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Small, correlated changes in synaptic
connectivity may facilitate rapid
motor learning

Barbara Feulner 1, Matthew G. Perich 2, Raeed H. Chowdhury 3,
Lee E. Miller4,5,6, Juan A. Gallego 1,7 & Claudia Clopath 1,7

Animals rapidly adapt their movements to external perturbations, a process
paralleled by changes in neural activity in the motor cortex. Experimental
studies suggest that these changes originate fromaltered inputs (Hinput) rather
than from changes in local connectivity (Hlocal), as neural covariance is largely
preserved during adaptation. Since measuring synaptic changes in vivo
remains very challenging, we used a modular recurrent neural network to
qualitatively test this interpretation. As expected, Hinput resulted in small
activity changes and largely preserved covariance. Surprisingly given the
presumed dependence of stable covariance on preserved circuit connectivity,
Hlocal led to only slightly larger changes in activity and covariance, still within
the range of experimental recordings. This similarity is due to Hlocal only
requiring small, correlated connectivity changes for successful adaptation.
Simulations of tasks that impose increasingly larger behavioural changes
revealed a growing difference between Hinput and Hlocal, which could be
exploited when designing future experiments.

Animals, particularly primates, can perform a great variety of beha-
viours, which they are able to adapt rapidly in the face of changing
conditions. Since behavioural adaptation can happen even after a
single failed attempt1, the neural populations driving this processmust
be able to adapt equally fast. How this occurs remains unexplained2.
Rapid motor learning is typically studied using external perturbations
such as a visuomotor rotation (VR), which rotates the coordinates of
the visual feedback with respect to those of the movement. Both
humans and monkeys can learn to compensate for the resulting error
between actual and expected visual feedback in a few tens of trials3,4.
This behavioural adaptation is accompanied by changes in the
activity of neurons in primary motor cortex (M1)5, and the upstream
dorsal premotor cortex (PMd)3. It is unclear whether these neural
activity changes are mediated by synaptic weight changes within the

motor cortices or are driven by altered inputs from even further
upstream areas.

When learning a skill over many days, behavioural improvements
are paralleled by rewiring betweenM1neurons6–9. This seems not to be
the case for rapid learning: throughout VR adaptation, the statistical
interactions across neural populations in both M1 and PMd remain
largely preserved10. These preserved interactions rule out any large
synaptic changes within the motor cortices, as they would cause these
models to degrade11,12. Instead, rapid VR adaptation may be driven by
the cerebellum13–16 and/or posterior parietal cortex17,18.

A pioneering Brain Computer Interface (BCI) study cast further
doubt that significant synaptic changes occurring within M1 are
necessary for rapid learning19,20. In that study, monkeys controlled a
computer cursor linked by a “decoder” to the activity of recorded M1
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neurons. After learning to use a decoder that used the natural
“intrinsic” mapping of neural activity onto cursor movements, the
monkeys were exposed to one of two types of perturbations. When
faced with a new decoder that preserved the statistical interactions
(i.e., neural covariance) across M1 neurons, the monkeys could master
it within minutes. In stark contrast, if the new decoder required
changes in the neural covariance (an “out of manifold” perturbation),
they could not learn it within one session—in fact, it required a pro-
gressive training procedure spanning just over nine days on average21.

Recording large scale synaptic changes in vivo remains challen-
ging and has not been achieved during rapid motor learning. Alter-
natively, recurrent neural network (RNN) models offer an exciting yet
unexplored opportunity to test the effect of synaptic changes (in the
model) on simulated activity during motor learning. RNNs trained on
motor, cognitive and BCI tasks exhibit many striking similarities with
the activity of neural populations recorded in animal studies22–28,
suggesting a fundamental similarity between the two. Previous work
using RNNs to model the BCI experiment described above19 showed
that network covariance can be highly preserved evenwhen learning is
happening through weight changes within the network29. Thus, con-
trary to intuition, functionally relevant synaptic weight changes may
not necessarily lead to measurable changes in statistical interactions
across neurons30. As a consequence, synaptic changes within PMd and
M1 during VR adaptation may be very hard to identify through the
analysis of neural population recordings.

Here, we used RNN models to test whether VR adaptation might
be mediated by synaptic changes within PMd and M1, yet with largely
preserved neural covariance within these areas. We addressed this
question by asking how adaptation based on connection weight
changes within PMd and M1 (Hlocal) alters network activity compared
to the corresponding activity changes if VR adaptation is based on
altered inputs from upstream areas (Hinput)

10,13–18 (Fig. 1A). To validate
our modelling results, we compared our simulations to experimental
recordings from PMd and M1 populations during the same VR task10.

Under Hlocal, the changes in covariance following VR adaptation
only slightly exceeded those under Hinput and were comparable to
experimental observations. Thus, when using neural population
recordings alone, it may bemore challenging to disentangle these two
hypotheses than previously thought. Moreover, for both Hinput and
Hlocal, the learned connectivity changes were small and highly coor-
dinated, which made them surprisingly robust to noise. To identify
additional differences between Hinput and Hlocal, we examined learning
during paradigms requiring larger behavioural changes. Covariance
changes were larger for these paradigms in both PMd and M1 under
Hinput, but only in M1 under Hlocal, thus providing a possible way to
distinguish between the two hypotheses in future experiments. Our
findings have implications for the interpretation of neural activity
changes observed during learning, and suggest that tasks eliciting
larger behavioural changes may be necessary to elucidate how neural
populations adapt their activity during rapid learning.

