
Sequence analysis

Clustering FunFams using sequence embeddings

improves EC purity

Maria Littmann 1,2,*, Nicola Bordin 3, Michael Heinzinger1,2, Konstantin Schütze1,

Christian Dallago 1,2, Christine Orengo3,*,† and Burkhard Rost1,4,5,†

1Department of Informatics, Bioinformatics & Computational Biology—i12, TUM (Technical University of Munich), 85748 Garching/

Munich, Germany, 2Center for Doctoral Studies in Informatics and its Applications (CeDoSIA), TUM Graduate School, Center of

Doctoral Studies in Informatics and its Applications (CeDoSIA), 85748 Garching/Munich, Germany, 3Institute of Structural and

Molecular Biology, University College London, London WC1E 6BT, UK, 4Institute for Advanced Study (TUM-IAS), 85748 Garching/

Munich, Germany and 5TUM School of Life Sciences Weihenstephan (WZW), 85354 Freising, Germany

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors.

Associate Editor: Pier Luigi Martelli

Received on January 25, 2021; revised on April 2, 2021; editorial decision on May 10, 2021; accepted on May 11, 2021

Abstract

Motivation: Classifying proteins into functional families can improve our understanding of protein function and can
allow transferring annotations within one family. For this, functional families need to be ‘pure’, i.e., contain only pro-
teins with identical function. Functional Families (FunFams) cluster proteins within CATH superfamilies into such
groups of proteins sharing function. 11% of all FunFams (22 830 of 203 639) contain EC annotations and of those, 7%
(1526 of 22 830) have inconsistent functional annotations.

Results: We propose an approach to further cluster FunFams into functionally more consistent sub-families by
encoding their sequences through embeddings. These embeddings originate from language models transferring
knowledge gained from predicting missing amino acids in a sequence (ProtBERT) and have been further optimized
to distinguish between proteins belonging to the same or a different CATH superfamily (PB-Tucker). Using distances
between embeddings and DBSCAN to cluster FunFams and identify outliers, doubled the number of pure clusters
per FunFam compared to random clustering. Our approach was not limited to FunFams but also succeeded on
families created using sequence similarity alone. Complementing EC annotations, we observed similar results
for binding annotations. Thus, we expect an increased purity also for other aspects of function. Our results can
help generating FunFams; the resulting clusters with improved functional consistency allow more reliable
inference of annotations. We expect this approach to succeed equally for any other grouping of proteins by their
phenotypes.

Availability and implementation: Code and embeddings are available via GitHub: https://github.com/Rostlab/
FunFamsClustering.

Contact: littmann@rostlab.org or c.orengo@ucl.ac.uk or assistant@rostlab.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowledge about the function of a protein is crucial for a wide array
of biomedical applications. Classifying protein sequences into func-
tional families can shed light on uncharacterized proteins.
Functional families can also reveal insights into the evolution of
function through sequence changes (Hannenhalli and Russell,
2000). To gain meaningful insights, those families should be consist-
ent, i.e., only contain functionally similar proteins.

CATH FunFams (Orengo et al., 1997; Sillitoe et al., 2020)
provide a functional sub-classification of CATH superfamilies
(Das et al., 2016; Sillitoe et al., 2013). Superfamilies are the last
level (H) in the CATH hierarchy; they group sequences which
are related by evolution, often loosely referred to as homolo-
gous. While proteins in one superfamily can still be functionally
and structurally diverse, Functional Families (FunFams) further
sub-classify superfamilies into coherent subsets of proteins with
the same function. FunFams can be used to predict function on

VC The Author(s) 2021. Published by Oxford University Press. 3449

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(20), 2021, 3449–3455

doi: 10.1093/bioinformatics/btab371

Advance Access Publication Date: 12 May 2021

Original Paper

https://orcid.org/0000-0001-8533-8163
https://orcid.org/0000-0002-6568-9035
https://orcid.org/0000-0003-4650-6181
https://github.com/Rostlab/FunFamsClustering
https://github.com/Rostlab/FunFamsClustering
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/


a per-protein level as described through Gene Ontology (GO)
terms (Das et al., 2015; Zhou et al., 2019), to predict functional
sites (Das et al., 2020), or to improve binding residue predic-
tions through consensus (Scheibenreif et al., 2019).

The Enzyme Commission number (EC number) (Webb, 1992)
numerically classifies enzymatic functions based on the reactions
they catalyze. It consists of four levels, and each level provides a
more specific description of function than the previous one. The
function of two proteins is more similar, the more levels of their two
EC numbers are identical, particularly, for the levels EC3 and EC4,
which describe the chemical reaction and its substrate specificity.

