
RESEARCH ARTICLE

Dicomflex: A novel framework for efficient

deployment of image analysis tools in

radiological research

Roland Stange1,2☯, Nicolas Linder1,2☯, Alexander Schaudinn1, Thomas Kahn1,

Harald Busse1*

1 Department of Diagnostic and Interventional Radiology, University Hospital Leipzig, Leipzig, Saxony,

Germany, 2 Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical

Center, Leipzig, Saxony, Germany

☯ These authors contributed equally to this work.

* harald.busse@medizin.uni-leipzig.de

Abstract

Objective

Medical image processing tools in research are often developed from scratch without the

use of predefined software structures, which potentially makes them less reliable and diffi-

cult to maintain. The objective here was to present and evaluate a novel framework (Dicom-

flex) for the deployment of tools with a uniform workflow, commonly encountered in medical

image analysis.

Materials and methods

The object-oriented code was developed using Matlab. Dicomflex applications follow the

common workflow of image-slice selection, user interaction, image processing, result visual-

ization and progression to next slice. The framework consists of three important classes that

host functionality, two configuration files and a front end that displays images, graphs and

resulting data.

Results

So far, three different research tools have been created under the new framework. In com-

parison with previous Matlab analysis tools used at our institution, users of Dicomflex tools

subjectively considered the learning phase to be shorter and handling to be simpler and

more intuitive. They also highlighted the benefit and comfort of the standardized interface

and predefined workflow. The framework-inherent handling of software versions was con-

sidered highly beneficial for maintenance as well as data and software management at dif-

ferent project stages. The clear separation of framework-related and unrelated code allows

for a fast and more direct design of new tools in well-defined steps. The flexibility of the

framework translates to a wide range of image processing tasks, such as segmentation,

region-of-interest (ROI) analyses or computation of functional parameter maps, but is limited

to 2D datasets.

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Stange R, Linder N, Schaudinn A, Kahn T,

Busse H (2018) Dicomflex: A novel framework for

efficient deployment of image analysis tools in

radiological research. PLoS ONE 13(9): e0202974.

https://doi.org/10.1371/journal.pone.0202974

Editor: Dzung Pham, NIH Clinical Center, UNITED

STATES

Received: December 11, 2017

Accepted: August 13, 2018

Published: September 11, 2018

Copyright: © 2018 Stange et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The complete

Dicomflex framework is available online at https://

github.com/Stangeroll/Dicomflex.

Funding: Grant support by the Federal Ministry of

Education and Research (BMBF), Germany (#

1EO1001) is greatly acknowledged (RS, NL). We

also acknowledge support from the German

Research Foundation (DFG) and Leipzig University

within the program of Open Access Publishing.

Competing interests: HB has received a speaker

honorarium from Siemens Healthcare. All other

authors have no conflict of interest to declare.

https://doi.org/10.1371/journal.pone.0202974
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202974&domain=pdf&date_stamp=2018-09-11
https://doi.org/10.1371/journal.pone.0202974
http://creativecommons.org/licenses/by/4.0/
https://github.com/Stangeroll/Dicomflex
https://github.com/Stangeroll/Dicomflex


Conclusion

Potential medical applications include the assessment of cardiac performance, detection of

cerebrovascular disease or characterization of cancerous lesions. Dicomflex tools share a

similar workflow and host the pertinent functions only. This may be relevant for many image

processing needs in radiological research, where quick software deployment and reliability

of results is essential.

Introduction

Review and interpretation of medical images play a key role for radiological diagnostics and

procedural decisions. Over the last years, powerful computer workstations and dedicated soft-

ware modules have sped up and improved these tasks. Fast and even online processing have

become a reality and many processing functions, originally developed in research settings,

have found their way into commercial products. For the translation of such applications,

which may take many years, however, there is a continuous need to assist researchers with the

quick and effective deployment of software tools for interactive processing, visualization or

analysis.

Software that allows for flexible 2D or 3D visualization of medical images with a wide array

of processing functions is readily available, such as MeVisLab[1], 3D Slicer[2], Osirix[3],

ITK-SNAP[4], MIPAV[5], ImageJ[6], ClearCanvas (Synaptive Medical, Toronto, Canada), Sli-

ceOmatic (Tomovision, Montreal, Canada), BioImaging Suite[7] or Segment[8]. Professional

coding typically ensures that programs run reliably and fast. Special interfaces for scripts and

program libraries[9–12] provide options for customization.

With developer environments like Matlab (Mathworks, Natick, MA, USA), Python (Python

Software Foundation, Wilmington, DE, USA), IDL (Exelis VIS, Boulder, CO, USA) or Eclipse

(Eclipse Foundation, Ottawa, ON, Canada), highly customized end-user applications may be

created. In medical research, tasks are usually addressed by writing small, dedicated programs.

