-lysosome interaction,
proteomics study identified ANXA11 as a molecular tether that can
dynamically couple SGs with lysosomes (Liao et al., 2019) (Figure 1).
Although the SGs were shown to have limited interaction with ER in
one study (Liao et al., 2019), a separate study showed that SGs are
tightly tethered by ER via FAF2 which marks the fission of SGs (Lee
et al., 2020; Gwon et al., 2021) (Figure 1). The fission events of SGs
are rare compared to their fusion events, which dominating the LLPS
and liquid condensates, highlighting the heterogeneity of SGs in vivo
that differ in both compositions and physical properties (Khong et al.,

2017). Similarly, PBs also show heterogeneity in vivo with individual
PB recruits mRNA independently (Wang et al., 2018) and interacts
with ER with different dynamics (Lee et al., 2020). These
heterogeneities further support the model that these membrane-
less condensates are assembled via a combination of LLPS and
alternative mechanisms (Figure 1).

THE FUNCTIONS OF
CONDENSATES-ORGANELLES
INTERACTION
Many molecular and cellular functions have been proposed for
different condensates, such as regulating biochemical reactions (Su
et al., 2016; Du and Chen, 2018), sequestration of molecules (Frottin
et al., 2019; Youn et al., 2019), compartmentalizing/vectorizing the
complex modification of molecules (Riback et al., 2020), and
buffering stochastic cellular noises (Klosin et al., 2020). It is
important to note that due to the multivalent nature of phase
separating molecules, most of the studies used extensive
mutations/truncations to remove multivalent interacting sites on
key scaffold proteins to block their phase separation. These large-
scale mutations likely have pleiotropic effects on other functions of
the scaffold protein, which is usually a hub in the network of specific
PPIs with hundreds of other molecules in addition to its IDR-
mediated weak interactions required for LLPS (Hubstenberger et al.,
2017; Sanders et al., 2020; Yang et al., 2020). Furthermore, there are
examples that the formation of membrane-less condensates is not
required for the related functions. For example, removing NEAT-1,
the scaffold of paraspeckles, has no effect in the cells and tissues
(Nakagawa et al., 2011). Blocking SG formation did not affect the
stress-induced translation repression (Kedersha et al., 2016), and the
dissolution of SG is not required to restore translation during
recovery (Loschi et al., 2009). Furthermore, long-term exposure
to the same stressors causes cellular adaptation that prevents the
formation of SGs (Domnauer et al., 2021). Similarly, formation of PB
is not required for mRNA decay (Decker et al., 2007). Although
multiphase nucleolus is proposed to vectorize the assembly of
ribosomes in eukaryotes (Riback et al., 2020), there is no such
multiphase structure in prokaryotes for ribosome biogenesis.
Similarly, previous studies reported a mitochondrial “RNA
granule” that recruits several accessory proteins to assemble
mitochondrial ribosome (Barrientos, 2015). Instead of LLPS via
IDR-mediated weak multivalent interactions, recent study showed
that these accessory proteins fold and co-assemble with ribosome
intermediate (Cheng et al., 2021). Future studies are required to
address the complexity of native condensates and the discrepancy
among different studies (Lyon et al., 2021).

The interactions between membrane-less condensates and
membrane-bound organelles play important roles in the
functions and fates of condensates. For example, the ER-
associated TIS granules enrich AU-rich mRNAs and enable the
interaction between the nascent membrane proteins translated
inside TIS granule and SET, which sorts the nascent proteins to
different subcellular localizations along the secretory pathway (Ma
and Mayr, 2018). The plasma membrane-associated protein clusters
increase the dwelling time of proteins inside, enabling kinetic
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proofreading that enhances the activities of the recruited proteins,
such as the Nephrin-Nck-N-WASP for actin polymerization and
LAT-Grb2-SOS for Ras activation (Case et al., 2019; Huang et al.,
2019). It is important to note that membrane-association is not
strictly required for both cases as condensates alone without
membrane association can also activate actin assembly or Ras
signaling (Li et al., 2012; Tulpule et al., 2021). In the case of ER-
PB/SG association, ER tubules wrap the condensates and induce the
fission of the ER-associated PB/SG (Lee et al., 2020). The lysosome-
SG/RNPs interaction mediates the long-range transportation of SGs
(Liao et al., 2019). This is similar to early studies in yeast where the
tight-association between protein aggregates/SG and mitochondria
dominate the motility of these SGs (Zhou et al., 2014; Böckler et al.,
2017). It was shown that most of the SGs induced by heat shock are
formed directly on the surface of mitochondria (Zhou et al., 2014),
suggesting a spatially organized biogenesis of membrane-less
condensates on organelles. In contrast to the long-range active
transportation of the lysosome-associated SGs in mammalian
cells, the mitochondrial association of SGs in yeast reduces the
long-range transportation and contributes to the asymmetric
retention of these SGs during mitosis (Zhou et al., 2014).

In addition to themotility of SGs, the association between SGs and
mitochondria also contributes to the dissolution of SGs. It was shown
in both yeast and mammalian cells that many aggregated cytosolic
proteins inside SGswere solubilized by chaperones and imported into
mitochondria for their degradation (Ruan et al., 2017; Li et al., 2019;
Shcherbakov et al., 2019) (Figure 1). Althoughmitochondrial import
is a selective process under physiological and heathy conditions, it is
known that some neurodegenerative diseases related proteins get into
mitochondria and cause mitochondrial defects (Devi et al., 2006,
2008; Hansson Petersen et al., 2008; Wang et al., 2016). The
mitochondrial import of aggregated non-mitochondrial proteins
indicates that misfolded proteins can hijack the mitochondrial
import pathway if they are presented in the vicinity of the import
channels via the mitochondria associated SGs.

It remains largely unclear how and why SGs establish
connections with specific membrane-bound organelles. In the
case of mitochondria-SG interactions, most of the SGs are
formed on the surface of mitochondria and thus maintain their
association with mitochondria (Zhou et al., 2014). As the misfolded
proteins and RNAs are ubiquitously distributed in the cytosol, this
membrane-associated biogenesis of SGs indicates certain spatially
localized factors drives the formation of SGs, which resembles the
localized nucleation of nucleolus (Falahati et al., 2016). Future

studies are required to understand the in vivo biogenesis and
interaction of SGs and other membrane-less condensates with
organelles. It is also critical to elucidate how the biogenesis of
membrane-bound organelles are regulated in a way to prevent
the aggregation (formation of SGs) of organellar proteins which
are aggregation-prone (Wang and Chen, 2015; Wrobel et al., 2015;
Liu et al., 2022).

CONCLUSION

It is expected that more condensates will be described in the
coming years and their interactions with membrane-bound
organelles will be a spotlight of future research. Elucidation of
the molecular mechanisms linking membrane-less condensates to
membrane-bound organelles is critical to understand the
function of such interactions. Additionally, future studies will
shed light on the fate of different condensates (e.g., asymmetric
segregation or degradation via autophagy) and their connections
with the inter-organellar contact sites (King et al., 2020). In the
end, we will understand the evolutionary perspective of the
interactions between condensates and organelles, two major
ways of organizing the cellular contents.
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