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Abstract: Adult-onset Still’s disease (AOSD) is a systemic inflammatory disorder with an unknown
cause characterized by high-spiking fever, lymphadenopathy, hepatosplenomegaly, hyperferritinemia,
and leukocytosis. The clinical course can be divided into three significant patterns, each with a
different prognosis: Self-limited or monophasic, intermittent or polycyclic systemic, and chronic
articular. Two criteria sets have been validated. The Yamaguchi criteria are the most generally
used, although the Fautrel criteria offer the benefit of adding ferritin and glycosylated ferritin values.
AOSD’s pathogenesis is not yet completely understood. Chemokines and pro-inflammatory cytokines,
including interferon (IFN)-γ, tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6, IL-8, and IL-18,
play a crucial role in the progression of illness, resulting in the development of innovative targeted
therapeutics. There are no treatment guidelines for AOSD due to its rarity, absence of controlled
research, and lack of a standard definition for remission and therapy objectives. Non-steroidal anti-
inflammatory drugs (NSAIDs), corticosteroids (CS), and conventional synthetic disease-modifying
antirheumatic drugs (csDMARDs) are used in AOSD treatment. Biological therapy, including IL-1,
IL-6, IL-18, and IL-17 inhibitors, as well as TNFα or Janus-kinases (JAKs) inhibitors, is administered
to patients who do not react to CS and csDMARDs or achieve an inadequate response.

Keywords: Adult-onset Still disease; neutrophil activation; pro-inflammatory cascade; anti-cytokine
therapy

1. Introduction

Adult-onset Still’s disease (AOSD) is a rare inflammatory disease with an unknown
cause [1]. Bywaters, a London doctor, first used the term AOSD in the medical literature in
1971 when he described the condition in a small group of 14 patients ranging in age from
17 to 35 years [2].

Its incidence ranges between 0.16 and 0.4 per 100,000 people, depending on the
population studied [3,4]. Although the majority of cases present between the ages of 16
and 35, with a slight female predominance, reports of older patients with AOSD are on the
rise [5].

The most prevalent clinical signs of the disease [6] include high-spiking fever, arthri-
tis, and a transient salmon-pink maculopapular rash. Odynophagia and occasionally
pharyngitis are symptoms that accompany fever [7]. Additionally, increased liver enzymes,
lymphadenopathy, hepatosplenomegaly, hyperferritinemia, and white-blood-cell count
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(WBC) of 10,000/mm3, primarily neutrophilic polymorphonuclear (PMNs) cells, are fre-
quently detected and supportive of the diagnosis [8,9]. Myalgia is common, although
myositis and polymyositis are rare [1]. Patients with AOSD are also likely to have elevated
levels of inflammatory markers, including elevated levels of the C-reactive protein (CRP)
and erythrocyte sedimentation rate (ESR) [10].

2. AOSD-Clinical Picture and Diagnostic Criteria

Clinical manifestation is highly variable [11], making diagnosis difficult. The disease
has no clinical, biological, histological, or radiological hallmark. This lack of specificity
frequently results in a missed or overdue diagnosis. A delay in diagnosis has been shown
to influence the future response to therapy. According to Italian and French studies, the
time between the onset of symptoms and the final diagnosis of AOSD ranges from 1.5 to
4 years [12]. Failure to obtain a rapid diagnosis of AOSD leads to a chronic disease course,
as demonstrated by Kalyoncu et al. [13].

Although they are primarily designed for research, most physicians use the Yam-
aguchi [9] and Fautrel [9,14] classification criteria for AOSD in practice. These two are the
most sensitive and specific diagnostic criteria [15]. They include exclusion criteria with
high sensitivity and specificity, such as infections, malignancies, and other autoimmune
diseases [16–18].

Generally, the Yamaguchi criteria are separated into major and minor criteria. These
criteria can only be applied if exclusion criteria have been carefully considered. To classify
and diagnose AOSD using the Yamaguchi criteria, you must have at least five criteria,
with no less than two being major and no exclusion criteria. Fautrel diagnostic criteria
include both major and minor criteria but no exclusion criteria; they do, however, include
some recently described serologic criteria, such as serum ferritin. Four major criteria or
three major criteria and two minor criteria are necessary for a positive diagnosis [9,19].
Figures 1 and 2 below highlight the two sets of criteria used in practice.
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The clinical course of AOSD has been classified into three distinct phenotypes based
on the evolution of symptoms over time: Self-limiting or monophasic, intermittent or
polycyclic, and chronic evolution, each with a different prognostic significance [1,12,20–22].
Figure 3 describes these specific patterns.
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Figure 3. AOSD evolution patterns.

Maria et al. [23,24] proposed a dichotomous perspective of AOSD, differentiating
disease subtypes based on the dominant clinical manifestation. Thus, two subsets of
patients can be distinguished: Those with predominant systemic clinical features, such as
fever and skin rash, and those with principal articular involvement, similar to classical
rheumatoid arthritis (RA).

Predictive factors for each subset’s evolution have been identified. Female gender,
proximal arthritis at disease onset, thrombocytosis, and steroid dependence represent
the articular pattern [25]. The systemic subset appears to be associated with high fever
(>39 ◦C), high levels of liver enzymes or acute phase reactants, thrombocytopenia, and
hyperferritinemia [25,26]. Interleukin (IL)-18, interferon (IFN)-γ, IL-10, and IL-4 are related
to systemic AOSD, whereas IL-6, IL-17, and IL-23 are associated with arthritic AOSD.
However, cytokine dosage is not routinely measured [26,27].

3. AOSD-Prognosis and Complications

The prognosis for AOSD is favorable, with an estimated specific mortality rate of
1–3% [17]. Some patients, however, experience complications. Even so, early diagnosis
and prognosis assessment may help to reduce the disease’s critical problems, such as
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macrophage activation syndrome (MAS), thrombotic thrombocytopenic purpura, respira-
tory distress syndrome, and diffuse alveolar hemorrhage [8]. The disease’s multi-visceral
involvement may significantly reduce AOSD patients’ life expectancy.

The most severe complication of AOSD is MAS. The prevalence ranges between 10
and 15% and is associated with a high mortality rate [12]. Infections or medications, in
combination with uncontrolled and prolonged inflammation in patients with a genetic
predisposition, may cause this potentially fatal condition [17,18]. MAS can occur either at
the time of diagnosis or later on. Specific predictive or diagnostic factors are lacking [19].
High fever, hepatosplenomegaly, cytopenias, coagulopathy, extreme hyperferritinemia, and
hemophagocytosis on bone marrow aspirates are the most common symptoms of MAS.

4. AOSD-Pathogenesis

The pathophysiology of AOSD is still unknown. However, factors such as an imbal-
ance in innate and adaptive immunity and increased inflammatory cytokines contribute to
disease development [28].

There is no evidence that family aggregation plays a role in the occurrence of AOSD.
Still, previous research has found a link between genetic susceptibility and human leukocyte
antigens (HLA) gene polymorphisms, including HLA-Bw35, -B17, -B18, -B35, -DR2, -DR4,
-DR5, -DQ1, -DRw6, -DRB1, and -DQB1 [29]. In a Chinese multicenter cohort consisting
of 264 AOSD cases and 2420 controls, the first genome-wide association research was
performed to evaluate genetic variables determining susceptibility to AOSD. This analysis
identified both HLA class I and class II regions as susceptibility loci for AOSD [30].