For 22 830 FunFams (11% of all), manually curated annotations
from UniProt (The UniProt Consortium, 2019) for EC numbers for
all four levels are available at least for one member. By design, pro-
teins from the same FunFam should share the same EC class (anno-
tated up to level 4). However, 1526 FunFams (7% of 22 830)
accounting for 16% of all sequences in the 22 830 FunFams with
EC annotations have more than one annotation, and 180 (1% of 22
830) accounting for 2% of the sequences even have four or more dif-
ferent annotations (Supplementary Fig. S1). Different EC annota-
tions within one FunFam could originate from multifunctional
enzymes [e.g., promiscuous enzymes (Khersonsky and Tawfik,
2010) or moonlighting enzymes (Jeffery, 2003)]. Assuming the
multifunctional enzyme to have two EC numbers, only one of those
could be inconsistent with the other FunFam members rendering
that FunFam seemingly inconsistent. However, different EC annota-
tions can also result from impurity, i.e., FunFams containing pro-
teins with different functions. Splitting FunFams further could
provide a more fine-grained and consistent set of functionally
related proteins.

Over the last few years, novel representations (embeddings) for
proteins have emerged from adapting language models (LMs) devel-
oped for natural language processing (NLP) to protein sequences
(Alley et al., 2019; Elnaggar et al., 2020; Heinzinger et al., 2019;
Madani et al., 2020; Rao et al., 2019). These embeddings are learnt
solely from protein sequences either through auto-regressive pre-
training [predicting the next amino acid in a sequence, e.g., ELMo
(Peters et al., 2018) or GPT (Radford et al., 2018)] or through
masked language modeling [reconstructing corrupted amino acids
from the sequence, e.g., BERT (Devlin et al., 2019)] without using
any annotations (self-supervised) or any knowledge of evolutionary
constraints. To accomplish this, the protein LM learns some aspects
of the language of life as written in protein sequences (Heinzinger
et al., 2019). Features learnt implicitly by these models can be trans-
ferred to any task by extracting the hidden states of the LM for a
given protein sequence (transfer learning). These hidden states are
referred to as the embeddings of the corresponding LM. Such
embeddings capture higher-level features of proteins, including vari-
ous aspects of protein function (Asgari and Mofrad, 2015; Hamid
and Friedberg, 2019; Littmann et al., 2021; Rives et al., 2020; Vig
et al., 2020; Villegas-Morcillo et al., 2020; Yang et al., 2018).
Therefore, we hypothesized that this orthogonal perspective—using
embedding rather than sequence space—might help to find function-
ally consistent sub-groups within protein families built using se-
quence similarity.

Here, we proposed a clustering approach to identify clusters in
FunFams that are more consistent in terms of shared functionality.
To this end, shared functionality was defined as sharing the same
EC annotation up to the fourth level (i.e., completely identical EC
numbers). We represented protein sequences as embeddings, i.e.,
fixed-size vectors derived from pre-trained LMs.

We used the LM ProtBERT (Elnaggar et al., 2020) to retrieve the
initial embeddings, and applied contrastive learning (Becker and
Hinton, 1992; Bromley et al., 1993; Le-Khac et al., 2020) using the
triplet loss (Weinberger and Saul, 2009) to learn a new embedding
space which was optimized toward maximizing the Euclidean dis-
tance between proteins from different CATH classes while minimiz-
ing the distance between proteins in the same CATH class. During
training, the distance in embedding space between similar proteins is
decreased and between dissimilar proteins is increased. Similarity
was defined based on the CATH hierarchy.

The resulting embeddings are called PB-Tucker. Clustering was
then performed based on the Euclidean distances between those
embeddings using DBSCAN (Ester et al., 1996). Within each
FunFam, DBSCAN identified clusters as dense regions in which all
sequences were close to each other in embedding space; it classified
proteins as outliers if they were not close to other sequences in the
FunFam. That allowed the identification of (i) a more fine-grained
clustering of the FunFams, and (ii) single sequences which might
have been falsely assigned to this FunFam. Analyzing whether or not
embedding-based clustering reduced the number of different EC
annotations in a FunFam allowed validating our new approach.

2 Materials and methods

2.1 FunFams dataset
The current version of CATH (v4.3) holds 4328 superfamilies split
into 212 872 FunFams. The FunFams generation process, albeit
changing through time, consists of various steps, starting with the
clustering of all sequences within a CATH superfamily at 90% se-
quence similarity, encoding these clusters in Hidden Markov
Models and creating a relationship tree between all clusters using
GeMMA (Lee et al., 2010) and HHsuite (Steinegger et al., 2019).
Subsequently, CATH-FunFHMMer (Das et al., 2015) is applied to
traverse the tree, and GroupSim (Capra and Singh, 2008) conserva-
tion patterns are employed to merge or cut the tree branches to ob-
tain the largest possible, functionally pure family. CATH FunFams
have higher functional purity than CATH superfamilies, and con-
served residues are enriched in functional sites (Das et al., 2015).

2.2 EC annotations and EC purity
EC annotations for the FunFams dataset were obtained using the
UniProt (The UniProt Consortium, 2019) SPARQL API and cross-
assigned to all UniProt IDs available within the FunFams. UniProt
provides manually curated annotations combining multiple sources
through UniRule (MacDougall et al., 2020) and using the standar-
dized vocabulary from Rhea (Morgat et al., 2020).