Results
To understand whether motor adaptation could be driven by synaptic
changes within PMd andM1, we simulated a VR adaptation task using a
modular RNN that modelled these two areas, and compared the
resulting changes in network activity to those of neural population
recordings fromPMd andM1 during the same VR task10. We quantified
neural activity changes both in the experimental data and in themodel
using two measures (Fig. 1B): (1) the relative change in trial-averaged
single neuron activity, and (2) the change in neural covariance
(“Methods”). Combined, they capture aspects of single neuron as well
as population-wide activity changes during adaptation.

Small butmeasurable changes in neural activity within PMd and
M1 during VR adaptation
Monkeys were trained to perform an instructed delay task, in which
they reached to one of eight visual targets using a planar manip-
ulandum to receive a reward (“Methods”). After performing a block of

Fig. 1 | Competing hypotheses to explain where learning happens during a
visuomotor rotation task. A To study the processes mediating motor cortical
activity changes during adaptation in a visuomotor rotation task, we analyze and
model the activity of neural populations within dorsal premotor cortex (PMd) and
primary motor cortex (M1). We compare two hypotheses: plasticity upstream of

PMd/M1 (Hinput) and plasticity within PMd/M1 (Hlocal). B Measures to quantify the
changes in neural activity following adaptation: (1) relative change in trial-averaged
single neuron activity; (2) change in neural covariance. Both measures compare
baseline trials to late adaptation trials, after monkeys had adapted to the task. Data
from a representative session from Monkey C.
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unperturbed reaches (200–243 trials, depending on the session),
visual feedback about the position of the hand was rotated by 30°,
either clockwise or counterclockwise, depending on the session.
Monkeys adapted rapidly to these perturbations: the curved reaches
observed immediately after the perturbation onset became straighter
after tens of trials, with the hand trajectories in the second (late) half of
the adaptation block becoming more similar to the baseline trajec-
tories (Fig. 2A). The angular error quantifying the difference between
initial reach direction and target location decreased during adaptation
(Fig. 2B). This error curve followed a similar trend for clockwise and
counterclockwise perturbations, allowing us to analyze the different
perturbations together.

Behavioural adaptation was accompanied by changes in neural
activity within both PMd and M1 (Fig. 2C)10. These changes exceeded
those during control sessions, where no perturbation was applied
(Fig. 2C black; linear mixed model analysis: t = 4.4, P =0.0017). The
amount of changewasgreaterwithin PMd thanM1 (t = 8.9, P < 0.0001).
We also found small but detectable changes in neural covariance
during VR perturbation, suggesting that the statistical interactions
among neurons change slightly during adaptation (Fig. 2D). Again,
these changes exceeded those of the control sessions (Fig. 2D black;
t = 2.6, P = 0.026).

A modular recurrent neural network model to study VR
adaptation
To test whether experimentally observed changes in motor cortical
activity could be driven by rapid synaptic plasticity9 within PMd and
M1, we trained a modular RNN model23,27 to perform the centre-out
reaching task that we studied experimentally. To mimic broadly the
hierarchical architecture of the motor cortical pathways, input signals
were sent to the PMdmodule which then projected to the M1 module
to produce the final output signal (Fig. 3A; “Methods”). After initial
training on the task, the model produced correct reaching trajectories

to eachof the eight different targets (Fig. 3B and Supplementary Fig. 1).
These RNN-controlled movements had the same dynamics as those of
monkeys (Fig. 3C). Furthermore, Principal Component Analysis
revealed that the population activity of the PMd and M1 network
modules was similar to that of the corresponding recorded neural
populations (Fig. 3D, E). We used Procrustes analysis31 to quantify this
apparent similarity between model and experimental population
activity (Supplementary Fig. 2). This analysis confirmed that the
modular RNN captured the area-specific features in the neural data
accurately, as the PMd and M1 modules better explained neural data
from the respective brain area compared to a cross-area control
(Supplementary Fig. 2).

Motor adaptation through altered inputs matches neural
recordings
After having verified that our modular RNN recapitulates the key
aspects of PMd and M1 population activity during reaching, we simu-
lated the VR adaptation experiment. The model was retrained to pro-
duce trajectories rotated by 30°, replicating the perturbationmonkeys
had to counteract. Having full control of the location of learning-
related changes, we first constrained it to happen upstream of PMd
(Hinput). As anticipated from previous modelling18 and experimental
work10, changes in areas upstream of the motor cortices can lead to
successful adaptation: the hand trajectories produced after learning
were correctly rotated by 30° to counteract the perturbation (Fig. 4A).