Although multiple HLA alleles have been linked to a predisposition to the disease,
a trigger is still required to set off the chain reaction of inflammation.

Some clinical signs of AOSD, such as fever spikes, lymphadenitis, and elevated liver
enzymes, resemble viral or bacterial infections, suggesting that infection may initiate the
inflammatory response in AOSD. Adenovirus, Human immunodeficiency virus (HIV),
Mycoplasma pneumoniae, parvovirus B19, Epstein-Barr virus (EBV), rubella virus, measles
morbillivirus (MeV), hepatitis virus, influenza virus, rubella, and severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), emerging in late 2019, are among the reported
infectious triggers [3,8].

The disease’s specific pathogenic pathways are still partially known. Neutrophil
activation, a defining feature of the pathophysiology of AOSD, is responsible for the
onset and progression of inflammation by releasing a vast array of granular enzymes
and antimicrobial proteins. During an acute flare of the disease, over 80% of patients
show neutrophilic leukocytosis, which helps distinguish AOSD from other rheumatic
conditions [8].

Neutrophil and macrophage activation is a characteristic of AOSD, potentially due to
pro-inflammatory IL-18 signaling. PMN CD64, a neutrophil activation marker, has recently
been elevated in patients with active AOSD. As its expression typically reflects the degree
of disease activity, intercellular adhesion molecule-1 (ICAM-1), elevated by IL-18, has
also been suggested as a possible clinical marker [31]. Additionally, macrophage-colony
stimulating factor (M-CSF), a markedly enhanced cytokine in severely AOSD patients,
appears to be orchestrating the activation and differentiation of macrophages [32].

Neutrophil extracellular traps (NETs) are essential in the intensive activation of
macrophages and the stimulation of the overproduction of many pro-inflammatory cy-
tokines [33]. Histones are the predominant protein component of NETs, followed by
granule-derived peptides and enzymes, including neutrophilic elastase, myeloperoxi-
dase, calprotectin, cathepsin G, leukocyte proteinase 3, lysozyme C, and neutrophil de-
fensins [34]. In AOSD, the S100 protein is the most commonly explored field connected
to NETs. Calprotectin is defined as a combination of two calcium-binding proteins of the
S100 protein family, S100A8 and S100A9. Patients with AOSD have higher levels of the
S100 family of proteins, produced mainly by neutrophils and macrophages, than healthy
controls. They function as ligands of Toll-like Receptor (TLR) 4 or the receptor for advanced
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glycation-end products (RAGE) to accelerate neutrophils and trigger the production of pro-
inflammatory cytokines [35]. Activated neutrophils and macrophages release calprotectin
and the macrophage migration inhibitory factor (MIF), which are excellent indicators of
disease activity and severity [31,36].

The pro-inflammatory cascade is most likely initiated by danger signals such as
pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns
(DAMPs). Pattern recognition receptors (PRRs), TLRs, activate the Nucleotide-Binding
Domain, the Leucine-Rich-Containing Family, and Pyrin Domain-Containing-3 (NLRP3)
inflammasomes [37]. Caspase enzymes stimulate the generation of IL-1β and IL-18, the char-
acteristic cytokines of active AOSD [38]. IL-1β and IL-18 also stimulate the release of pro-
inflammatory cytokines such as IL-6, IL-8, IL-17A, and tumor necrosis factor (TNF)α [39,40].
IL-1β can further activate macrophages, which are essential players in the cytokine storm
or MAS [18,41]. IL-1β and IL-18 are thought to be primarily responsible for systemic
symptoms such as fever and general weariness, whereas TNFα is responsible for arthritis
and IL-6 is intermediate.

IL-1β is the main pro-inflammatory cytokine. It is neither present nor detectable
by routine immunoassays in healthy tissues but is generated during inflammation by
myeloid cells (blood monocytes, tissue macrophages, and dendritic cells). Exogenous TLR
agonists or endogenous cytokines such as TNFα [42] or IL-1β itself boost production. This
self-sustaining activation of IL-1β is an autoinflammation-causing mechanism.

IL-1β is released in the extracellular area [42], where it produces a variety of pro-
inflammatory effects. These include nuclear factor-kB (NF-kB), activator protein-1 (AP-1), c-
Jun N-terminal kinase (JNK), and other mitogen-associated protein kinases (MAPKs) linked
to immunological responses [42,43]. These signaling cascades activate other mediators,
most notably IL-6, IL-2, interferons, chemokines, prostaglandins, and endothelial adhesion
molecules [44].

Increasing concentrations of IL-1β cause the most important AOSD symptoms, includ-
ing fever, an increase in acute-phase reactants, neutrophilia, rash, musculoskeletal discom-
fort, hepatosplenomegaly and lymphadenopathies, serositis, hypotension, and shock.

IL-1β is also a critical cytokine in the promotion of adaptive immunity. IL-1β promotes
the development of CD4+ T cells into proinflammatory T cell populations such as T helper
(Th)1 and Th17 cells, and it can also drive the proliferation and differentiation of antigen-
specific CD8+ T cells [45].

Kudela et al. [46], in their investigation, discovered a considerable increase in IL-18
blood levels in active AOSD compared to other rheumatic diseases, as well as a strong
connection between IL-18 serum levels and disease activity in AOSD. These findings
indicate IL-18’s potential function as an important biomarker in AOSD. IL-18 has also been
associated with serum ferritin, CRP, and neutrophil count [31,47].

In contrast to other inflammatory conditions, including RA, systemic lupus erythe-
matosus (SLE), ankylosing spondylitis (AS), and psoriatic arthritis (PsA), the circulation
amount of free IL-18 is higher in individuals with AOSD during both the active and inac-
tive phases of the condition. Those with active illness had greater levels of free IL-18 than
patients with inactive disease, suggesting that IL-18 may be used as a biomarker to assess
the disease activity of AOSD [38,48]. AOSD patients with MAS are also observed to have
high levels of IL-18 [49].

IL-8 is a proinflammatory cytokine that mobilizes, stimulates, and degranulates neu-
trophils at the site of inflammation [31]. It is primarily generated by activated macrophages
and serves as a chemotactic agent of inflammatory cells. Chen et al. [37] discovered that
the blood IL-8 level was a significant predictor of chronic arthritis.

Serum IL-17 pro-inflammatory cytokine levels were more significant in AOSD patients
and linked to Th17-circulating cells. Th17 cells and IL-17 levels were lowered after therapy
administration, suggesting that Th17-targeted therapies may have a therapeutic effect in
managing those disorders [50].
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The role of IFN-γ in AOSD is still debated. It stimulates pro-inflammatory responses
such as host defense responses and regulatory functions such as neutrophil-specific chemokine
inhibition and T-cell apoptosis induction. CXC motif chemokine 10 (CXCL10) and IL-18 are
two examples of IFN-γ-induced cytokines or chemokines that are considerably elevated in
AOSD [51]. CXCL10 levels were shown to be higher in AOSD patients compared to those of
RA patients and healthy controls and linked to AOSD disease activity indices, as described by
Han et al. [52].

Han et al. [52] indicated that blood levels of CXCL9, CXCL10, and CXCL11 in patients
with AOSD were linked with many inflammatory markers and systemic scores. In contrast,
they decreased due to treatment-induced improvement in disease activity.