Since proteins in the same FunFam are assumed to share a func-
tion, we expect all proteins in one FunFam to have the same EC
number(s). If not, the FunFam is considered impure, i.e., it contains
sequences which belong in another FunFam. If all proteins were
annotated with a single EC number, impurity could naively be
defined as any FunFam with more than one unique EC number (i.e.,
at least one protein is annotated to another EC than the other family
members). However, some proteins are annotated with multiple EC
numbers. These proteins might either execute multiple functions
(Jeffery, 2003; Khersonsky and Tawfik, 2010) or might be mis-clas-
sified. In fact, 8% (7 586) of all proteins with EC annotations in our
final dataset are annotated to more than one EC (Supplementary
Table S1).

Consider the following two FunFams: FF1 has several proteins
all annotated with the same two EC numbers EC1 and EC2, while
FF2 has one protein with EC1 another with EC2. Then, we consider
FF1 as pure and FF2 as impure. The purity of clusters was defined
accordingly. We only considered EC annotations with all four levels;
all others were considered un-annotated.

2.3 Embeddings representing proteins (PB-Tucker)
We used ProtBERT (Elnaggar et al., 2020) to create fixed-length
vector representations (embeddings), i.e., vectors with the same
number of dimensions irrespective of protein length. ProtBERT uses
the architecture of the LM BERT (Devlin et al., 2019) which applies
a stack of self-attention (Bahdanau et al., 2016) layers for masked
language modeling (details in Supporting Online Material Section
SOM_1.2). Fixed-length vectors were derived by averaging over the
representations of each amino acid extracted from its last layer. This
simple global average pooling provides an effective baseline
(Elnaggar et al., 2020; Heinzinger et al., 2019; Rives et al., 2020). In
the following, ProtBERT refers to this representation.

3450 M.Littmann et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data


We applied contrastive learning (Becker and Hinton, 1992;
Bromley et al., 1993; Le-Khac et al., 2020) on the ProtBERT embed-
dings to learn a new embedding space, which was optimized to in-
crease the distance between CATH superfamilies and brings those
within one superfamily closer, while pushing members of different
superfamilies apart. Toward this end, we used the triplet loss
(Weinberger and Saul, 2009) to optimize Euclidean distances be-
tween protein triplets, i.e., an anchor protein is compared to a posi-
tive and a negative protein. During training, the distance in
embedding space between anchor and positive is decreased, that be-
tween anchor and negative is increased. The notion of positive and
negative was taken from the CATH hierarchy.

While supervised learning for a CATH-like hierarchy is challeng-
ing, using a hierarchy to define relative similarity between triplets is
straightforward as anchor and positive only need to share one level
more in the hierarchy than anchor and negative. Toward this end,
ProtBERT representations were projected in two steps from 1024-
dimensions (1024-d) to 128-d using CATH v4.3 (Sillitoe et al.,
2020) for training the two-layer neural network (SOM_1.2). In the
following, we call these new 128-d embeddings PB-Tucker
(Heinzinger et al., unpublished). PB-Tucker has been trained to dif-
ferentiate CATH superfamilies and seemed to better capture func-
tional relationships between proteins in one superfamily than the
original ProtBERT (SOM_1.2).

2.4 Clustering
Representing sequences as PB-Tucker embeddings, we calculated the
Euclidean distance between all embeddings within one FunFam. The
distance d between two embeddings x and y was defined as:

d x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP128

i¼1

ðxi � yiÞ2
s

(1)

Alternatively, we tested Cosine distance (Equation 2), commonly
used for embeddings, and Manhattan distance (Equation 3), com-
monly used for high-dimensional data.

dcosine x; yð Þ ¼

P128

i¼1

xiyiffiffiffiffiffiffiffiffiffiffiP128

i¼1

x2
i

r
�

ffiffiffiffiffiffiffiffiffiP128

i¼1

y2
i

r (2)

dmanhattan x; yð Þ ¼
X128

i¼1

jxi � yij (3)

Based on the Euclidean distances, we clustered all sequences
within one FunFam using the implementation of DBSCAN (Ester
et al., 1996) in scikit-learn (Pedregosa et al., 2011). For a set of data
points, DBSCAN identifies dense regions, i.e., regions of points close
to each other, and classifies these regions as clusters. Data points not
close to enough other data points are classified as outliers. DBSCAN
identifies core points to seed a cluster; all points within a certain dis-
tance of the core point are added to this cluster. The two free param-
eters are: (i) the distance cutoff h to consider points close (points A
and B are considered close, if d(A, B)< h), and (ii) the number of
neighbors n (including the point itself) required for a point to be-
come ‘core point’; n implicitly controls the size and number of clus-
ters. For our application, DBSCAN has two major advantages: (i)
the number of clusters does not have to be set a priori, and (ii) clus-
tering and outlier detection are simultaneous.