When examining the activity of each of the PMd andM1modules,
the relative change in network activity was similar inmagnitude to the
changes observed in the corresponding neural population recordings
(Fig. 4B and Supplementary Fig. 3). PMd activity changed slightlymore
than M1 activity (Fig. 4B), indicating a relation between the two mod-
ules that was also present in the experimental data (Fig. 2C). With
respect to interactions between neurons, covariance within each
module was strongly preserved (Fig. 4C), as was the case for the

Fig. 2 | Small but measurable changes in neural activity within PMd and M1
during VR adaptation. A Hand trajectories during the first 30 trials of the base-
line, and the early adaptation epoch (first 150 adaptation trials), and the last 30
trials of the late adaptation epoch (last 150 adaptation trials). Trajectories are
colour-coded by target. Data from Monkey C. B Angular error of the hand trajec-
tories for the example session in A has the typical time course of adaptation.
C Change in trial-averaged activity following adaptation. Data pooled across all

sessions from the two monkeys for PMd and M1 separately (green markers, 11 ses-
sions, 5 Monkey C, 6 Monkey M). Control sessions during which no perturbation
was applied are shown for comparison (black markers, 3 sessions, 1 Monkey C, 2
Monkey M). Shaded area and horizontal bars, data distribution with mean and
extrema (n = 11 experimental sessions). D Change in covariance following adapta-
tion. Same format as (C). The monkey image was created by Carolina Massumoto
who gave permission to use it under CC-BY license.
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experimental data (Fig. 2D). VR adaptation through altered inputs to
the motor cortices thus is very similar to the neural activity changes
observed in vivo.

Learning through plastic changes within PMd and M1 modules
occurs despite preserved the covariance
Our simulation results so far are consistentwith experimental10,13–15 and
modelling18 studies proposing that VR adaptation is mediated by
regions upstreamof themotor cortices. But can ourmodel rule out the
alternative that adaptation is instead implemented by recurrent con-
nectivity changes within PMd and M1 (Hlocal)?

To address this question, we implemented Hlocal by constrain-
ing learning to happen only within PMd andM1, a process which also
led to successful adaptation (Fig. 4D). Interestingly, the activity

changes produced under Hlocal differed both from those of Hinput

and the experimental data: there were larger changes in the M1
module than in the PMd module (Fig. 4E). However, learning based
on recurrent weight changes within PMd and M1 did not lead to
large changes in covariance, which was largely preserved (Fig. 4F),
virtually as much as when no local plasticity was allowed (Hinput)
(Fig. 4C). Thus, the intuition that preserved covariance should be
interpreted as a sign of stable underlying connectivity may be
misleading.

Small but coordinated connectivity changes enable motor
adaptation
We wished to understand how the model can adapt to the VR pertur-
bation by changing the recurrent connectivity within the PMd and

Fig. 3 | Amodular recurrent neural networkmodel to studyVR adaptation. AA
modular RNN that models key motor cortical areas to study adaptation.
B Simulated (top) and actual (bottom) hand trajectories during 30 reaches to each
target taken from one session from Monkey C. C Example simulated and actual
hand trajectories to one target. Note the similarity in kinematics between themodel

and the experimental data. D Simulated PMd population activity recapitulates key
features of actual PMd population activity. Neural trajectories extend from 600ms
before the go cue (black dots) to 600ms after the go cue (coloured dots); go cue is
indicated with coloured crosses. Reaching targets are colour-coded as inB. E Same
as (D) for M1.
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M1 modules without altering their covariance. Interestingly, the con-
nectivity changes under both Hlocal and Hinput (Fig. 5A, B) were small
relative to experimentally observed synaptic changes32: an average
weight change of 1–2% was sufficient regardless of whether they hap-
pened upstream of (Fig. 5C and Supplementary Fig. 4) or within the
motor cortical modules (Fig. 5E and Supplementary Fig. 5). These
changes were smaller than those observed during initial training
(4–31%), when the model learned to perform the reaching task from
random connection weights (Supplementary Fig. 6). Thus, “functional
connectivity” within the PMd and M1 modules, as measured here by
their covariance, may be largely preserved after VR adaptation
under Hlocal because network connection weights change very little
(Supplementary Fig. 7).

We next studied how such small changes in connection weights
could nevertheless drive effective behavioural adaptation. Recent
studies seeking to relate RNN activity and connectivity have high-
lighted the importance of low-dimensional structures in connectivity,
showing their explanatory power for understanding how tasks are
solved33–36. Inspired by this work, we looked for low-dimensional
structure in the connectivity changes emerging in the model during
adaptation (“Methods”). Our analysis revealed that the connectivity
change patterns of all plastic modules were low-dimensional, inde-
pendent of where learning happened (Fig. 5B, D, F). We thus hypo-
thesized that the small changes were effective because they were low-
dimensional. To test this, we examined how random changes in the
connection weights (noise), which are inherently high-dimensional,
would affect the behaviour.

Low-dimensional connectivity changes are highly robust
to noise
For both Hlocal and Hinput, the learned connectivity changes in the
model were small and low-dimensional. When considering the biolo-
gical plausibility of our model, this observation raises the question of
how such small connectivity changes could compete with ongoing
synaptic fluctuation, which is a known challenge for actual brains37–40.
To test the hypothesis that the low-dimensionality of the learned
connectivity changes is what makes them highly effective, we tested
how adding synaptic fluctuations, which are inherently high-dimen-
sional, would affect motor output. Simulating synaptic fluctuations by
applying random perturbations to the learned connectivity changes
increased the dimensionality of the weight changes (Fig. 6B, G;
“Methods”), but did not lead to any observable change in reaching
kinematics (Fig. 6C) or network activity (Fig. 6D, E). This was the case
even though the applied random perturbations in connectivity were
ten times bigger in magnitude than the learned connectivity changes
(Fig. 6F), completely masking them (Fig. 6A, B). Therefore, our model
not only suggests that VR adaptation can be implemented based on
coordinated synaptic weight changes within PMd andM1, but also that
this type of learning would be highly effective due to its robustness to
synaptic fluctuation.