This is confirmed by our previous experience with a number of processing tools for the analy-

sis of MRI and CT data of an institutional research cluster (Integrated Research and Treatment

Center for adiposity diseases at Leipzig University Hospital, Leipzig, Germany)[13–15].

Many of these programs exhibit a relatively simple workflow of the following type: slice

selection, user interaction, image processing, result visualization and progression to next slice.

This justifies the design of a software template that minimizes efforts in software programming

and maintenance. Unlike other user-friendly and robust Matlab UI frameworks for image

analysis, for example, imagineStudios (https://github.com/imagineStudios), which effectively

serve a broader scope of processing functions, the novel object-oriented framework (Dicom-

flex) presented here goes beyond the user interface and was deliberately designed for more

routine analyses of 2D image sets and is internally optimized for the above workflow. Its appli-

cations feature the pertinent functions only and be easy to use and robust. The key classes and

their functional interplay are described. A sample use case is given to evaluate the specific ben-

efits and limitations of such a framework and to demonstrate the ease of implementation.

Materials and methods

The framework (Dicomflex) was developed under Matlab (Version 9.1) with predefined meth-

ods from three toolboxes, namely Image Processing, Signal Processing, Statistics and Machine

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 2 / 14

https://github.com/imagineStudios
https://doi.org/10.1371/journal.pone.0202974


Learning. The Spreadsheet Link extension is generally not required but was included in the

use case (Fatquant) to write the resulting data in standard spreadsheet format (Microsoft

Excel). The entire framework consists of object-oriented methods that use functions provided

by the Matlab environment. A readily available, open-source toolbox was used to create and

access text-based configuration files, formatted in JavaScript Object Notation (JSON).

The framework itself consists of three different class types and two configuration files. The

underlying layout is shown in Fig 1. The adjustable front end presents relevant images, graphs

and resulting data. Throughout this text, single letter prefixes c, m and p will be used for all

software elements to clearly denote classes, methods and properties, respectively. Image pro-

cessing and additional application-specific functions are hosted in the cCompute-app class.

The interplay between user interactions and data processing is defined in the cControl class. A

class group called cImage is used to store and handle image data.

Graphical User Interface (UI)

The graphical interface between user and software structure is initialized by the cControl class

and includes the following elements:

Fig 1. Architecture and user interface of the Dicomflex framework. The cControl class is creating a user interface at

program start and controls overall program workflow. The cCompute classes are hosting computational methods

whereas cImage classes store image data and provide access to basic image functions. Two configuration files store

values concerning front-end appearance and program workflow. Application-specific elements are highlighted with

bold frames. Classes, methods and properties are denoted by corresponding prefixes c, m and p.

https://doi.org/10.1371/journal.pone.0202974.g001

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 3 / 14

https://doi.org/10.1371/journal.pone.0202974.g001
https://doi.org/10.1371/journal.pone.0202974


• area for image display and interactions

• area for plots and graphs

• table area with one row for each slice (and potentially multiple images)

• extendable menu bar

These elements are accessible via handles that are stored in the cControl object. All UI ele-

ments can be modified in appearance, such as size, position or color, and switched on or off by

changing the associated entries in applicationConfig.

cControl class

Creation of a cControl object initializes the UI. The class cControl responds to events and

directs them to the correct classes and methods. During loading of a dataset cCompute objects

are created and their methods are accessible by the cControl class. The structure of a cControl

object is visualized in Fig 2.

The core capabilities of cControl are the organization and connection of the cCompute

class, UI and configuration files. The main events to be handled are button down in the graph

and image areas, mouse wheel, key press, key release, table-cell select, table-cell edit and

menu-bar click. Also, a UI-update routine is processed from cControl.

cCompute classes

A single cCompute object contains all input and derived data for either a single image or an

image set, for example, real and imaginary images of an MRI slice. The class cCompute also

Fig 2. Object structure of cControl. This central object hosts an array of cCompute objects as well as methods and properties for general program control. Each

cCompute object includes all properties and methods relevant to data processing. A cImage object stores a single image with its properties and fundamental methods.