If not stated otherwise, we used the default n¼5 although it has
been suggested to use values between n¼Dþ1 and n¼2*D - 1,
where D is the number of dimensions (Sander et al., 1998). With
d¼128 for the PB-Tucker embeddings, that implies n¼255. Since
FunFams vary in size, n might be adjusted to that size. For five
superfamilies, we tested, in addition to n¼5, n¼129, n¼255 as
fixed neighborhood sizes, as well as n¼0.05*jFj, n¼0.1*jFj,
n¼0.2*jFj (jFj¼number of sequences in FunFam) as variable neigh-
borhood sizes dependent of the size of the FunFam.

Observing differences in the distances between the members of
different superfamilies (Supplementary Fig. S3), it appeared best to

choose superfamily-specific values for h. Initially, we considered
using expected distance between any two members of the same
FunFam. However, large distances between members in one
FunFam might reveal impurity rather than a generic width of a fam-
ily. Instead, we computed the median over those distances for all
FunFams in one superfamily and used this value for each FunFam.
The resulting value still reflects the expected distance between pairs,
but the effect of large distances due to impurity should be averaged
out by considering all FunFams in a superfamily. In detail, for each
member in each FunFam, we calculated its average distance to all
other members of that FunFam (distance distribution for five super-
families in Supplementary Fig. S3). Given the distribution of these
average sequence distances, we chose the median distance as h, i.e.,
we chose a distance cutoff so that 50% of all sequences in a super-
family were on average within a distance of h to all other sequences
in the same FunFam. Decreasing h raises outliers and yields smaller
clusters, while increasing h reduces outliers and yields larger
clusters.

2.5 Measuring purity of clustered FunFams
To estimate whether the clustering of an impure FunFam led to
more consistent sub-families, we calculated the percentage of pure
clusters. Clusters with no EC annotation were excluded. For each
FunFam, we calculated the clusters with one single EC annotation as
percentage of all clusters with EC annotations and defined this
measure as the purity of a FunFam (Equation 4). We then defined
the percentage of completely pure FunFams as the percentage of
FunFams with a purity of 100.

Purity Fð Þ ¼ clusterspure

clusterswithECs
� 100 (4)

We also calculated the purity of a FunFam in terms of its size, i.e.,
the number of sequences contained in it:

PuritySequences Fð Þ ¼ sequencesinpureclusters

sequencesinclusterswithECs
� 100 (5)

2.6 Confidence intervals (CIs)
95% symmetric confidence intervals (CIs) were calculated from 1,
000 bootstrap samples to indicate the spread of data and certainty
of average values.

2.7 Final dataset
To construct the dataset used in this analysis, we extracted all super-
families with at least one impure FunFam, i.e., at least one FunFam
with more than one EC annotation. Since embeddings could only be
computed for continuous sequences, we excluded sequences with
multiple segments. After this removal, some FunFams became
orphans (consisting of only a single sequence) and were also
excluded. This led to a final dataset of 458 superfamilies (10.6% of
all superfamilies) with 110 876 FunFams (52.1%) and 13 011
(6.1%) with EC annotations. Those 13 011 FunFams accounted for
20% of all proteins in the FunFams (1 669 245 sequences). All
FunFams in a superfamily were used to determine the clustering dis-
tance cut-off h. However, only FunFams with EC annotations were
clustered to save computer time, and hence, energy.

2.8 Availability
The final dataset and the corresponding embeddings as well as the source
code used for clustering are publicly available via GitHub: https://github.
com/Rostlab/FunFamsClustering. In addition, ProtBERT and PB-Tucker
embeddings for any sequence can be retrieved using the bio_embeddings
pipeline (Dallago et al., 2021).

Clustering increases EC purity in FunFams 3451

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://github.com/Rostlab/FunFamsClustering
https://github.com/Rostlab/FunFamsClustering


3 Results

3.1 Embedding clusters increased EC purity
We began with 13 011 FunFams (6% of all) with at least one EC an-
notation. Of these, 1273 (10%) contained more than one EC anno-
tation (impure FunFams). Applying DBSCAN to all EC annotated
FunFams, we split the 13 011 into 26 464 clusters (21 546 for pure
and 4918 for impure FunFams). On average, 4.4-4.6% (95% confi-
dence interval, CI) of the proteins in a FunFam were classified as
outliers (Supplementary Table S4). 63% of the DBSCAN clusters
contained proteins with EC annotations; only 4% of those con-
tained multiple EC annotations (versus 10% in all FunFams; Fig.
1A). Only 10% of all proteins (155 044 of 1 593 567) belonged to
clusters with multiple EC annotations compared to 21% (356 565of
1 668 273) for FunFams (Fig. 1B). Thus, a larger fraction of clusters
was pure (i.e., contained one EC annotation) than of FunFams both
in terms of numbers of clusters and numbers of proteins (Fig. 1).