Larger visuomotor rotations allow for a clearer distinction
between Hinput and Hlocal

Although neural activity changes during VR adaptation were better
reproduced by a model in which learning happens upstream of the

Fig. 4 | Activity changes following learning upstream (Hinput) andwithin (Hlocal)
the motor cortices. A Hand trajectories after learning under Hinput (coloured tra-
ces; baseline trajectories are shown in grey). B Changes in trial-averaged activity
following adaptation under Hinput (green markers) for PMd and M1, and reference
mean experimental values (black stars; same data as presented in Fig. 2). Shaded
area and horizontal bars, data distribution with mean and extrema (n = 10 network

initializations). C Change in covariance following adaptation under Hinput, and
reference values for change in covariance following the initial de-novo training
(dashed lines). Data presented as in B. D Hand trajectories after learning under
Hlocal. E Change in trial-averaged activity following adaptation under Hlocal.
F Change in covariance following adaptation under Hlocal. Data in D–F are pre-
sented as in A–C.Source data.
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motor cortices (Hinput), activity changes following learning through
weight changes within the motor cortices (Hlocal) were also in good
agreement with the experimental data. To verify that the stable cov-
ariance (Fig. 4C, F) is not a general feature of the model but reflects
task-specific demands, we modelled tasks for which we would expect
larger changes.

We first asked the network to learn larger VRs of 60° and 90°
instead of the original 30° rotation (Fig. 7A). The model was able to
compensate for these larger perturbations under both Hinput and Hlocal

(Fig. 7B, E). As expected, larger perturbations led to changes in net-
work activity and covariance that increased with rotation angle
(Fig. 7B, C, F, G). For the 90° rotation, we found a clear difference
between Hinput and Hlocal: Hinput produced larger activity changes in
PMd compared to M1, opposite that under Hlocal (Fig. 7C, F). Larger
rotation angles also increased the learning-related difference in

covariance between Hinput and Hlocal. Under Hinput, the increase in
covariance was similar for the PMd and M1 modules as the rotation
increased (Fig. 7D). In contrast, under Hlocal, the M1 covariance chan-
gedmore with increasing rotation angle than did that of PMd (Fig. 7G).
These model predictions could help differentiate between Hinput and
Hlocal in future experiments. In fact, preliminary M1 population
recordings obtained during larger VRs (45° and 60°) seemed to match
the model predictions for the covariance change under Hinput (Fig. 7D
stars), but not Hlocal (Fig. 7G stars).

A visuomotor reassociation task can differentiate betweenHlocal

and learning through remapping of input signals
Although larger visuomotor rotations help differentiate between
upstream learning and learning within PMd and M1, we sought to
identify a task that would lead to an even clearer distinction. To this

Fig. 5 | Small but coordinated connectivity changes enable motor adaptation.
A Example connection weights for the M1 module after initial training. Top: esti-
mated dimensionality. B Example changes in M1 connection weights following VR
adaptation under Hlocal. Same format as (A). C Change in connection weights fol-
lowing adaptation under Hinput. Each bar summarizes results for either onemodule
of the network or a set of cross-module connections; bars and error bars, mean and

s.d. (n = 10 network initializations). D Estimated dimensionality of connection
weight changes for each network module and cross-module connections; data
presented as in (C). E Change in connection weights following adaptation under
Hlocal. F Dimensionality of connection weight changes under Hlocal. Data in E, F are
presented as in C, D, respectively. Source data.
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end, we implemented a reassociation task where the model had to
learn a new, random mapping between cues and reaching directions
(Fig. 8A; “Methods”). This task allowed us to test a very specific change
in the input signal to the motor cortices that could implement
adaptation20,41: instead of adjusting the connectivity in an upstream
network (Hinput), which allows for highly unconstrainedmodulation of
input signals, the target-related input signals weremanually reordered
to compensate for the reassociation of cue-reaching direction pairs
(Fig. 8B). This “learning through input reassociation” resulted in large
changes in network activity (Fig. 8C), comparable in magnitude to
those underHlocal (Fig. 8F). Nevertheless, it did not cause any change in
covariance (Fig. 8D), which clearly distinguished it fromHlocal (Fig. 8G)

and the standard Hinput (Supplementary Fig. 8). This was the case
because, in contrast to the standard Hinput during VR adaptation, the
input signals did not change per se, but were only reassigned to dif-
ferent targets, thereby entirely preserving the network activity
patterns.