For a list of all methods and properties see the Git software repository (https://github.com/Stangeroll/Dicomflex).

https://doi.org/10.1371/journal.pone.0202974.g002

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 4 / 14

https://github.com/Stangeroll/Dicomflex
https://doi.org/10.1371/journal.pone.0202974.g002
https://doi.org/10.1371/journal.pone.0202974


hosts methods for data loading and saving (mGetImgPathes, mInit_oCompute, mUpdate_c-

ControlVersionInfo) and generic methods for updating the UI (mImageUpdate, mGraphUp-

date, mTextUpdate). It is the parent class of the cCompute-app, which includes the main

customized code for an application. A cCompute-app class includes mandatory methods called

by cControl. Those are callbacks from user events and necessary methods for the UI-update

routine (mGetImg2Display, mPostPlot, mDrawGraph, mGetTextBoxLines) as well as the

mInit_oCompApp method used for application-specific data loading. In addition to these

essentials, cCompute-apps may have user-defined methods. This provides the means for cus-

tomization of image processing, event handling, UI-update or front-end extensions.

cImage classes

Dicomflex has its own image class. Properties include image data, filename, path, date, a

sequential number and the class version. A property pImgType is defined as a string variable

and used to further identify the type of medical image, such as "T1 weighted" in the case of MR

images. This information is available in cCompute to control the processing of images. The

cImage class also provides image-processing functions frequently needed within Dicomflex,

for example, image conversion from grayscale to RGB color space (conv2RGB) or scaling the

range of pixel values (scale2). In the cImage property pData, pixel values are stored in the data

type of the image to be loaded. The framework is not limited to DICOM processing but will

work with image data in any format supported by MATLAB’s imread function, such as, bmp,

png, jpg, gif or tiff, too. Additional methods for reading and modifying individual DICOM

tags have been implemented here because DICOM is the prevalent format in medical imaging.

Configuration files

Two configuration files (JSON format) are part of Dicomflex that define the appearance of the

user interface, program parameters, callbacks, file and directory names or keyboard shortcuts.

While the dedicated JSON editor displays the content more clearly, configuration files can also

be accessed and modified with any text editor. The file frameworkConfig.json stores general

values related to UI appearance and program parameters like auto-save time or selected call-

backs. Application-specific entries are stored in the file applicationConfig.json. This file

includes the name tags of the table columns and their cCompute properties or methods return-

ing the relevant data.

Results

A framework to easily create end-user applications for the processing of medical images has

been designed and applied in a use case. Software structure as well as a customizable user inter-

face are provided and can be extended by simply modifying application-specific elements only

(Fig 2). Functionality is given by the interplay of framework elements and will be reported in

the following.

User interface and basic procedures

The UI is initialized by the predefined cControl class without the cCompute and cImage class

groups. UI customization is indirect and involves the configuration files frameworkConfig

and applicationConfig only. It includes size adjustments, toggling of UI elements, table-header

entries, program parameters as well as additional menu entries with their associated callback

functions. However, it is still possible to change UI elements properties via their handle.

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0202974


The "Load Data" button event is handled by the cControl method mLoadData. After proper

folder selection, cControl initializes one cCompute object of the desired cCompute-app class by

reading the cComputeFcn value from applicationConfig and executing it. This gives cControl access

to all application-specific properties and methods of the cCompute(-app) class, by which a cCom-

pute object is populated with data for each table row. Fig 3 provides a flowchart of mLoadData.

Similar to the load process, the save process starts with the cControl method mSaveData.

This method is executed irrespective of the application and saves the complete cCompute

object array with version information to the source folder as Matlab file with the name-format

patientName_aquisitionTime_cur rentTime_application_data.mat generated by cControl.

mGetSaveFilePrefix. The mCustomSaveData method of cCompute-app is then called for any

application-specific saving. This enables export of the results in a specific format (such as csv

or xls), creation of processed image files or other relevant tasks.

Version handling and backward compatibility

Backward compatibility was achieved by introducing version numbers for relevant parts,

namely cControl, each cCompute class, each cImage class and both configuration files. A

stored dataset includes all version numbers as well as the complete cCompute array with all

images and properties. Data are released from the class definition before storage to avoid any

version issues. As software undergoes development, an old dataset might not be compatible

with the newest cCompute version. Therefore, all old entries get merged in a new cCompute

object-array during loading. Each class has its own update function which executes the specific

code to be implemented for the respective version. Version control is started after loading a

dataset from the file system in the mInit_oComp method of cCompute. The most specific class

or subclass of a group starts with the update and automatically passes to the next parent class

until the superclass is reached.

Event handling

User inputs are initially handled by the cControl class and processed or redirected to the cCom-

pute or cCompute-app class, where event processing always requires a corresponding method

to be called. A click on a table cell, for example, will trigger a callback to the cControl method

mTableCellSelect. This method invokes the UI-update routine (part of cControl) to display

information of the selected slice on the front end (Fig 4). At first, the mUpdateImage, mUpdate-

Graph and mUpdateText methods are triggered and the cControl object is available in those for

modification of the UI. The mUpdateTable (part of cControl) is executed at last to ensure that

changes to the cControl object appear in the table. The method uses information of application-

Config and populates the table with corresponding data from the cCompute object array. The

cControl class conducts the UI-update routine. It is routinely triggered after loading a dataset,

selecting a different table row or clicking an application-specific menu entry. It may also be trig-

gered from the cCompute-app class if the cControl object is available in the method.