To further understand the extent to which the clustered
FunFams provide a functionally more consistent subset, we deter-
mined for each impure FunFam, the fraction of clusters that were
pure (Methods). To begin: 37% of all clusters had no EC annotated
proteins and were excluded from further analysis. Of the remaining
16 906 clusters (63%), 22% were impure, i.e., contained more than
one EC annotation. On average, 63% (CI [60–66%]) of the clusters
for a FunFam were pure (Fig. 2; dashed blue line) accounting for
58% (CI [55–61%]) of all proteins (Fig. 2; dotted red line). 52% of
all impure FunFams were split into completely pure clusters, i.e., for
every other FunFam, the embedding-split clustered into functionally
consistent sub-families (Fig. 2, right most blue point ‘100% Pure

Clusters’) accounting for 38% of all proteins (Fig. 2, right most red
point). This measure gave conservative estimates as it only consid-
ered completely pure clusters, ignoring improvements through re-
duction of EC annotations, e.g., when a group had originally mþ1
annotations and the clustering improved to m, this improvement
was ignored for all m>1.

3.2 Improving EC purity without over-splitting
While splitting impure FunFams through embedding-based cluster-
ing clearly improved the EC purity, we wanted to avoid over-split-
ting. Trivially, the more and smaller clusters, the more likely they
are pure. In the non-sense extreme of N clusters for N sequences, all
clusters are trivially pure. One constraint to avoid generating too
many clusters (over-splitting) is to do substantially better than by
randomly splitting into the same number of clusters. We computed
the random clustering using the same cluster sizes and outlier num-
bers as realized by the embedding-based clustering. Fewer than half
as many embedding-based clusters were impure than for random
(Fig. 3A, 47 6 1% versus 22 6 1%). Similarly, the average purity of
a FunFam was almost double for embedding than for random clus-
tering (Fig. 3B, 63 6 3% versus 38 6 5%), and 3.5 times more
FunFams were split into exclusively pure clusters by the embedding-
based clustering (Fig. 3C, 52 6 3% versus 15 6 1%). This corre-
sponded to 4.8% (CI [4.4–5.2%]) of all proteins clustered into pure
clusters at random compared to 38% (CI [33–43%]) of all proteins
for embedding-based clustering, i.e., an over 7-fold increase (Fig.
3C, red bars).

An ideal split of impure FunFams generates clusters defined by
two features: all members share the same EC annotation(s) and all
proteins with the same EC annotation(s) are in the same cluster.
Ignoring the latter leads to over-splitting. For the embedding-based
clustering, 81% of the ECs occurred in one cluster (Fig. 4).
However, some of the outliers had EC annotations. When also
counting those (as single member clusters), the percentage of EC-ex-
clusive clusters dropped to 63% (Fig. 4). Thus, the embedding-based
clustering largely avoided over-splitting. Nevertheless, 8% of all ex-
perimentally known EC numbers were annotated to proteins from
at least three different clusters (17% if including outliers; Fig. 4) and
some (10%) of the outliers shared the EC number with the cluster
from which they had been removed. This might indicate over-split-
ting or suggest a more fine-grained functional distinction between
those proteins than is captured in the fourth EC level.

If the increased purity through clustering had been a random ef-
fect, the embedding space clustering would be EC-independent. If
so, we expect no difference in the distributions of embedding distan-
ces between pure and impure FunFams, and a similar number of
clusters and outliers. However, pure FunFams were, on average,

Fig. 1. EC purity for FunFams and embedding clusters. This analysis considered 13

011 FunFams with EC annotations. (A) The distribution of all families (FunFam/

Clusters), i.e., the percentage of FunFams and embedding-based clusters with n EC

annotations (n�1 for FunFams and n�0 for new clusters; note: bars left and right

of integer values n, not separated by a white space denote n annotations). (B) The

distribution of all proteins, i.e., the percentage of proteins in families (FunFam/

Cluster) with n EC annotations. This number does not reveal how many proteins

have an EC annotation. Of the 13 011 FunFams, 10% were impure, i.e., had mul-

tiple EC annotations (100-value for dark blue bar at 1 in panel A), and 21% of all

proteins were part of these impure FunFams. After embedding-based split of

FunFams, 64% (16 906) of the resulting clusters contain ECs (100-light blue bar at

0) and 4% (606) of those 16 906 were annotated to more than one EC accounting

for 11% of proteins in clusters with ECs.

Fig. 2. Fraction of pure clusters for impure FunFams. The y-axis gives the percen-

tages of all clusters (blue line) or of all proteins (red line) in FunFams at levels of

increasing cluster purity (Equations 4, 5). On average, 63% of the clusters for a

FunFam were pure (dashed vertical blue line) accounting for 58% of the proteins

(dotted vertical red line). 52% of the impure FunFams were split only into pure clus-

ters (right most blue point) accounting for 38% of the proteins.