Discussion
Rapid motor learning is associated with neural activity changes in the
motor cortices. The origin of these changes remains elusive, due to the
current challenge of measuring synaptic strength in vivo. Here, we
have usedmodularRNNs to simulate themotor cortices and to explore
whether learning to counteract a visuomotor rotation within tens of

Fig. 6 | Low-dimensional connectivity changes are highly robust to noise.
A Example changes in M1 connection weights following VR adaptation. Same data
as in Fig. 5B. B Same connection weight changes as in A, but with random con-
nectivity changes added. Note the dramatic increase in the dimensionality of the
connection weight changes. C Root mean squared error between target and pro-
duced hand trajectories following adaptation in models with and without random
weight changes; bars and error bars, mean and s.d. (n = 10 network initializations),

as in all the panels in this figure. Dashed line, error under VR perturbation without
any learning. D Change in trial-averaged activity for PMd and M1 module, without
(solid) and with (empty) random weight changes. E Change in covariance. Same
format as (D). FChange in connection weights for each networkmodule and cross-
module connections in models with (green bars) and without (dashed lines) noise
in connectivity. G Dimensionality of connection weight changes. Same format
as (F).
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minutes could be mediated by local synaptic changes (Hlocal). By
comparing the modelled network activity changes under Hlocal to the
modelled changes observed during learning upstream of the motor
cortices (Hinput), we have shown how the two hypotheses could be
distinguished based on neural population recordings during beha-
viour. Critically, despite the intuition that learning through plastic
changes should lead to detectable changes in neural interactions
within and across PMd and M1 populations, both Hlocal and Hinput

(Fig. 4) largely preserved the covariance within these two regions,
closely matching experimental observations (Fig. 2). This likely hap-
pened because adaptation under Hlocal was achieved through small,
coordinated weight changes within the PMd andM1 network modules
(Fig. 5). Finally, using our model, we propose tasks for which we
anticipate a more dramatic difference between these contrasting
hypotheses (Figs. 7, 8) which can potentially help to interpret experi-
mental data in the future.

Electrophysiological10,13–15 and modelling studies18, as well as psy-
chophysical evidence1,42 suggest that VR adaptation is driven by areas
upstreamof themotor cortices. Neurophysiological evidence is largely
based on the observation that the statistical interactions within PMd
and M1 populations remain preserved throughout adaptation10. This
conclusion is in good agreement with studies showing that learning to
generate neural activity patterns that preserve the covariance

structure only takes a few tens of minutes19. Our direct comparison
between Hinput and Hlocal lends further support to this observation.
However, it also paints the intriguing picture that small, globally
organized changes in synaptic weights could enable rapid learning
without changing the neural covariance, a result that was robust
across model initializations (Fig. 4), parameter settings (Supplemen-
tary Fig. 9 and Supplementary Fig. 10), architectural design choices
(Supplementary Fig. 11) and learning algorithms (Supplementary
Fig. 12). Even implementing the modular RNN as a spiking neural net-
work, bringing it closer to biology, did not change this result (Sup-
plementary Fig. 13). Our simulations thus robustly show that
covariance stability is not as directly linked to stable local connectivity
as previously thought, as changes in covariance were comparable
betweenHinput andHlocal for a 30° VR perturbation (Fig. 4). Instead, the
change in neural covariance seemed to be more related to the task
itself, as it correlated with the size of the perturbation: the larger the
initial error (e.g., caused by larger rotations), the larger the change in
covariance (Fig. 7). However, the relation between initial error and
change in covariance differed depending on where the learning hap-
pened (Hinput or Hlocal).

The main difference between the two learning hypotheses we
have examined iswhere in thehierarchicalRNNmodel the connectivity
changes occur: within the motor cortices (Hlocal), or upstream of them

Fig. 7 | Larger visuomotor rotations allow for a better distinction between
Hinput and Hlocal. A To verify that the modelled perturbation does not always
produce small activity changes, we tested adaptation to larger VR perturbations
(60° and 90°). B Root mean squared error between target and produced hand
trajectorieswithout (grey) andwith learning (black) underHinput. Dashed line, error
after initial training, with no perturbation applied; shaded area and horizontal bars,
data distribution withmean and extrema (n = 10 network initializations). Same data
presentation in all panels.CChange in trial-averaged activity for PMd andM1 under

Hinput. A few experimental sessions fromMonkey C with larger rotations are shown
as comparison (stars). D Change in covariance following adaptation. Data are
presented as in C. A fewexperimental sessions fromMonkey Cwith larger rotations
are again shown as comparison (stars). Note the similarity between PMd (light
green) and M1 (dark green) across all rotation angles. E Error without (grey) and
with learning (black) under Hlocal. Same format as (B). F Change in trial-averaged
activity for PMd andM1 under Hlocal. G Change in covariance following adaptation.
Data in E–G are presented as in B–D.
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(Hinput). Although neural covariance was preserved similarly by Hlocal

and Hinput, we found a key characteristic that distinguished the two.
When local connectivity was allowed to be plastic, the largest activity
changes happened within the M1 module, with only small changes in
the PMd module (Fig. 4E). In contrast, when learning occurred
upstream of the PMd and M1 modules, the activity changes were
similar in PMd andM1 (Fig. 4B), even if some learning was also allowed
within PMdandM1 (Supplementary Fig. 10 and Supplementary Fig. 14).
The experimental data, with larger activity changes in PMd than M1,
better matched the pattern produced by Hinput. This observation fur-
ther supports the hypothesis that VR adaptation is mediated by plas-
ticity upstream of the motor cortices.