Essential menu bar entries like "Load Data" or "Save Data" are routinely part of the UI. Spe-

cific functions can be added in applicationConfig by defining menu paths as simple string

arrays and associated callback methods as strings. According to these arrays, the menu is then

generated at program start by the cControl method mCreateMenu. These callbacks may take

full advantage of Matlab interpretations, such as:

menuðendþ 1Þ:path ¼ f0Functions00Crop Image0g;

menuðendÞ:callback ¼ 0@ðvararginÞcControl:mMenuClickð@ðcComputeÞcControl:cCompute:mCropImageðcControlÞÞ0;

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 6 / 14

https://doi.org/10.1371/journal.pone.0202974


Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 7 / 14

https://doi.org/10.1371/journal.pone.0202974


This example will create an additional entry "Crop Image" in the "Functions" field of the

menu bar. While the callback points to the cControl method mMenuClick, the transferred

function call directs to the cCompute method mCropImage, in which the cControl object is

available as a transferred variable.

Requirements and design of a use case

Execution and workflow of Dicomflex are presented for a practical implementation named

Fatquant. This example was chosen because of the increasing need to quantify fat content in

abdominal regions as the liver and correlate these measures with metabolic parameters or clin-

ical findings.

Besides other techniques, multi-echo Dixon MR imaging with subsequent derivation of the

so-called proton density fat fraction (PDFF) has found considerable application[16–18]. Signal

Fig 3. Flow chart of the mLoadData method. Within the class cControl, data are loaded via the cCompute method

mInit_oCompute. In the case of a new session, mGetImgPathes determines the images according to the directory and filename

pattern specified in applicationConfig (entries imgSearchDir and imgSearchName). After loading all images to cImage objects, they

get merged in cCompute-app objects and filled with application-specific values in the mInit_oCompApp method. Each object

corresponds to one slice with the entire oCompute array being stored in the cControl object.

https://doi.org/10.1371/journal.pone.0202974.g003

Fig 4. Handling of user events. A user event is registered by the cControl class, processed and, if needed, forwarded to the cCompute class, in which the event

undergoes application-specific processing. Lastly, the UI-update routine is called.

https://doi.org/10.1371/journal.pone.0202974.g004

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0202974.g003
https://doi.org/10.1371/journal.pone.0202974.g004
https://doi.org/10.1371/journal.pone.0202974


intensities at different echo times (TE) show a characteristic variation caused by slight differ-

ences in the resonance frequencies of water and fat protons. Fat fraction may be derived by fit-

ting the signal intensity from multiple acquisitions, at different echo times TE, to a

mathematical model function.

The fundamental work steps of framework customization are presented according to the

phases defined in the so-called waterfall model[19] (Fig 5). The first step towards a custom

application is the definition of input and output data rather than the particular software archi-

tecture. In Fatquant, the output is a spreadsheet file with abdominal slice positions as rows and

mean fat fractions of user-defined regions of interest (ROI) as columns. The required input

data consists of images at three or more echo times per slice and relevant image parameters

provided in the DICOM file header.

The majority of diagnostic readings rely on magnitude MR images only. Additional phase

information or both real and imaginary MR images, however, are required for proper process-

ing of water-fat (chemical shift) images. Another parameter is the magnetic field strength,

mainly 1.5 or 3 T, which defines the resonance frequencies of the fat and water protons. This

value is also available in the DICOM header. Data points and model curves are plotted together

to visually inspect the goodness of fit. The resulting data are verified with respect to plausibility

and completeness and then written to the file system in spreadsheet format.

The drawing of three ROIs per slice is the only application-specific user interaction of Fat-

quant. As cControl is forwarding the mouse events in the image area to the cComputeFatquant

class, processing of user-defined contours is realized in the mandatory method

Fig 5. Progress of software design according to simple waterfall model. Left column: general phases; mid column: phases modified for Dicomflex

implementations; right column: distinct phases of Fatquant implementation.

https://doi.org/10.1371/journal.pone.0202974.g005

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 9 / 14

https://doi.org/10.1371/journal.pone.0202974.g005
https://doi.org/10.1371/journal.pone.0202974


mImageDisplayButtonUp. The following functions are performed to determine the fat fraction

in segmented ROIs:

• calculation of magnitude images (mGetMagImages)

• merging of user drawn contours with existing ROIs (mMergeContours)

• fitting of pixel intensities (mFitIntensities)

• numerical computation of fat fraction (mGetPDFF)

These functions are not described in more detail here because the focus lies on the capabili-

ties of the framework and not on specific solutions for MRI-based fat quantification.