Fig. 3. Embedding-based clusters improve EC purity over random. Random clusters

were computed using the same cluster size and outlier number realized by the

embedding-based clustering, but the FunFam members were randomly assigned. (A)

The fraction of impure clusters was higher for the random clustering than for our

clustering (29% versus 12%). (B) Through DBSCAN embedding-based clustering,

each impure FunFam was, on average, split into 63% pure clusters while for the ran-

dom clustering, the average purity was only 38%. (C) More than half of all

FunFams (53%) were split only into pure clusters for embedding-based clustering

but only 15% for a random clustering. Error bars indicate symmetric 95% confi-

dence intervals. Blue colored bars indicate numbers in terms of clusters, red colored

bars in terms of proteins in those clusters. Darker colors indicate values for the clus-

tering while lighter colors indicate values for the random approach.

3452 M.Littmann et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data


split into only two clusters, while impure FunFams were split into
four clusters (Supplementary Table S4). This finding suggested that
if a FunFam is split into many clusters, it should be considered for
further manual inspection to establish whether all proteins were cor-
rectly assigned to this functional family (SOM_2.1).

3.3 Different levels of EC annotations gave similar

results
Up to this point, we only distinguished whether two proteins had
the same EC annotation or not, ignoring that two proteins with ECs
A.B.C.X and A.B.C.Y more likely have similar molecular function
than a pair with A.* and D.*. Pairs of the first type (difference only
in 4th level) will, on average, be more sequence similar than pairs of
the second type (difference in 1st level). Most impure FunFams were
impure due to differences on the fourth level of EC annotations
(Supplementary Fig. S5). Although we analyzed the clustering at
higher levels of the EC classification, the results were inconclusive,
probably due to data sparsity (SOM_2.2). The results for five specif-
ically chosen superfamilies were similar (Supplementary Fig. S7)
underlining the more general findings that the level of EC annota-
tion causing impurity did not crucially affect the embedding-based
clustering (SOM_3.2). Instead, the performance was likely impacted
more by other factors such as the presence of multifunctional
enzymes and by missing annotations, i.e., an insufficient coverage
by proteins with explicit experimental evidence. We applied a rather
conservative definition of purity: If one protein were annotated to
two EC numbers (EC1þEC2) and another protein in the same clus-
ter were only annotated to one of those two (EC1), we would con-
sider this cluster impure. If this difference were not due to missing
annotations, we could group the two into two separate families
(those with EC1þEC2, those with only EC1).

Although considering those FunFams or clusters as impure is too
strict, not doing this is too loose because it will raise the perform-
ance of the random approach given that many families have many
EC numbers. More importantly, the EC1-only proteins may have
annotations that are incomplete or incorrect.

3.4 Slightly worse results for experimentally verified

annotations
Not all EC annotations in UniProt are experimentally verified. Only
using experimentally verified EC annotations (with evidence code
ECO: 0000269) for sequences in Swiss-Prot, 4709 FunFams con-
tained any sequence with EC annotations and 637 (14%) were
impure.

46% of those impure FunFams were clustered into fully pure clus-
ters, and our approach achieved an average purity of 53% being slightly
worse than for the full set. This could be due to missing annotations: If
two proteins A and B in a family or cluster are annotated to the same
two EC numbers EC1 and EC2, but for protein A only EC1 is experi-
mentally verified and for protein B EC2, such a family or cluster would
be considered impure. This explanation is also supported by the fact
that a larger fraction of FunFams was impure if only experimentally
verified annotations were considered (14% versus 10%).

3.5 Similar improvement for single domain proteins
Most EC annotations are available for an entire protein, not for the
structural domain responsible for this function, yet most proteins
have several domains (Liu and Rost, 2004). To avoid the potential
problem of multi-domain proteins for purity, we assessed the clus-
tering results for 2412 FunFams only consisting of single-domain
proteins. Of those, 6% (136) were impure versus 10% for all
FunFams. This provided a rough idea for the problem of our purity
definition: roughly half (10/6�2) of the problem related to multi-do-
main proteins.

Clustering single domains performed similarly to full-length pro-
teins: 52% of the impure FunFams with single-domain proteins
were clustered into fully pure clusters versus 52% for the entire set,
and the clustering achieved an average purity of 60% (versus 63%).
These results showed that the clustering approach did not only re-
move the impurity caused by inaccurate annotations but could iden-
tify functional relationships not detected using sequence
comparison.

3.6 Details of parameter choices mattered
For a more detailed analysis of particular details of our method, in particular,
for the choice of embeddings and clustering parameters, we chose five superfa-
milies with diverse properties (CATH identifiers: 3.40.50.150, 3.20.20.70,
3.40.47.10, 3.50.50.60, 1.10.630.10; SOM_3).

Embedding space better captured functional sub-groups than
sequence space
Instead of using embedding distance for DBSCAN, we redid the
clustering using the pairwise percentage sequence identity (PIDE) be-
tween any two sequences in a FunFam, converted into a sequence
distance (1-PIDE). This approach generated more clusters with more
outliers that were, on average, less pure than from embeddings
(Supplementary Table S7). This implied that embedding similarity
captured functional relationships between sequences better than se-
quence similarity.