In addition to enhancing immune response and inflammatory processes, IL-6 con-
tributes to developing AOSD [1,28,53]. As a proinflammatory cytokine, IL-6 may be
responsible for fever, rash, and the synthesis of acute-phase proteins in AOSD [37]. Skin le-
sional biopsies from those with the distinctive salmon-colored rash demonstrated elevated
IL-6 levels. Furthermore, IL-6 may contribute to elevated ferritin levels by stimulating its
synthesis by the liver, along with CRP and other acute-phase proteins [31].

Patients with AOSD had elevated TNFα levels in their sera and tissues compared
to healthy controls, regardless of disease activity. On the other hand, blood levels of
soluble tumor necrosis factor-receptor-2 (sTNF-R2) were associated with serum CRP levels,
indicating its potential utility as an indicator of disease activity [30].

Ferritin is widely documented as a common AOSD mediator [54,55]. Ferritin pro-
duction can be increased in response to inflammatory cytokines such as IL-1β and IL-6.
Furthermore, ferritin can trigger inflammatory pathways to exacerbate the inflammatory
process, lending to the idea that ferritin is more than just an observer in acute-phase
reactions [56].

In addition, dysfunctional natural killer (NK) cells, elevated Th1 and Th17 cells, in-
creased IFN-γ and IL-17 levels, and various alarmins, such as the S100 proteins, contribute
to the pro-inflammatory environment that promotes aberrant human immune system
responses [50]. NK cells facilitate the inflammatory cascade. Immunological responses rely
on NK cell cytolytic activity to eliminate infections and preserve lymphoid and myeloid im-
mune homeostasis. A lack of cytotoxicity will result in chronic lymphocyte and macrophage
activation [57,58]. Even though the cytolytic activity of NK cells is diminished in AOSD, the
ability to secrete IFN-γ is increased due to the overexpression of IL-12 and IL-15 receptors
on these cells [59].

Apart from intensified inflammatory cascade, it is theorized that inadequate resolution
of inflammation contributes to the “cytokine storm” of AOSD. Active AOSD is associated
with increased anti-inflammatory cytokines IL-10 and IL-37, which may attenuate the
aberrant inflammatory response [60]. IL-10 may block macrophage activation, restrict
neutrophil migration, and regulate the production of IL-1, IL-6, and TNFα [61]. IL-37 also
may impede the production of IL-1, IL-6, and TNFα [62,63]. In addition, IL-10 and IL-37
can stimulate the polarization of anti-inflammatory macrophages, which aids in resolving
an excessive inflammatory response [64].

Figure 4 summarizes the aspects related to the pathogenesis of this condition.
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5. AOSD-Treatment
5.1. Goals and Categories of Therapy

The primary objectives of treatment for AOSD are to reduce inflammation and pro-
mote the resolution of systemic and articular symptoms and prevent organ damage and
MAS [65]. Nevertheless, many therapy choices, such as non-steroidal anti-inflammatory
drugs (NSAIDs), corticosteroids (CS), and conventional synthetic disease-modifying an-
tirheumatic drugs (csDMARDs) may only be appropriate for people with moderate, fre-
quently self-limiting disease. In life-threatening instances and steroid-dependent patients,
supplemental therapy with a second-line medication is required [24].

There are currently no internationally accepted AOSD management recommendations.
Few country-specific guidelines have been published for the management of AOSD, and a
treat-to-target strategy is still absent. In 2017, the Japanese Ministry of Health established
AOSD’s first clinical practice guidelines [66]. For AOSD patients with significant organ
involvement, they proposed systemic glucocorticoids for relieving clinical symptoms with
high-dose intravenous pulse glucocorticoid treatment. Methotrexate (MTX) was strongly
suggested for individuals with steroid resistance [66,67].

Recommendations for the use of IL-1 inhibitors in the treatment of AOSD were devel-
oped by an Italian expert group in 2019. A large percentage of patients achieved quick and
persistent remission of systemic symptoms and normalized inflammatory markers, which
led the panel to conclude that the research consistently established the positive effect of
IL-1 inhibitors [23,67].

Because of the condition’s rarity, there are few well-designed prospective studies
on AOSD patients and even fewer randomized controlled trials examining management
methods in AOSD patients. NSAIDs and CS are used as first-line therapy for AOSD,
followed by csDMARDs in steroid-refractory individuals and biologics in those resistant to
conventional treatment [42]. The efficacy of these treatments was inadequate, particularly
in severe symptoms. Standard methods cannot manage disease in at least 30–40% of
patients, indicating a significant medical need for specific therapy [68]. Treatment should
be initiated immediately so that the damaging inflammatory process may be stopped while
it is still in its early, reversible phases [69].

The introduction of diverse biologic medication in refractory AOSD was encouraged by
successful discoveries in treating other chronic rheumatic disorders. Because of their roles
in generating and exacerbating a destructive systemic inflammatory response, IL-1, IL-6,
IL-18, and TNFα are essential mediators in AOSD pathophysiology [30,68]. Consistent with
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these data, cytokine-blocking medicines emerged as the most appropriate and acceptable
treatments for AOSD, especially in difficult-to-treat and severe patients [70].

5.2. NSAIDs, CS and csDMARDs Treatment

The primary objectives of treatment for AOSD are the resolution of systemic and
articular symptoms and the prevention of organ damage and MAS [65].

Despite their low overall efficacy, CS and NSAIDs are invariably the first-line therapy
for both clinical characteristics. For more severe cases, csDMARDs and biological DMARDs
(bDMARDs) are available [71–73].

5.2.1. NSAIDs

NSAIDs are the first-line treatment, especially in the absence of systemic symp-
toms [24]. Approximately twenty percent of patients with a moderate or self-limiting
disease (e.g., low-grade fever, rash, arthralgia) achieve clinical control with NSAIDs. More
than eighty percent of AOSD patients did not achieve remission with NSAIDs, and nearly
twenty percent experienced side effects [66].

When using NSAIDs for an extended period, it is essential to be aware of the potential
adverse effects, including gastrointestinal bleeding and the possibility of developing renal
or hepatic insufficiency [67].

5.2.2. CS

The dosage of CS therapy depends on the severity of the disease: Prednisone at
0.5 to 1 mg/kg per day is the typical starting regimen. At the same time, high-dose
intravenous pulse glucocorticoids are indicated for patients with life-threatening internal
organ involvement (such as severe hepatic involvement and MAS) [74]. The reaction is
frequently rapid and long-lasting for both articular and systemic problems.

Methylprednisolone may be ineffective in managing the most severe symptoms, par-
ticularly in people with resistant forms or MAS characteristics. Other CS, such as dexam-
ethasone, should be tried in such circumstances [75].

Because of side effects, such as gastrointestinal bleeding, hypertension, diabetes,
tachycardia, cataract, osteoporosis, psychosis, and weight gain, prolonged use of steroid
medicine should be avoided [42,76].

It is important to note that abrupt reductions in steroid daily intake may result in
illness relapses; consequently, the posology should be reduced gradually [75].

NSAIDs and CS enhance the risk of cardiovascular disease [77]. As a result of their
dose-dependent toxicity, they should be reduced gradually and stopped once remission is
established. Several AOSD patients, however, experience illness flares or become steroid-
dependent after tapering or interruption.

5.2.3. csDMARDs

csDMARDs are commonly regarded as steroid-sparing medications and are frequently
used with CS or NSAIDs to provide appropriate disease management.

There are no controlled data from randomized clinical studies on the effectiveness and
safety of csDMARDs in treating AOSD. In observational investigations, csDMARDs were
shown to produce remission in up to 80% of AOSD patients, making them good steroid-
sparing treatments for resistant and severe AOSD cases. The majority of AOSD patients
were given at least one csDMARDs, the most common being MTX. It is administered with
a beginning dose of 7.5 to 15 mg once weekly, followed by a plan of dosing increases up to
25 mg/week [30].