Implementation and deployment of a use case

Implementation starts with the applicationConfig file, which is created by executing the cus-

tomized configFileCreator.m code, in which all entries are clearly listed for editing. Table 1

shows an overview of relevant entries for the Fatquant use case.

To create the cComputeFatquant.m class file one can use a copy of the template file cCom-

pute_template.m provided in the Dicomflex Git repository. Once the new file is opened in

Matlab, modifications and additions can be made. The first task is to customize the properties

block of the class by adding entries pVersion_cComputeFatquant and pRoiData. Entry pRoi-

Data is defined as structure-array element storing coordinates of the ROIs, the source data for

fitting and the resulting fit parameters. The methods for data access (mPatientName, mSlice-

Location and mGetPDFF) and methods defined in the design phase (mGetMagImages, mFi-

tIntensities) are implemented in the methods block.

In general, a key-press event is forwarded from the cControl class to the cCompute method

mKeyPress. Colored ROI contours can be selected for modification by pressing a numerical

shortcut (’1’ to ’3’). The remaining contours are greyed out in mKeyPress and will be colored

Table 1. Relevant entries in the configuration file of the Fatquant application.

Parameter / Entry Value Use

applicationName ’Fatquant’ loading or saving of datasets

ComputeClassFunctionCall ’@cComputeFatquant’ loading of datasets

saveDataFunction ’@mSaveXLS’ saving of datasets

imageClassFunctionCall ’@cImageDcm’ loading of datasets

imageNames {’Real’, ’Imaginary’} loading of datasets

imageDirectoryPattern {’Dixon�’, ’Dixon�’} loading of datasets

imageFilenamePattern {’�_IM_�.dcm’, ’�_RE_�.dcm’} loading of datasets

image display visibility ’on’ UI creation

graph display visibility ’on’ UI creation

table visibility ’on’ UI creation

table column headers {’Pos’, ’Done’, ’PDFF(1)’, ’ PDFF(2)’, ’PDFF(3)’} UI-update routine

table entry calls {’pSliceLocation’, ’pSliceDone’, ’mGetPDFF(1)’, ’mGetPDFF(2)’, ’mGetPDFF(3)’} UI-update routine

menu entries {’Functions’ ’Copy ROIs’}

{’Functions’ ’Paste ROIs’}

{’Image’ ’Show Magnitude’}

{’Image’ ’Show RealPart’}

{’Image’ ’Show ImaginaryPart’}

customization of file menu

menu entry callbacks ’@(varargin)d.mMenuCallback(@(cCompute)d.dat.mCopySeg(d))’

’@(varargin)d.mMenuCallback(@(cCompute)d.dat.mPasteSeg(d))’

customization of file menu

ROI hotkeys {’1’, ’2’, ’3’} selection of region of interest (ROI)

https://doi.org/10.1371/journal.pone.0202974.t001

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0202974.t001
https://doi.org/10.1371/journal.pone.0202974


again via mKeyRelease. ROI creation and modification are invoked by selecting and clicking

in the image area. A callback for mouse motion (mImgAxisButtonMotion) is set in mImgAxis-

ButtonDown. This method records the cursor coordinates until mImgAxisButtonUp is trig-

gered and the motion callback is released. Old coordinates are merged with the drawn ones by

the cCompute method mMergeContours and then displayed. Subsequent fitting of the mean

ROI intensities is done by calling mFitIntensities. The fit coefficients are stored in the pRoi-

Data property and available for later calculation of fat fractions (mGetPDFF). Lastly, the UI-

update routine is triggered to refresh table entries and graphs.

The process for creating a new dataset is already contained in the framework except for the

cComputeFatquant method mInit_oComputeApp that populates all cComputeFatquant

objects with application-specific data. In the interest of clean coding, all data are accessed by

the defined class methods mPatientName, mSliceLocation and mGetPDFF, avoiding storage

of unnecessary data and reducing maintenance. For existing datasets to be loaded, the cCom-

puteFatquant method mUpdatecComputeFatquant can be modified after version changes, but

remains untouched for the first version of the Fatquant example.

So far, Fatquant is capable of loading datasets but cannot visualize them on the existing UI.