A more arbitrary visuomotor reassociation task allowed us to test
an alternate way in which upstream learning could occur, with con-
straints against input signals changing but simply being reassigned to
different targets (Fig. 8). Comparing this learning to that mediated by
local connectivity changes revealed a clear distinction: learning under
Hlocal modified the covariance in both PMd and M1, whereas learning
through input reassociation preserved it20. Thus, future experiments
seeking to disentangle to which extent learning happens within the
motor cortices and/or upstream could study this task.

Studies of learning in RNNs have focused on how networks
implement de-novo training23,24,27,36,43–49. However, our brain does not
learn to perform any task from scratch; it has been “trained”overmany
generations throughout evolution50. Here we studied how neural net-
works adapt a learned behaviour, as opposed to de-novo learning. Our
work raises the intriguingpossibility that rapid learning following a few
tens of minutes of practice could be easily achieved through small but
specific changes in circuit connectivity. Thus, initial training seems to
provide a highly flexible backbone to adapt behaviour as needed51.

The fact that the connectivity changes during adaptation under
both Hlocal and Hinput were small and low-dimensional (Figs. 5, 6) sug-
gests that either one could mediate rapid learning. First, as every
synaptic change is costly52, we would expect a constraint on the total
amount of connectivity change in the brain. The VR task being solved
with onlyminor weight changes reflects this; in fact, they could bewell
achieved through long-term potentiation or depression of existing
synapses, as experiments have shown that synaptic strength can
double within minutes32. Second, the low dimensionality of these
weight changes is also important with respect to solving “credit
assignment”, the problem of determining how each synapse should
change in order to restore the desired behaviour53–56. Although it is still

Fig. 8 | A visuomotor reassociation task can clearly differentiate between Hlocal

and learning through reassociation of input signals. A We simulated a task in
which the network had to learn new associations between target locations and
reach directions (“Reassociation''). B Root mean squared error between target and
produced hand trajectories without (grey) and with learning (black) through input
reassociation. Dashed line indicates error during baseline trial. Shaded area and
horizontal bars, data distribution with mean and extrema (n = 10 network

initializations). Same data presentation in all panels. C Change in trial-averaged
activity for PMd and M1 under input reassociation. D Change in covariance fol-
lowing adaptation. Note that the covariance matrices do not change at all. E Root
mean squared error between target and produced hand trajectories without (grey)
and with learning (black) under Hlocal. F Change in trial-averaged activity for PMd
and M1 under Hlocal. G Change in covariance following adaptation. Data in E–G are
presented as in B–D.
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unclear how this is achieved in thebrain, onepossibility is that synaptic
plasticity is guided by “teacher” signals57,58. Since neuromodulatory
signals can regulate synaptic plasticity59,60, they seem ideal candidates
to regulate biologically plausible learning41,61–63. The finding that the
connectivity changes needed to adapt to the VR perturbation are
“naturally” low-dimensional is promising, as it suggests that learning
could be controlled through relatively few neuromodulatory signals.
Such implementation would contrast dramatically with the daunting
challenge of learning to regulate every single synapse independently.
Lastly, the robustness against synaptic fluctuations conveyed by the
low-dimensional connectivity changes makes both Hlocal and Hinput

attractive in terms of ensuring memory stability. Given the fluctuating
nature of brain connectivity37, it remains puzzling how animals
remember anything38–40,64. That low-dimensional weight changes,
much smaller than ongoing synaptic fluctuations, can achieve suc-
cessful behavioural adaptation provides a potential solution to this
problem.

Our model consistently underestimated the changes in trial-
averaged activity observed during VR adaptation, despite closely
matching the small covariance changes (Fig. 2,4). This is to be expec-
ted, as the model only captures changes due to the motor adaptation
process itself, whereas the actual neural activity contains signals rela-
ted to other processes such as “impulsivity”65 or “engagement”66. In
fact, the experimentally observed neural activity changes between the
early and late trials of control reaching sessions with no perturbation
were almost as large as the changes during adaptation in our model
(Fig. 2C, black dots). How thesechanges that arenot related to learning
are combined with the learning-related changes studied here remains
unclear. Our modelling predictions for the learning-related changes
could help tackle this question in future studies.

A second potential reason why our model consistently under-
estimated the activity changes during adaptation couldbe the fact that
we did not include visual or proprioceptive feedback signals in our
modelling approach67–71. As those signals also change during adapta-
tion, they might cause additional changes in trial-averaged neural
activity, despite not being directly necessary to solve the motor
adaptation task. This could explain why ourmodel could solve the task
with smaller changes in neural activity. On the other hand, feedback
signals could also actively contribute to the adaptation process. From
this view, we may presently overestimate the already small con-
nectivity changes underlying VR adaptation (Fig. 5), as part of the
learning process could have been instead driven by dynamic feedback
signals. Thus, when taking feedback into account, rapid learning of a
motor perturbation could potentially be realized with even smaller
changes in underlying connectivity, or maybe even without any con-
nectivity changes at all2. To this point, the concrete role of feedback for
rapidmotor learning remains unclear and it could be interesting to use
our model to further investigate this question.