MTX was reported to be efficacious for disease control in systemic and chronic artic-
ular AOSD in the research of Gerfaud-Valentin published in 2014 [3], notably in 40–70%
of steroid-dependent AOSD patients. The use of MTX in AOSD patients with liver dam-
age is not an absolute contraindication, although constant transaminase monitoring is
required [30,78].
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MTX is the preferred option as first-line steroid-sparing therapy, despite studies show-
ing the effectiveness of other traditional csDMARDs such as cyclosporine A, azathioprine
(AZA), leflunomide (LEF), and hydroxychloroquine (HCQ) in AOSD patients [25].

For the therapy of the chronic articular pattern and MAS, MTX and cyclosporine A are
most commonly used, respectively. However, data on AZA or LEF are rare and originate
from small case series or case reports [28].

In addition, cyclosporine is the basis for treating MAS [79]. Nonetheless, these pharma-
cological medications are linked to a substantial burden of toxicity, which most commonly
includes renal, gastrointestinal, hepatic, and hematological adverse responses [80,81].

Furthermore, 17–32% of AOSD patients with mainly severe clinical symptoms achieve
only partial remission or are resistant to first-line CS and second-line csDMARDs [82]. These
patients are referred to as “refractory AOSD” patients, and they frequently require larger CS
dosages, longer treatment durations, and the concomitant introduction of bDMARDs [3,21].

5.3. IL-1 Inhibitors

As IL-1 is thought to play a role in the development of AOSD [31], and its ligands and
receptors are released mainly through activated macrophages [83,84], inhibiting IL-1 with
drugs appears to be a reasonable therapeutic strategy for AOSD patients.

IL-1 inhibitors are rapidly effective in managing many clinical and laboratory indi-
cations of AOSD, particularly in patients with the disease’s systemic form [70]. Anti-IL-1
therapy is also successful in individuals with AOSD who have failed conventional treat-
ment [23,24,85].

The rapid and sustained response to IL-1 inhibitors enables patients to use less CS
medication [22,23]. The efficiency of IL-1 inhibitors in treating AOSD varied across studies,
ranging from 50 to 100 percent, and the percentage of remission varied between 22 and
100 percent (median 70 percent) [23]. Additionally, IL-1 inhibitors have a good safety profile.

There are currently three IL-1 inhibitors available for AOSD: Anakinra (an IL-1R
antagonist), canakinumab (an anti-IL-1 monoclonal antibody), and rilonacept (a soluble
IL-1 trap molecule).

5.3.1. Anakinra

Anakinra is a non-glycosylated version of the human IL-1 receptor antagonist (IL-1Ra),
which binds to the IL-1 receptor (IL-1RI) and inhibits the activation of this receptor by IL-1α
or IL-1β [44]. It was officially approved in 2001 for treating RA, but the first cases of its
use in AOSD were not recorded until 2005 [86,87]. Anakinra [88] was the first biological
molecule to demonstrate efficacy in treating systemic and articular signs of AOSD.

According to multiple trials, anakinra appears to be more effective when provided
early in the disease. It was found to be more beneficial for patients with highly active
systemic AOSD than those with isolated chronic arthritis [9].

In 2015, Ortiz-Sanjuan et al. reported that after one year of anakinra medication, the
frequency of joint symptoms, cutaneous rash, fever, and ferritin serum levels decreased sig-
nificantly in nearly 40 patients. In addition, an overall decline in daily steroid consumption
was identified [89].

In a case report by Dall’Ara et al. [90], 13 patients with AOSD were treated with
anakinra as first- or second-line biologic therapy, and 12 exhibited full remission after a
median of 61 months of follow-up.

Colafrancesco et al. conducted extensive research in 2017 on 140 individuals with
AOSD from 18 Italian centers. NSAIDs, CS, and csDMARDs were frequently mentioned as
past therapy. All clinical and serological signs of AOSD improved rapidly with anakinra
administration within the first three months of treatment [23].

Vercruysse et al. [91] concluded in their analysis of 15 patients treated with anakinra
that two critical characteristics are linked to a considerable therapeutic response: A systemic
form and the lack of arthritis.
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In a 2020 randomized, placebo-controlled study by Schanberg et al. [92] evaluating
the use of anakinra in 12 patients with Still’s disease (nine children and three adults,
n = 6 placebo, n = 6 anakinra), six patients on anakinra demonstrated a rapid response at
week 2, defined as the absence of fever and a 30% improvement in American College of
Rheumatology (ACR) criteria 30 (ACR30).

Vitale et al. conducted a series of investigations in a multicenter study with 141 indi-
viduals with AOSD in Italy to assess early versus delayed anakinra treatment. Participants
were randomized to different treatment groups based on disease length, anakinra therapy
duration, the time between disease start and treatment beginning, and previous treatment
regimens (mainly including CS, csDMARDs, and biologic agents). After 3, 6, and 12 months,
there were no statistically significant changes in efficacy between groups. However, pa-
tients receiving anakinra as soon as AOSD onset may better manage systemic inflammation
and articular symptoms [93].

A meta-analysis of nine clinical studies indicated that anakinra could reduce or even
eliminate concurrent CS without AOSD flare-ups [94].

Bodard et al. [95] evaluated the efficacy of anakinra in 23 patients with AOSD in
2021, eight of whom had cardiac involvement including pericarditis and myocarditis with
tamponade, and they reported positive outcomes in all of them.

After 24 months of treatment with anakinra, Campochiaro et al. [96] reported drug
retention rates (DRR) of 53.1% in 41 patients with AOSD.

Regarding the safety of treatment with Anakinra, studies show a good profile. In
retrospective research by Dall’Ara et al. [90] involving 18 patients, 13 of whom received
anakinra, one patient with AOSD was found to have developed a drug-induced rash.
In the study by Vitale et al., three patients experienced significant adverse effects (SAE):
A 52-year-old man developed pneumonia after 17 months, a 65-year-old male developed
lower limb ulcers after 110 months, and a 67-year-old male patient developed pneumonia
after nine months of anakinra medication. Overall, the study authors found adverse events
(AEs) and SAEs in 1.7% of patients (n = 72) treated with IL-1 blockers, confirming their
acceptable safety profile [97].

In the extensive retrospective study by Colafrancesco et al., 47 of 140 patients reported
AEs. The most common AEs were in situ or diffuse skin reactions and infections (three
cases of urinary tract infections, three cases of pneumonia, and one case of recurring dental
abscesses). The majority of affected patients were administered daily doses of 100 mg
anakinra. In 75% of instances, medication was discontinued due to the persistence of severe
skin responses during ongoing treatment. During a 35-month average follow-up period,
leucopenia, thrombopenia, and lymphoproliferative diseases were also found [23].

Skin responses at the injection site are the most frequent and consistently reported
AEs, according to Vastert et al.’s study of 27 trials. Notably, it is significant to point out that
these AEs are mild to moderate in severity and usually disappear in 4 to 6 weeks without
the need to stop using anakinra. According to the same analysis, people who have already
experienced liver dysfunction are more likely to experience hepatotoxicity when taking
anakinra [98].

In 2021, Campochiaro et al. reported injection site responses as the most common AEs,
occurring in 4 of 41 patients with one case of zoster infection reactivation in a retrospective
single-center cohort analysis [96].