To do so, the mGetImg2Display, mPostPlot, mDrawGraph and mGetTextBoxLines methods

in cComputeFatquant are customized. The generic cCompute method mImageUpdate clears

the image display of any residual data (contours and image) before a new image is requested

from mGetImg2Display to be displayed. A method named mDrawContour is already con-

tained in cCompute and used in mPostPlot to draw all contours stored in the property pRoi-

Data. Text information displaying the current slice number and pImageType is overlaid on the

image. The graph area is updated by plotting the data points stored in pRoiData and the fitted

curve. The user should then visually inspect the goodness of fit. Application-specific saving of

datasets is done in mSaveData. The resulting spreadsheet file is only created if the coefficient

of determination (R2) lies above an empiric threshold. Otherwise a warning message will be

shown.

The Fatquant application was ultimately deployed after all functionalities had been tested

within the developer environment as pictured in Fig 6. Fatquant is a frequently used example

tool of Dicomflex, which took two days in total to create the first stable executable.

Our preliminary user experience with Dicomflex is based on tools that have exclusively

been used in a single medical institution so far. We have replaced the independently developed

applications for slice-by-slice analysis of MRI and CT datasets. Initially untrained operators

reported a short learning phase and found handling to be intuitive. They also highlighted the

benefit and comfort of having a standardized user interface and workflow for different applica-

tions. Experienced operators subjectively rated operation of Dicomflex applications to be

more fluent than the original tools. As the framework already provides the entire program

structure, developers can focus on specific user interactions and processing functions instead.

Discussion

This work has presented a novel software framework for the analysis of medical image datasets.

Dicomflex assists the programmer in creating robust end-user applications with an optimized

set of essential UI elements and functions. Development was driven by the systematic and

repeated processing needs typically encountered with multislice 2D image data. Another key

aspect was the suitability for routine evaluation of clinical study data. Object orientation and

explicit handling of versions will increase the applicability and reduce overall software mainte-

nance. The use case described the successful development of a stand-alone application that

quantifies fat fractions by fitting a model function to MRI datasets.

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 11 / 14

https://doi.org/10.1371/journal.pone.0202974


Despite the apparent confinement of a predefined framework structure, developers may

take advantage of all Matlab features, such as automatic memory management, extensive

libraries for numerical and image processing, broad technical references, a large user commu-

nity and an application compiler. More importantly, DICOM writing is freely available to the

Matlab community and does not require additional licenses, unlike, for example, IDL. As a

derivative of Matlab, Dicomflex maintains all its benefits. Image processing libraries, such as

VIGRA[9] or ImgLib2[10], might be applicable as well. Another example is a complementary

approach (ImFEATbox) by the Universities of Tubingen and Stuttgart, Germany, who have

assembled Matlab-based functions with reportedly thousands of image features and parame-

ters[11].

Fatquant and other Dicomflex tools have been in routine use over 14 months. Users specifi-

cally acknowledged the standardized workflow and user interface for different applications.

Main benefits for the developer are the reduced maintenance and ease of creating new Dicom-

flex tools. Although our framework was developed under Matlab, the concept can be adapted

to other programming languages as well. The choice depends on factors like image processing

capabilities (libraries and interfaces), ease of programming (memory or automatic data type

management), platform independence or ease of creating generic[12] code. Examples include

the GNU octave project, an open-source Matlab clone, and the technically similar Python lan-

guage, which is also open source and has a growing body of functions.

The presented approach is inherently limited to applications for 2D multislice data that

meet the predefined workflow. Extensions for 3D image processing and visualization are nev-

ertheless possible. The use case involved MRI analysis in the liver and abdomen, but other

regions and tasks are possible as well. Segmentation, computation of parameter maps and

Fig 6. Snapshot of the Fatquant UI. A session file is opened and three ROIs are draw at different positions in the liver.

At the bottom left one can see the fit according to ROI 2. At the bottom right, all fit parameters and the resulting PDFF

are written.

https://doi.org/10.1371/journal.pone.0202974.g006

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 12 / 14

https://doi.org/10.1371/journal.pone.0202974.g006
https://doi.org/10.1371/journal.pone.0202974


ROI-based analyses of any multislice image data are very common, among others, for the

assessment of cerebrovascular diseases[20], cardiac function[21] or cancerous tumors[22].

Although these analyses can be performed with fully fledged proprietary software, Dicomflex

may be superior for rapid, customized analyses or vendor-independent solutions. The com-

plete framework is available as a Git repository at https://github.com/Stangeroll/Dicomflex

and new tools will be released as the development progresses.

Acknowledgments

We would like to thank Kilian Solty, Katharina Langenhan, Anna Hartmann and Andrea

Hudak for their valuable user feedback throughout this work. We acknowledge support from

the German Research Foundation (DFG) and Leipzig University within the program of Open

Access Publishing.