Our simulations were not designed to study trial-by-trial learning:
we were interested in the neural activity changes between the baseline
and late adaptation phases when the subjects had largely learned to
counteract the perturbation and reached stable behaviour (Fig. 2B).
Given that motor adaptation seems to be mediated by two processes
with different timescales72–74, our model mainly captures the slower of
the two. The neural activity changes underlying the early phase
adaptation may be driven by different processes10, which our model
currently does not test.

In conclusion, our comparison between the activity changes fol-
lowing VR adaptation through plastic changes within or upstream of
the motor cortices shows that local plasticity (Hlocal) leads to neural
signatures that are unexpectedly similar to those of upstream learning
(Hinput). Intriguingly, Hlocal not only largely preserved the covariance
within PMd andM1but also resulted in connectivity changes that seem
biologically reasonable: they are small, make the network robust
against synaptic fluctuations, and can be controlled by relatively few

teaching signals. Our simulations thus encourage caution when
drawing conclusions from the analysis of neural population recordings
during learning, and further suggest potential behavioural tasks that
couldmake it easier to identify where learning is happening within the
motor system.

Methods
Tasks
We studied motor adaptation using a visuomotor rotation (VR) para-
digm, previously described in Perich et al. 201810. Monkeys (macaca
mulatta) performed an instructed delay centre-out-reaching task in
which they had to reach to one of eight targets uniformly distributed
along a circle. All targets were 2 cm squares. The delay period was
variable and ranged between 500 and 1500ms. For additional details
on the task, see10. During the adaptation phase, visual feedback was
rotated clockwise or counterclockwise by 30°, 45°, or 60°. All surgical
and experimental procedures were approved by the Institutional Ani-
mal Care and Use Committee (IACUC) of Northwestern University.
Using our modular RNN model, we simulated both this task and a
visuomotor reassociation task in which there was no consistent rota-
tion of the visual feedback; instead, each target required reaching to a
different direction, uniquely selected from the initial set of eight dif-
ferent targets.

Experimental recordings
We analyzed eleven sessions from twomonkeys (five forMonkey C, six
for Monkey M) that were exposed to a clockwise or counterclockwise
30° rotation (data previously presented in10). In addition to these data,
we also analyzed three control sessions (one for Monkey C, two for
MonkeyM) in which no perturbation was applied, as well as additional
sessions with larger VR angles fromMonkey C where only M1 data was
collected (30°, nine sessions; 45°, two sessions; 60°, two ses-
sions) (Fig. 7).

The spiking activity of putative single neurons was binned into 10
ms bins and then smoothed using a Gaussian filter (s.d., 50 ms). Only
successful trials, where monkeys received a reward at the end, were
included in the analysis. We defined the early and late adaptation
epochs as the first and last 150 trials of the perturbation phase, when
the visuomotor rotation was applied, respectively.

RNN model
Architecture. The neural network contained three recurrent modules,
each consisting of 400 neurons, which we refer to as upstream, PMd
and M1, respectively (Fig. 3A). The PMd and the upstream modules
received an identical three-dimensional input signal, with the first two
dimensions signalling the x and y target location of that trial, and the
third dimension signalling go (1 until the go, and 0 from then on). The
upstream module connects to the PMd module and the PMd module
connects to theM1module. Theoutput is calculated as a linear readout
of the M1 module activity. Recurrent, as well as feedforward connec-
tions were all-to-all. The model dynamics are given by

xUP
t + 1 =x

UP
t +

dt
τ

�xUP
t +WUP tanhðxUP

t Þ+Win,UPst
� �

ð1Þ

xPMd
t + 1 =xPMd

t +
dt
τ

�xPMd
t +WPMd tanhðxPMd

t Þ+WUP-PMd tanhðxUP
t Þ+Win,PMdst

� �

ð2Þ

xM1
t + 1 =x

M1
t +

dt
τ

�xM1
t +WM1 tanhðxM1

t Þ+WPMd-M1 tanhðxPMd
t Þ

� �
ð3Þ

xout
t =Wout tanhðxM1

t Þ+bout ð4Þ

Article https://doi.org/10.1038/s41467-022-32646-w

Nature Communications |         (2022) 13:5163 10



where xUP describes the network activity in the upstreammodule, and
xPMd and xM1 the network activity in the PMd and M1 module respec-
tively. WUP, WPMd and WM1 define the recurrent connectivity matrix
within the upstream module, the PMd module and the M1 module,
respectively. WUP-PMd defines the connectivity matrix from the
upstream module to the PMd module, and WPMd-M1 defines the con-
nectivity matrix from the PMd module to the M1 module. The input
connectivity matrices for the upstream and the PMdmodule are given
by Win,UP and Win,PMd, respectively; st represents the three-dimensional
input signal described above. The two-dimensional output xout is
decoded from the M1 module activity via the output connectivity
matrix Wout and the bias term bout. The time constant is τ = 0.05 s and
the integration time step is dt =0.01 s.