5.3.2. Canakinumab

Canakinumab is a fully human monoclonal antibody against IL-1 that prevents the
production of inflammatory mediators by inhibiting downstream targets and avoiding the
interaction between IL-1β and IL-R. It is possible to inject 150 mg or 300 mg of canakinumab
every 4–8 weeks due to its half-life of 26 days [11].

Colafrancesco et al. studied four AOSD patients who were switched from anakinra to
canakinumab. The results were promising after a mean of 22.1 months. After 45 months,
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one patient achieved remission and could discontinue therapy without relapsing during
follow-up [23].

In research published in 2018, Ugurlu et al. described the use of canakinumab to treat
11 individuals with therapy-refractory AOSD. CS, csDMARDs (MTX, LEF), and bDMARDs
(tocilizumab (TCZ), anakinra, infliximab (IFX), adalimumab (ADA), etanercept (ETN), and
rituximab (RTX)) are prior therapies. Eight of the eleven patients were still being given
canakinumab at doses of 300, 150, or 200 mg every two weeks. After just one injection, one
patient experienced complete remission. Ferritin, ESR, and the global visual analog scale
(VAS), as indicated by the patient, all greatly improved. Six individuals were receiving
background CS of up to 10 mg of prednisolone per day at the time of the study [85].

Cavalli et al. studied the effectiveness of canakinumab as first-line biologic therapy in
their case series of four patients with AOSD who were resistant to CS and MTX. All pa-
tients’ clinical characteristics and test indicators significantly improved with canakinumab.
Canakinumab’s potent anti-inflammatory effects in this small case series had a notable
steroid-sparing effect [99].

Campochiaro et al. showed a significant response in 6 of 10 AOSD patients treated
with canakinumab. Previous therapies, such as CS, csDMARDs, and anakinra (n = 5), were
unsuccessful. Canakinumab, 300 mg once every four weeks, led to a temporary remission of
clinical and laboratory evidence of disease activity, regardless of prior therapeutic regimens.
In addition, concurrent usage of Cs and csDMARDs was reduced or even terminated
without relapse [85].

In the phase II, randomized, double-blind, placebo-controlled CONSIDER study
(Canakinumab for Treatment of Adult-Onset Still’s Disease to Achieve Reduction of
Arthritic Manifestation), a multicenter, investigator-initiated trial demonstrated that canaki-
numab improved several clinical aspects of AOSD while showing a favorable safety pro-
file [85,100].

In research published in 2020, Vitale et al. analyzed data from nine AOSD patients who
were given canakinumab at a dose of 150 mg every four weeks. CS, NSAIDs, csDMARDs
(MTX, LEF, cyclosporine A), and biologic medicines (TCZ, ADA, ETN, and anakinra)
had all previously been used to treat the patients. Canakinumab was administered as
monotherapy to four patients. The majority of patients at three months were in remission.
After 45 months, a long-lasting remission caused one patient to stop receiving treatment.
At month 3, there was a significant overall decrease in CS in this trial. While taking
canakinumab, two individuals were even able to discontinue taking their daily steroids.
The same occurred in two cases with concurrent MTX medication [93].

Kedor et al. conducted a randomized, double-blind, placebo-controlled, multicenter
trial to assess the effectiveness of canakinumab in the treatment of refractory AOSD with
articular presentation. In the first three months, 18 individuals received canakinumab, and
17 received a placebo. Non-responders on placebo shifted to canakinumab as a rescue
medication after that time. After six months of being blinded, respondents were given
open-label medicine. After the 12-week period, the Disease Activity Score (DAS)28-ESR
decreased by more than 1.2 in 12 individuals. At week 12, the canakinumab arm had a
fever-free rate of 77.8%, while the placebo arm had a fever-free rate of 64.7% of patients.
After 12 weeks, skin symptoms were comparable in both groups. Twelve canakinumab
responders at week 12 were still responding at week 24, and two were still responding at
week 20. Seven patients entered the long-term extension period, with three having low
disease activity and four still in DAS28 remission [85].

In a study published in 2020, Tomerelli et al. revealed that 13 AOSD patients treated
with canakinumab showed a strong and quick clinical response as well as a significant
steroid-sparing impact with follow-ups ranging from 3 to 18 months [101].

Ugurlu et al. collected data on ten patients with AOSD treated with canakinumab
and reported a case of latent tuberculosis (TB) reactivation nine months after the initial
injection while receiving isoniazid chemoprophylaxis. Without being more precise, the
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authors linked this outcome to prior treatment exposure to numerous biologic drugs. In
this trial, previous treatment included IFX, ADA, and ETN [85].

In the research by Campochiaro et al., a 69-year-old man with a systemic form of
AOSD developed leucopenia following treatment with canakinumab after anakinra and
TCZ failed. A 51-year-old patient from the same cohort contracted herpes zoster during
therapy with canakinumab in conjunction with MTX following the failure of anakinra. Both
individuals received concurrent background prednisolone therapy at a dosage of 10 mg
daily [85].

In single observational center research of 13 patients with AOSD, Tomelleri et al. found
three AEs: Herpes zoster reactivation, prostatitis, and moderate leucopenia [101].

Four SAEs were reported in 26 canakinumab-exposed individuals in the trial by
Kedor et al. A 36-year-old female patient who had never used biologics experienced non-
life-threatening transaminitis that cleared once the medication was stopped. A 51-year-old
female patient had patello-femoral pain syndrome, a 30-year-old male patient developed
deep vein thrombosis, and a 66-year-old female patient developed hypotonia, requiring
hospitalization. The results of a liver biopsy led to the diagnosis of drug-induced hepato-
toxicity. In addition, this trial documented 47 adverse events, 17 of which were non-serious
infections (nasopharyngitis in the majority of cases) and 10 of which were gastrointestinal
illnesses (mostly nausea) [85].

Laskari et al. [102] reported two cases of severe pneumonia in a retrospective longitudi-
nal outcome study of 50 consecutive patients with refractory AOSD, one of which resulted
in therapy discontinuation. However, no particular facts about the canakinumab dose or
past biologic therapy in these individuals were provided. In all, 20% of the participants
had infections, including five in the respiratory system, two in the lower urinary tract,
one fungal infection in the oral cavity, one fungal infection in the external genital area,
and one moderate Staphylococcus skin and soft tissue infection. Three patients experienced
drug-induced leucopenia. The authors found that canakinumab was safe and well-tolerated
by most of the patients during the 24-month follow-up period.

5.3.3. Rilonacept

Rilonacept, an IL-1 tyrosine-rich amelogenin polypeptides (trap) molecule, has a
longer half-life than anakinra and binds both IL-1α and IL-1β with great affinity [28].
At 160 mg/week, it can alleviate clinical symptoms and induce prolonged remission in
patients with resistant AOSD. It also functions as a steroid-sparing agent [103].

Experience with rilonacept has demonstrated its efficacy in treating both arthritis and
systemic symptoms in individuals with refractory AOSD [103,104].

In a 24-month follow-up trial, rilonacept was administered to five patients with
refractory AOSD; three patients had significant clinical improvement [29].

In 2017, Gao and Petryna [105] reported two examples of efficient treatment with rilona-
cept of refractory patients with AOSD, after the failure of prednisone, MTX, and anakinra.

According to the data, IL-1 inhibition is a successful therapeutic method in AOSD
resistant to standard therapy. Treatment with IL-1 Inhibitors is favorable in AOSD on
various clinical and laboratory indicators, and it has a considerable steroid-sparing impact
in most patients. The therapeutic effect is immediate and long-lasting.