Author Contributions

Conceptualization: Roland Stange, Nicolas Linder.

Funding acquisition: Thomas Kahn.

Methodology: Roland Stange, Nicolas Linder.

Project administration: Thomas Kahn, Harald Busse.

Software: Roland Stange.

Supervision: Thomas Kahn, Harald Busse.

Validation: Nicolas Linder, Alexander Schaudinn.

Writing – original draft: Roland Stange, Harald Busse.

Writing – review & editing: Roland Stange, Nicolas Linder, Alexander Schaudinn, Harald

Busse.

References
1. Heckel F, Schwier M, Peitgen H. Object-oriented application development with MeVisLab and Python.

Lect Notes Informatics. 2009; 154: 1338–1351.

2. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, et al. 3D Slicer as an

image computing platform for the Quantitative Imaging Network. Magn Reson Imaging. 2012; 30:

1323–1341. https://doi.org/10.1016/j.mri.2012.05.001 PMID: 22770690

3. Rosset A, Spadola L, Ratib O. OsiriX: An open-source software for navigating in multidimensional

DICOM images. J Digit Imaging. 2004; 17: 205–216. https://doi.org/10.1007/s10278-004-1014-6 PMID:

15534753

4. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour

segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage.

2006; 31: 1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015 PMID: 16545965

5. McAuliffe MJ, Lalonde FM, McGarry D, Gandler W, Csaky K, Trus BL. Medical Image Processing, Anal-

ysis and Visualization in clinical research. Proceedings 14th IEEE Symposium on Computer-Based

Medical Systems. IEEE Comput. Soc; 2001. pp. 381–386. https://doi.org/10.1109/CBMS.2001.941749

6. Abràmoff MD, Magalhães PJ, Ram SJ. Image processing with imageJ. Biophotonics Int. 2004; 11: 36–

41. https://doi.org/10.1117/1.3589100

7. Papademetris X, Jackowski MP, Rajeevan N, DiStasio M, Okuda H, Constable RT, et al. BioImage

Suite: An integrated medical image analysis suite: An update. Insight J. 2006; 2006: 209. http://www.

bioimagesuite.org. PMID: 25364771

8. Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H. Design and validation of Seg-

ment—freely available software for cardiovascular image analysis. BMC Med Imaging. 2010; 10: 1.

https://doi.org/10.1186/1471-2342-10-1 PMID: 20064248

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 13 / 14

https://github.com/Stangeroll/Dicomflex
https://doi.org/10.1016/j.mri.2012.05.001
http://www.ncbi.nlm.nih.gov/pubmed/22770690
https://doi.org/10.1007/s10278-004-1014-6
http://www.ncbi.nlm.nih.gov/pubmed/15534753
https://doi.org/10.1016/j.neuroimage.2006.01.015
http://www.ncbi.nlm.nih.gov/pubmed/16545965
https://doi.org/10.1109/CBMS.2001.941749
https://doi.org/10.1117/1.3589100
http://www.bioimagesuite.org
http://www.bioimagesuite.org
http://www.ncbi.nlm.nih.gov/pubmed/25364771
https://doi.org/10.1186/1471-2342-10-1
http://www.ncbi.nlm.nih.gov/pubmed/20064248
https://doi.org/10.1371/journal.pone.0202974


9. Köthe U. Reusable Software in Computer Vision. Handbook of Computer Vision and Applications. 3rd

ed. Academic Press; 1999. pp. 103–132.

10. Pietzsch T, Preibisch S, Tomancák P, Saalfeld S. ImgLib2-generic image processing in Java. Bioinfor-

matics. 2012; 28: 3009–11. https://doi.org/10.1093/bioinformatics/bts543 PMID: 22962343

11. Liebgott A, Gatidis S, Martirosian P, Schick F, Yang B, Küstner T. ImFEATbox: An MR Image Process-

ing Toolbox for Extracting and Analyzing Features. ISMRM. 2017. Available: http://cds.ismrm.org/

protected/17MPresentations/abstracts/3815.html

12. Levillain R, Geraud T, Najman L. Why and howto design a generic and efficient image processing

framework: The case of the Milena library. 2010 IEEE International Conference on Image Processing.

IEEE; 2010. pp. 1941–1944. https://doi.org/10.1109/ICIP.2010.5649620

13. Linder N, Schaudinn A, Garnov N, Blüher M, Dietrich A, Schütz T, et al. Age and gender specific estima-

tion of visceral adipose tissue amounts from radiological images in morbidly obese patients. Sci Rep.