Training. Each networkwas initially trained toproduceplanar reaching
trajectories,mirroring the experimental hand trajectories. The training
and testing data set were constructed by pooling the hand trajectories
xtarget for successful trials during the baseline epochs from all experi-
mental sessions, which resulted in 2238 trials of length 4 s (90%/10%
randomly split into training/testing). The held out testing data was
used to validate that the model had been trained successfully during
the initial training period. Model simulations were implemented using
PyTorch75 and trainingwasperformedusing theAdamoptimizer76with
a learning rate of 0.0001 (β1 = 0.9, β2 = 0.999). The initial training
consisted of 500 training trials. The loss function was defined as

L=
1

BðT � 50Þ2∑
B

b
∑
T

t= 50
∑

d= x,y
xout,dt,b � xtarget,d

t,b

� �2
+ Eweights + Erates ð5Þ

where the regularization termon theweights is given by (∣∣ . ∣∣ indicates
L2 norm)

Eweights =αð∣∣Win,UP∣∣+ ∣∣Win,PMd∣∣+ ∣∣Wout∣∣+ ∣∣WPMd∣∣+ ∣∣WM1∣∣

+ ∣∣WPMd-M1∣∣+ ∣∣WUP∣∣+ ∣∣WUP-PMd∣∣Þ
ð6Þ

the regularization term on the rates is given by

Erates =β
1

BTN
∑
B

b
∑
T

t
∑
N

n
tanh xPMd,n

t,b

� �� �2
+ tanh xM1,n

t,b

� �� �2
+ tanh xUP,n

t,b

� �� �2
� �

ð7Þ

with batch size B = 80, time steps T = 400 and neurons N = 400. The
regularization parameters were set to α =0.001, β =0.8. We clipped
the gradient norm at 0.2 before we applied the optimization step. For
the VR adaptation, we trained the initial network for another 100 trials
with the target trajectory rotated 30° (or 60° or 90° for the case of the
larger VRs). For the VR reassociation task we shuffled the stimulus s
across reaching directions but kept the targets xtarget

fixed, as indicated
in Fig. 8A (colours correspond to the given stimulus and sketched
reaching trajectories correspond to the assigned target). The network
had again 100 trials to adapt to this perturbation.

Data analysis
We quantified the changes in actual and simulated neural activity fol-
lowing adaptation using two measures: changes in trial-averaged
activity (or peristimulus time histogram, PSTH), and changes in cov-
ariance. We calculated both metrics within a window that started 600
ms before the go signal and ended 600 ms after it. The change in
activity was calculated by

∣PSTHLateadaptation � PSTHBaseline∣
σBaseline

ð8Þ

where PSTHBaseline is the trial-averaged activity in the baseline epoch
(experimental data: all baseline trials; simulated data: on a trained

model, 100 trials with similar go signal timing), PSTHLateadaptation is the
trial-averaged activity in the late adaptation epoch (experimental data:
last 150 trials of the adaptation epoch; simulation data: on a model
trained to counteract the perturbation, 100 trials with similar go signal
timing), and σBaseline is the neuron-specific standard deviation across
time and targets during the baseline epoch. To summarize the change
in trial averagedactivity across all neurons, timepoints, and targets, we
calculated their median; this provided one single value for each
experimental session or simulation run. The change in covariance was
calculatedusing the same trial-averageddata from thebaseline and the
late adaptation epoch. We calculated the covariance in each of these
two epochs and then quantified the similarity by calculating the
Pearson correlation coefficient between the corresponding entries of
the two matrices. The change in covariance is then defined by 1 minus
the correlation coefficient. For the experimental sessions, we
computed a lower bound for each measure using the control sessions
in which monkeys were not exposed to a perturbation. To account for
the fact that there could be activity changes unrelated to motor
adaptation65,66, we compared the activity during 150 consecutive trials
from the first half of the control session with 150 consecutive trials
from the second half of the control session.

To compute the magnitude of the weight changes after networks
learned to counteract the perturbation, we computed the average
absolute weight change as

dW=
∣WLateadaptation �WBaseline∣

WBaseline
ð9Þ

where ∣ . ∣ indicates the element wise absolute value, WBaseline is
defined as the model parameter (either Win,PMd, Win,UP, WUP, WUP-PMd,
WPMd,WPMd-M1, orWM1) after the initial training phase but before training
on the VR perturbation, and WLateadaptation is defined as the same model
parameter after training on the VR perturbation. To obtain one sum-
mary value for each simulation run, we calculated the median of all
weight entries for a givenparameter. Tomeasure the dimensionality of
weight change we calculated the singular values ki of WLateadaptation −
WBaseline and defined the dimensionality, using the participation ratio77:

∑
i
ki

� �2

=∑
i
k2
i ð10Þ

Statistics
To statistically compare the change in activity found in the control
sessions with the change found in the VR sessions, we performed a
linear mixed model analysis using R (lmer package). The brain area
(PMd or M1) and whether the experimental session included a per-
turbation phase or not were included as fixed effects, whereasmonkey
and session identity were included as random effects. A significance
threshold of P =0.05 was used.

Simulation of synaptic fluctuation (Fig. 6)
To simulate synaptic fluctuation we added random values to the
learned connectivity changes during adaptation. Those random values
were drawn from a normal distribution with zero mean and s.d. ten
times larger than the s.d. of the learned weight changes distribution.
With that, we created synaptic noise which was completely unstruc-
tured across connection sites.Wedid not addor delete any synapses in
the model.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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Data availability
The data that support the findings in this study are available from the
corresponding authors upon reasonable request. Source data are
provided with this paper.

Code availability
All code to reproduce the main simulation results can be found on
GitHub (https://github.com/babaf/motor-adaptation-local-vs-input.git).
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