Overall, IL-1inhibitors have a good safety profile. There have been reports of infections
among adverse occurrences. Treatment with anakinra has been linked to injection-site
responses and sporadic incidences of severe hepatotoxicity, which are reversible with
treatment discontinuation [106].

5.4. IL-6 Inhibitors

The multifunctional cytokine IL-6 was initially identified in 1973. It is a key player in
acute inflammation by promoting the differentiation of macrophages and cytotoxic T-cells,
the chemotaxis of immune cells such as neutrophils and macrophages, the proliferation and
activation of hematopoietic progenitors, the secretion of immunoglobulin (IG) by B-cells, and
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the production of acute-phase proteins by hepatocytes [7,107]. In the serum and pathological
tissues of patients with AOSD, IL-6 concentrations are noticeably higher [26,30].

Even though IL-6 is generally recognized as a pro-inflammatory cytokine, it is consid-
ered pleiotropic due to its protective and regenerative activities based on distinct signaling
pathways [108].

Given the association between disease activity and serum IL-6 levels in ASD patients [109],
blocking IL-6 would be a promising treatment approach. The successful treatment of AOSD
with IL-6-blocking medications supports the pathogenic role of IL-6 [53].

5.4.1. Tocilizumab

TCZ represents a humanized anti-IL-6 receptor antibody that precisely blocks IL-6 by
recognizing both membrane-bound and soluble versions of the IL-6 receptor [110].

In several observational studies and case reports, treatment with TCZ reduced both
systemic and articular symptoms. Clinical response rates recorded vary from 64 to
100 percent [111–114].

Eleven patients completed the 6-month follow-up in the first case study of TCZ in
fourteen patients with intractable AOSD at a dosage of 5–8 mg/kg every two or four weeks.
Over six months, 57% of patients had complete resolution of clinical activity, and the
maintenance dose of CS was lowered, suggesting that TCZ may be an effective alternative
treatment for multidrug-resistant cases of AOSD [115].

TCZ performed better in a short retrospective cohort study from Japan compared to
TNFα inhibitors ETN and IFX. TCZ had a continuation rate of 90.9%, much higher than
IFX’s rate of 11.1% and ETN’s rate of 25% [116].

In 2018, a double-blind, placebo-controlled, randomized phase III trial was conducted
to assess the efficacy and safety of TCZ. TCZ was linked to a notable improvement in
systemic and articular clinical symptoms, a significant steroid-sparing benefit, and an
acceptable safety profile in this research. In this study, 27 patients with AOSD refractory to
CS were randomized to receive TCZ at a dose of 8 mg/kg or placebo intravenously every
two weeks for 12 weeks of double-blind treatment, followed by 40 weeks of open-label
treatment with TCZ. TCZ showed a substantially more potent effect on CS-sparing than the
placebo did. At week 12, the dose of CS was reduced by 46.2% in the TCZ group and 21.0%
in the placebo group (p = 0.02). Infections, AOSD aggravation, drug eruption, anaphylactic
shock, and aseptic necrosis of the hips were among the SAE in the TCZ group [113]. During
the trial, neither MAS nor gastrointestinal perforation was reported [117].

According to a meta-analysis by Ma et al. [78], TCZ as an adjuvant therapy induced
complete remission in 77.9% of refractory cases.

Tocilizumab was utilized initially in refractory AOSD patients by Iwamoto et al. in
2002, with promising results [118]. A pilot trial conducted by Li et al. in China found that
combining TCZ with csDMARDs or CS can improve clinical and laboratory symptoms
of refractory AOSD patients and contribute to CS withdrawal [119]. In a case series of
14 patients with persistent AOSD, TCZ therapy resulted in complete remission of clinical
disease activity in 57% of patients and a significant reduction in CS maintenance dose [28].

Additionally, specific case reports have shown that TCZ is efficient in treating MAS,
pulmonary arterial hypertension, and thrombotic thrombocytopenic purpura, all systemic
complications linked to AOSD [120,121].

The most frequent AEs are mild infections, injection-site reactions, neutropenia, and
hepatotoxicity. Serious infections and intestinal perforation due to diverticulitis are exam-
ples of the rare but severe adverse effects of TCZ [122,123].

5.4.2. Sarilumab

Sarilumab is an entirely human anti-IL-6Rα monoclonal antibody reported to be [124]
effective as a steroid-sparing agent [125].

In a 25-year-old male patient with CS AOSD, sarilumab improved clinical symptoms
while sparing corticoid, according to a case study [124].
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The hypothesis supporting the use of sarilumab in refractory cases is based on the fact
that in systemic AOSD, the high levels of IL-6 may exceed the neutralizing capacity of TCZ;
therefore, direct inhibition of the IL-6 receptor may help to reduce the pro-inflammatory
activity of IL-6 more thoroughly.

5.5. IL-18 Inhibitors

IL-18 is a pro-inflammatory cytokine of the IL-1 superfamily whose activity is con-
trolled by the natural IL-18 binding protein (IL-18BP). Monocytes, macrophages, and
dendritic cells express this IL [126]. Pro-inflammatory responses are triggered when IL-18
binds to its receptors (IL18Rα and IL-18Rβ). IL-18 levels were elevated and linked to
disease activity in AOSD patients [37], and significantly higher IL-18 levels were found in
AOSD patients with MAS [49].

Three IL-18 inhibitors are now being studied; however, data on the therapeutic efficacy
of IL-18 blockage is still insufficient.

5.5.1. Tadekinig Alpha

Tadekinig alpha, a recombinant human IL-18BP, binds IL-18 with a strong affinity and
subsequently prevents the release of TNFα, IFN-γ, and IL-1 [127].

In phase 2 multicenter European research conducted in 2018 by Gabay et al., Tadekinig
alpha proved its potential efficacy and acceptable safety profile. Twenty-three patients with
the long-term multidrug-resistant disease who had fever or CRP levels above ten mg/l
were enlisted; 50% of them had previously had csDMARDs, and nearly a third had received
prior biologic treatments. Patients were administered 80 or 160 mg of Tadekinig alpha thrice
weekly. The response rate was approximately 50 percent, and the overall safety profile was
favorable. Ferritin, IL-6, neutrophils, S100A8/9, and S100A12 levels fell considerably. All
responders with increased IL-18 levels at baseline had undetectable levels of free IL-18 in
their blood at the end of treatment.

Due to injection-site reactions, one patient in group two had to discontinue treatment
one week after the experiment began. Most of the 47 drug-related AEs were skin responses,
upper airway infections, and arthralgias. A volunteer aged 60 years old experienced toxic
optic neuropathy, resulting in the permanent termination of the study. Overall, the safety
profile of Tadekinig alpha was satisfactory [128].

Kiltz et al. published a study in which two individuals with AOSD were treated for
several months with Tadekinig alpha. The first patient maintained clinical remission for
two years while on a daily prednisone dose of less than 5 mg. The clinical response of the
second patient, who had Tadekinig alpha for more than two years, was maintained. One
patient administered 160 mg of Tadekinig alpha had an upper airway infection. However,
this participant’s risk of infection was likely already elevated due to prolonged exposure to
greater CS doses [129].

5.5.2. AVTX 007

AVTX 007 (formerly CERC 007, AEVI 007, and MEDI 2338) is a fully human, high-
affinity anti-IL-18 monoclonal antibody, being researched for treating autoinflammatory
diseases, including AOSD.