2016; 6: 22261. https://doi.org/10.1038/srep22261 PMID: 27009353

14. Schaudinn A, Linder N, Garnov N, Kerlikowsky F, Blüher M, Dietrich A, et al. Predictive accuracy of sin-

gle- and multi-slice MRI for the estimation of total visceral adipose tissue in overweight to severely

obese patients. NMR Biomed. 2015; 28: 583–590. https://doi.org/10.1002/nbm.3286 PMID: 25808071

15. Garnov N, Linder N, Schaudinn A, Blüher M, Karlas T, Schütz T, et al. Comparison of T1 relaxation

times in adipose tissue of severely obese patients and healthy lean subjects measured by 1.5 T MRI.

NMR Biomed. 2014; 27: 1123–1128. https://doi.org/10.1002/nbm.3166 PMID: 25066754

16. Schuchmann S, Weigel C, Albrecht L, Kirsch M, Lemke A, Lorenz G, et al. Non-invasive quantification

of hepatic fat fraction by fast 1.0, 1.5 and 3.0 T MR imaging. Eur J Radiol. 2007; 62: 416–422. https://

doi.org/10.1016/j.ejrad.2006.12.009 PMID: 17267159

17. Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: A standardized mr-based biomarker of tissue

fat concentration. J Magn Reson Imaging. 2012; 36: 1011–1014. https://doi.org/10.1002/jmri.23741

PMID: 22777847

18. Runge JH, Smits LP, Verheij J, Depla A, Kuiken SD, Baak BC, et al. MR Spectroscopy–derived Proton

Density Fat Fraction is Superior to Controlled Attenuation Parameter for Detecting and Grading Hepatic

Steatosis. Radiology. Radiological Society of North America; 2017; 285: 162931. https://doi.org/10.

1148/radiol.2017162931 PMID: 28915103

19. Benington HD. Production of Large Computer Programs. IEEE Ann Hist Comput. 1983; 5: 350–361.

https://doi.org/10.1109/MAHC.1983.10102

20. Purushotham A, Campbell BC V., Straka M, Mlynash M, Olivot J-M, Bammer R, et al. Apparent Diffu-

sion Coefficient Threshold for Delineation of Ischemic Core. Int J Stroke. 2015; 10: 348–353. https://doi.

org/10.1111/ijs.12068 PMID: 23802548

21. Greupner J, Zimmermann E, Hamm B, Dewey M. Automatic vs semi-automatic global cardiac function

assessment using 64-row CT. Br J Radiol. 2012; 85: e243–e253. https://doi.org/10.1259/bjr/65747000

PMID: 22045953

22. Rosenkrantz AB, Chandarana H, Hindman N, Deng F-M, Babb JS, Taneja SS, et al. Computed diffu-

sion-weighted imaging of the prostate at 3 T: impact on image quality and tumour detection. Eur Radiol.

2013; 23: 3170–3177. https://doi.org/10.1007/s00330-013-2917-8 PMID: 23756956

Dicomflex: A software framework for radiologic image analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0202974 September 11, 2018 14 / 14

https://doi.org/10.1093/bioinformatics/bts543
http://www.ncbi.nlm.nih.gov/pubmed/22962343
http://cds.ismrm.org/protected/17MPresentations/abstracts/3815.html
http://cds.ismrm.org/protected/17MPresentations/abstracts/3815.html
https://doi.org/10.1109/ICIP.2010.5649620
https://doi.org/10.1038/srep22261
http://www.ncbi.nlm.nih.gov/pubmed/27009353
https://doi.org/10.1002/nbm.3286
http://www.ncbi.nlm.nih.gov/pubmed/25808071
https://doi.org/10.1002/nbm.3166
http://www.ncbi.nlm.nih.gov/pubmed/25066754
https://doi.org/10.1016/j.ejrad.2006.12.009
https://doi.org/10.1016/j.ejrad.2006.12.009
http://www.ncbi.nlm.nih.gov/pubmed/17267159
https://doi.org/10.1002/jmri.23741
http://www.ncbi.nlm.nih.gov/pubmed/22777847
https://doi.org/10.1148/radiol.2017162931
https://doi.org/10.1148/radiol.2017162931
http://www.ncbi.nlm.nih.gov/pubmed/28915103
https://doi.org/10.1109/MAHC.1983.10102
https://doi.org/10.1111/ijs.12068
https://doi.org/10.1111/ijs.12068
http://www.ncbi.nlm.nih.gov/pubmed/23802548
https://doi.org/10.1259/bjr/65747000
http://www.ncbi.nlm.nih.gov/pubmed/22045953
https://doi.org/10.1007/s00330-013-2917-8
http://www.ncbi.nlm.nih.gov/pubmed/23756956
https://doi.org/10.1371/journal.pone.0202974