Euclidean distance yielding best clustering results
Cosine distance is often considered more standard for comparing
embeddings, e.g., in NLP. Replacing Euclidean distance with Cosine
distance (Equation 2) revealed that most embeddings of proteins
within a FunFam were represented by vectors with the same orienta-
tion leading to a Cosine distance of 0, i.e., we could not use it to split
any FunFam (Supplementary Table S7). Euclidean distance often
suffers more from problems with high dimensional spaces (Beyer
et al., 1999) than Manhattan distance (Equation 3). Indeed, for our
problem Manhattan, unlike cosine, distance worked but not better
than Euclidean (Supplementary Table S7). Since PB-Tucker was
optimized on Euclidean distance, we clustered on Euclidean.

PB-Tucker embeddings largely superior to ProtBERT embeddings

In direct comparison between ProtBERT and PB-Tucker embed-
dings, we observed the following when clustering the five superfami-
lies (Supplementary Table S3): The number of clusters and outliers
was slightly smaller for ProtBERT, but the fraction of impure clus-
ters was higher than for PB-Tucker (19% for ProtBERT versus 13%
for ‘default’; Supplementary Table S7). The average purity was also
higher for PB-Tucker (‘default’ ¼ 59%) than for ProtBERT (51%;
Supplementary Table S7). Thus, PB-Tucker appeared superior in
capturing functional differences.

Smaller distance thresholds resulted in smaller and purer clusters
The distance threshold h of DBSCAN defines whether or not two
points are close enough to each other to be grouped. For the default
clustering, we chose the median distance between all proteins for
each superfamily (Methods). The observed distribution of distances
(Supplementary Fig. S3) suggested choosing superfamily-specific
thresholds. As expected, the smaller h, the more clusters and outliers
will result (‘h ¼1st quartile’ versus ‘default’; Supplementary Table
S7). Largely due to splitting FunFams into more clusters at smaller
h, the resulting clusters were seemingly purer with only 4% impure

Fig. 4. Most EC numbers only occur in one cluster. For each EC number in a

FunFam, we counted the number of embedding-based clusters in which it occurred

to gauge potential over-splitting. 81% of the ECs only occurred in one cluster

(darker bars). If we considered outliers as clusters with one member, this number

dropped to 63%. These results suggest that the clustering did not over-split the

FunFams and that functionally related proteins ended up in the same cluster.

Clustering increases EC purity in FunFams 3453

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data


clusters (versus 13%) and an average purity of 83% (versus 59%;
Supplementary Table S7). In contrast, larger h thresholds (here the
3rd quartile) affected fewer, more impure clusters (Supplementary
Table S7). Thus, the choice of h highly influenced the clustering
results. For some applications, lower values of h might be best to ob-
tain a large, highly consistent set of small sub-families that can serve,
e.g., as seed to further extend those sub-families to larger functional-
ly related families. Also, especially for FunFams for which using a
larger cutoff largely failed, decreasing the distance threshold can
help to still identify which sequences might cause impurity.

Default neighborhood size resulted in best clustering
DBSCAN forms clusters around ‘core points’ which are points

with at least n neighbors. For the five superfamilies, we tested fixed
neighborhood sizes of n e [5; 129; 255] and variable neighborhood
sizes dependent on the size of the FunFam n¼x*jFj, with jFj as the
number of proteins in a FunFam and x e [0.01; 0.1; 0.2] (Methods).
While n¼129 and n¼255 were in the range of what is recom-
mended for n (Sander et al., 1998), the clustering was worse than
for the default parameter (n¼5) (Supplementary Table S7).
Specifically, the number of outliers exploded for these large neigh-
borhood sizes (Supplementary Table S7, Supplementary Fig. S6).

Since FunFams differ substantially in the number of proteins, we
hypothesized that—similar as for h—it could be reasonable to
choose a different n for each FunFam. However, this did not im-
prove compared to the default clustering (Supplementary Table S7);
the default n¼5 was a good choice.

3.7 Clustering increased purity of ligand binding
Another way to assess the purity of molecular protein function in
protein families is to compare their similarity in terms of ligand-
binding. We extracted bound ligands from BioLip (Yang et al.,
2013) and only considered annotations defined as the cognate ligand
(Tyzack et al., 2018) (SOM_1.3). Of the 13 011 FunFams consid-
ered so far, 950 (7%) contained any annotation about a ligand
bound, and of those 950, 158 (17%) were annotated with more
than one unique ligand. Embedding-based clustering split 33% of
these FunFams into clusters with only one type of ligand, i.e., ‘pure’
clusters (compared to 52% for EC level 4) and an average purity of
36% (compared to 63% for ECs). Although ligand annotations
remained limited, these results confirmed that embedding-based
clustering increased functional purity of FunFams for an aspect of
function not used during method development.