The Phase I multicenter, open-label study will involve 12 patients, six of whom will
receive 7 mg/kg of AVTX-007 intravenously (iv). Based on the safety outcomes of the first
cohort, six additional participants will receive a dose increase or decrease of AVTX-007.
Effectiveness, safety, and tolerability will be examined [9].

5.5.3. APB R3

APB R3 is a long-acting recombinant fusion protein comprised of IL-18BP linked to an
anti-human serum albumin Fab fragment via a peptide linker. An early study on APB R3
for the treatment of AOSD is being performed in South Korea as of October 2021 [9].
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5.6. IL-17 Inhibitors

As a result of its role in neutrophil recruitment, IL-17 helps to keep the inflammatory
phenotype present [130]. There has been an IL-17 elevation reported in AOSD [25].

Given the detrimental role of IL-17 in AOSD pathogenesis [50], the administration of
IL-17 inhibitors to AOSD patients with a steroid-sparing effect appears plausible.

Secukinumab

Secukinumab is a human monoclonal antibody that recognizes and binds to and neu-
tralizes the interleukin-17A receptor. With a favorable safety profile, it is presently approved
to treat psoriasis, AS, non-radiographic axial spondyloarthritis (nr-axSpA), and PsA.

Mitrovic et al. [131] described a single case of an AOSD patient who obtained complete
remission with secukinumab, after the loss of efficacy to anakinra and MTX following the
development of SpA.

5.7. TNFα Inhibitors

TNFα, a member of the TNF superfamily, is primarily produced by lymphocytes
and activated macrophages [132]. It can trigger various cellular and molecular behaviors
and events by binding to two receptors, TNFRI and TNFRII [133]. Serum and synovial
membrane TNFα levels are markedly higher in individuals with systemic or chronic
AOSD [30]. The efficacy of TNFα blockers in AOSD is controversial [134].

IFX, ETN, and ADA were the first TNFα inhibitors to be utilized in single case reports
or short series in the early 2000s [135].

Essential data on the safety and efficacy of anti-TNFα drugs are provided by the study
conducted by Fautrel et al., which involved the administration of IFX or ETN to 20 patients
with AOSD (five with systemic and fifteen with polyarticular forms), whose response
to MTX and CS was inadequate. Four individuals treated with IFX obtained complete
remission, whereas nine patients achieved partial remission. With ETN therapy, the majority
of patients obtained a partial response, while just one patient reached complete remission.

5.7.1. Infliximab

IFX was initially administered to three individuals with chronic and aggressive AOSD
in 2001, and it showed long-term success in the treatment of refractory AOSD patients [29].

Kraetsch et al. reported in 2001 that IFX therapy resulted in significant improvements
in clinical symptoms and normalization of laboratory parameters in all six AOSD patients
with severe disease activity [29,37].

Dechant et al. (2004) indicated that 87.5% of patients treated with IFX for eight cases
with multidrug-resistant AOSD responded. Five of these patients stayed in remission after
IFX was discontinued, and one of them was transferred to ETN owing to infusion problems.
Only one responder and one non-responder to these biological agents required chronic
treatment [136].

In a 2018 evidence-based review, Zhou et al. showed that TNFα inhibitors might not
be beneficial in treating AOSD [114].

5.7.2. Etanercept

ETN is a soluble recombinant version of the human TNFα-receptor fusion protein
of 75 kDa. In 2002, 12 AOSD patients with active arthritis resistant to csDMARDs were
included in open-label research conducted by Husni et al. As a result, arthritis improved in
seven patients, with non-significant AEs [137].

5.7.3. Adalimumab

ADA’s safety and efficacy in AOSD remain uncertain due to small sample numbers
and a lack of relevant studies [138].
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5.8. IFN- γ Inhibitors

Given the pathogenic role of IFN-γ in AOSD [37], its blockade may effectively treat
AOSD with or without concomitant MAS [139].

Emapalumab

Emapalumab is a fully human monoclonal antibody that inhibits receptor dimer-
ization and signal transduction to neutralize both free and receptor-bound IFN-γ [140].
Gabr et al. [141] found that emapalumab significantly reduced fever and enhanced labora-
tory results in one patient with AOSD exacerbated by MAS.

5.9. Janus Kinases Inhibitors

Both type I and type II cytokine receptors bind to the Janus kinases (JAKs), including
TYK2, JAK1, JAK2, and JAK3 [142]. Upon binding to their receptors, several cytokines
induce additional inflammatory gene expression via JAK pathways, which increase the
inflammatory signaling loop.

JAK inhibitors have been a viable therapeutic method for treating inflammatory
conditions, due to their pronounced effects on cytokine generation and immune response
modulation [143]. JAK inhibitors reduce the effects of IL-6, IL-10, IFN-γ, and Granulocyte-
Macrophage Colony-Stimulating Factor (GM-CSF), which are substantially implicated in
the pathophysiology of AOSD.

Data on the efficacy and safety of JAK inhibitors in treating AOSD are yet restricted to
case studies.

5.9.1. Baricitinib

For the first time in 2019, the effectiveness of baricitinib was described in a VCS-
dependent refractory AOSD patient. In another study, this outcome was confirmed by
Gillard et al. [144].

According to Kacar et al., baricitinib successfully treated two AOSD patients who
failed to respond to both biological therapy and csDMARDs. A patient with refractory
AOSD was successfully treated with baricitinib and anakinra [145].

5.9.2. Tofacitinib

In a study by Hu et al., 14 people with refractory AOSD were given tofacitinib. Seven
had a complete remission, six had a partial response, and one relapsed after their prednisone
dose was lowered. The results of this study imply that tofacitinib could be an option for
treating AOSD, particularly the arthritic variant. Furthermore, tofacitinib [146] reduced
the requirement for steroid medication. Another case report [147] describes the effective
treatment of AOSD with tofacitinib in a female HIV-positive patient.

5.9.3. Ruxolitinib

In experimental murine models of Hemophagocytic lymphohistiocytosis (HLH), the
JAK1/2 inhibitor ruxolitinib is known to drastically lower the proliferation and activation
of immune modifying IFN-γ and other cytokines [148].

After 28 days of oral therapy, 12 children with secondary HLH demonstrated clin-
ical improvement [149]. Additionally, two AOSD patients taking steroids had partial
responses [144].

5.10. GM-CSF Inhibitors

After GM-CSF binds to GM-CSF receptor a (GM-CSFRa), macrophage and neutrophil
quantity and function are increased in inflammatory lesions, resulting in the excessive secretion
of pro-inflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-23, and TNFα [150–152].
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Mavrilimumab and Otilimab

Mavrilimumab (CAM-3001), an IgG4 mAb that inhibits GM-CSFRa directly, and Otilimab
(MOR-103), a GM-CSF-binding IgG1 mAb, prevent the release of pro-inflammatory cytokines.

In 2 phase IIb studies and an open-label extension study involving a total of 442 RA
patients, 65% of patients achieved remission using DAS28-CRP.

Furthermore, mavrilimumab was recently used to treat severe COVID-19 pneumonia
based on the idea that inhibition of GM-CSF could reduce the hyperinflammation caused
by the virus [153]. As a result, these inhibitors could be employed to treat both the chronic
articular pattern and the systemic type of AOSD.

5.11. NLRP3 Inflammasome Inhibitors

The inflammasome NLRP3 and its components are known to play a role in autoin-
flammatory processes. So far, various agents capable of binding NLRP3 and hence causing
IL-1 release have been explored.

Dapansutrile

Dapansutrile (OLT1177), an orally active beta-sulfonyl nitrile, acts as a direct inhibitor
of NLRP3 and is now being studied in the treatment of gout [154]. Oral administration
of varying doses of dapansutrile resulted in a considerable reduction in joint pain and
swelling. In addition, a decrease in pro-inflammatory cytokines, particularly IL-6, was
seen [155].

Despite the limitations of this investigation, the drug’s efficacy, strong safety record,
and oral administration make it a potentially effective treatment for gouty patients and
those with AOSD, particularly in those with primarily articular involvement.

5.12. Long Non-Coding RNAs

Long noncoding RNAs (lncRNAs) are regarded as essential immune response regula-
tors [156–159]. Their expression is linked to specific pathways or cytokines that contribute
to the pathophysiology of AOSD.

Blood levels of NEAT-1 (nuclear enriched abundant transcript 1) in patients with
AOSD correlate considerably with the expression of other lncRNAs following treatment
with cyclosporine or anti-IL-6.

The myocardial infarction-associated transcript (MIAT) was also reported to inhibit
IL-1β and TNFα, whereas THRIL (TNFα and hnRNPL-related immunoregulatory lncRNA)
was discovered to increase TNFα. Increased MIAT levels and decreased THRIL expression
were seen in AOSD compared to controls [160].

According to the different types of lncRNA signatures found, it may be feasible to
understand the axis or set of cytokines primarily engaged in the pathogenesis of AOSD,
hence contributing to the treat-to-target approach and effective patient management.

5.13. Other Therapeutical Approaches
5.13.1. Rituximab

RTX is a chimeric anti-CD20 monoclonal antibody that can block T cell activation and
the generation of pro-inflammatory cytokines [161]. It is authorized for the treatment of
RA. However, only a few case studies [162,163] have emphasized the possible effectiveness
of RTX (375 mg/m2 given twice at 4-week intervals) in refractory AOSD patients.

5.13.2. Abatacept

Abatacept (CTLA4IgFc) is a co-stimulation modulator that reduces T-cell activation by
binding to CD80 and CD86 receptors on antigen-presenting cells (APCs) and blocking their
interaction with the CD28 receptor on T lymphocytes. According to studies, Abatacept may
be useful in AOSD patients resistant to csDMARDs, anti-TNFα medications, and even IL-1
receptor antagonists [164].
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5.13.3. IVIGs

In two open-label trials, intravenous immunoglobulins (IVIG) were shown to be
efficacious and well-tolerated in half of the patients when administered at the typical
dose of 2 g/kg over 2–5 days each month [165], though they should be used in certain
circumstances or when life-threatening symptoms appear.

Figure 5 highlights a brief summary of anti-cytokine therapies studied so far in treat-
ing AOSD.
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5.14. MAS Treatment

MAS is an uncommon, potentially fatal inflammatory condition. The mortality rate ap-
proximates 41%. Secondary MAS affects up to 15% of AOSD patients [166]. It is regarded as
the disease’s most serious consequence, manifesting clinically as severe hyperinflammation,
pancytopenia, liver damage, markedly elevated ferritin, and coagulopathy [167,168].

MAS is caused by increased macrophage activation and proliferation, T lymphocytes,
pro-inflammatory cytokine hypersecretion, tissue infiltration, haemophagocytosis, and
tissue destruction. The pathophysiological mechanism of MAS suggests a “cytokine storm”
of IL-1β, IL-2, IL-6, IL-18, IFN-γ, M-CSF, sTNFα-R, and IL-1R antagonist (IL-1Ra) [18,169].

AOSD is less usually related to MAS and is typically treated with TNFα, IL-1, IL-6,
or IL-18 inhibitors [1]. Although higher IFN-γ levels in AOSD patients have been docu-
mented [141], this cytokine has not been evaluated for therapeutic intervention.

In the pathogenesis of AOSD, IL-1β has been identified as a critical inflammatory
mediator. Multiple data suggest that anakinra can be helpful for individuals with AOSD
who develop MAS [170,171], and the mechanism involves the suppression of pro-IL-18
transforming into an active cytokine [42].

In AOSD, unresponsive to conventional therapy and other biologics, the suppression
of IL-1 is an effective therapeutic strategy. Consensus treatment recommendations advise
using IL-1 inhibitors as early as possible in systemic forms of AOSD as the first line of
biologic treatment and AOSD-related MAS as both the first and second line of biologic
therapy [23].
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In 2016 research by Watanabe et al. [120], TCZ was helpful for AOSD patients with
MAS. Nonetheless, MAS developed following TCZ treatment in one patient with refractory
AOSD, indicating that caution should be maintained in the highly active state of this
illness [172]. So, even though IL-6 inhibition was successful in treating AOSD, there is
a worry that it may cause MAS, mainly based on the experience of systemic juvenile
idiopathic arthritis [173,174].

In the study of TCZ in AOSD published by Naniwa in 2021, no cases of MAS were
identified, even though multiple other case reports [175] have shown the likelihood of TCZ
causing this complication.

However, the association between IL-6 inhibition and MAS in AOSD remains un-
known, and more cases and research are needed to clarify it.

As we have previously specified, in a study by Gabr et al. [141], one patient with
AOSD and MAS treated with emapalumab had considerably decreased fever and improved
laboratory values.

6. Conclusions

AOSD continues to be a complicated and diverse illness. As an uncommon condition,
AOSD is tough to cure, but much more difficult to diagnose. Before an appropriate
diagnosis and efficient treatment plan can be adopted, AOSD patients must typically
undergo a journey marked by confusing symptoms, misdiagnosis or delayed diagnosis,
and a series of ineffectual treatments. This delay in diagnosis might result in a longer
hospital stay and a greater financial burden for the patient. In addition, it may precipitate
the onset of uncommon and possibly fatal AOSD complications. Additionally, a better
understanding of the etiology of AOSD is essential.

In milder forms of AOSD, NSAIDs alone may be adequate to manage illness symptoms;
however, CS therapy is usually necessary for moderate and severe cases. To achieve steroid-
free remission in CS-dependent patients and to manage refractory instances of illness,
corticoid-sparing medicines are typically required due to the substantial toxicity burden
associated with continuous steroid therapy. Commonly used csDMARDs include MTX,
cyclosporine A, and LEF.

Improvements in AOSD patients’ quality of life and ability to cope have resulted
largely from recent developments in the development of biological drugs. Anti-cytokine
drugs are an effective and safe pharmacological alternative to csDMARDs and the only
viable treatment choice in the most severe and refractory patients. Specific suppression of IL-
1 and IL-6 is currently recognized as a safe and effective medication for illness management.
Anakinra, canakinumab, and TCZ successfully achieve clinical and biochemical remission
in many AOSD patients, and they have a significant steroid-sparing impact. Canakinumab
is currently the only FDA-approved medicine for AOSD in the United States, but both
canakinumab and anakinra are approved for AOSD in Europe.

Although our understanding of AOSD has increased over the past decade, there are
still significant gaps in our knowledge of its diagnosis, the most helpful biomarkers, and the
treatment strategy. An accurate picture of the AOSD burden is required to guide healthcare
actions and initiatives. Due to the difficulty of performing large-scale prospective studies
in the setting of uncommon illnesses, countrywide registries and high-quality RCTs with a
smaller number of patients can assist in bridging the remaining knowledge gap.
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