3.8 Increased purity for non-FunFam sequence families
We expected the approach to succeed for any protein family group-
ing. To establish this, we clustered five superfamilies

(Supplementary Table S4) at 35% PIDE. This resulted in 2160 fami-
lies—dubbed S35—not optimized for function (SOM_1.4); 116 of
the S35 were impure. Embedding-based clustering resulted in
35 6 9% fully pure clusters and an average purity of 46 6 9% (Fig.
5B and C, darker blue bars). Clustering by sequence distance (1-
PIDE) led to only 31 6 9% fully pure clusters and an average purity
of 42 6 9% (Fig. 5B and C, lighter blue bars). While the difference
between sequence- and embedding-based clustering was less than
for FunFams, the comparison was very conservative in that the con-
struction of the S35 implicitly favored sequence similarity. Splitting
the S35 families into consistent functional clusters worked surpris-
ingly well compared to FunFams because the S35 were less well
grouped by function than FunFams, i.e., some functional inconsist-
ency was easy to identify. Given that the construction of the S35
made no other assumption than relation by sequence (PIDE), this ex-
periment provided a rather conservative proof-of-principle that
embedding-based clustering is likely to outperform sequence-based
clustering for any grouping of proteins.

4 Conclusion

FunFams (Das et al., 2016; Sillitoe et al., 2013) provide a high-qual-
ity sub-classification of CATH superfamilies into families of func-
tionally related proteins (Sillitoe et al., 2019, 2020). However, some
FunFams are impure and 7% of all FunFams with EC annotations
contain at least two different ECs (Supplementary Fig. S1). Here, we
introduced a novel approach toward clustering proteins through
embeddings derived from the LM ProtBERT (Elnaggar et al., 2020)
and further optimized to capture relationships between proteins
within one CATH superfamily (called PB-Tucker). Similarity be-
tween embeddings can capture information different from what is
captured by sequence similarity. In particular, it can reveal new
functional relations between proteins (Asgari and Mofrad, 2015;
Hamid and Friedberg, 2019; Littmann et al., 2021; Vig et al., 2020;
Villegas-Morcillo et al., 2020; Yang et al., 2018). Clustering all
FunFams with more than one EC annotation (impure FunFams)
using DBSCAN (Ester et al., 1996) reduced the percentage of im-
pure clusters to 22% (CI [21%, 23%]). An impure FunFam was on
average split into 63% pure clusters (CI [60%: 66%]) and more
than half (53%, CI [50–56%]) of all impure FunFams were
split into fully pure sub-families (Fig. 2). This corresponded to a
four-fold increase over random clustering (Fig. 3B). In terms of
number of proteins (rather than number of clusters), the increase
was almost ten-fold. Only 4.8% (CI [4.4–5.2%]) of the proteins
were in FunFams split into pure clusters for random while this
number rose to 38% (CI [33–43%]) for the PB-Tucker embedding-
based clustering.

A more detailed analysis of five hand-picked superfamilies
(Supplementary Table S5) showed that the default choices for the
DBSCAN parameters were reasonable (Supplementary Fig. S6,
Supplementary Table S7); with the default n¼5 and the distance
threshold h determined automatically. Also, Euclidean distance be-
tween embeddings worked best (Supplementary Table S7).

Restricting the analysis to manually curated EC annotations lim-
ited the validation of our approach to a small fraction (6.1%) of all
FunFams and even for those FunFams, most EC annotations remain
unknown. Nevertheless, we have shown that our approach could
capture more fine-grained functional relationships and enabled split-
ting FunFams into more functionally consistent sub-families.
Especially for FunFams without many known functional annota-
tions, our clustering can be used to (i) investigate whether or not the
family could be impure based on the number of clusters resulting
from the embedding-based split, or (ii) more safely infer functional
annotations between members of one functional cluster than be-
tween members of one FunFam. We presented evidence suggesting
that the findings for EC annotations will hold for other aspects of
protein function, e.g. for binding. While we only applied this ap-
proach to FunFams using embeddings optimized for CATH, this
clustering could be applied to any database of functional families
using a more generalized version of those embeddings.

Fig. 5. Clustering results for S35 families. S35 families were created by clustering CATH

superfamilies at 35% sequence identity resulting in 116 impure S35 families. Those were

clustered using sequence distance (1-PIDE) and embedding distance. (A) The fraction of

impure clusters was higher for the clustering using sequence distance than for the cluster-

ing based on embeddings (27% versus 21%). (B) Through embedding-based clustering,

each impure S35 family was, on average, split into 46% pure clusters while for the se-

quence-based clustering, the average purity was 42%. (C) 35% of impure S35 families

were split only into pure clusters for embedding-based clustering and 31% for sequence-

based clustering. Error bars indicate symmetric 95% confidence intervals. Blue colored

bars indicate numbers in terms of clusters, red colored bars in terms of proteins in those

clusters. Darker colors indicate values for the clustering while lighter colors indicate val-

ues for the random approach.

3454 M.Littmann et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab371#supplementary-data


Acknowledgements

Thanks to Tim Karl and Inga Weise (both TUM) for invaluable help with

technical and administrative aspects of this work. They were happy to ac-

knowledge Ian Sillitoe (UCL) for helpful comments on EC data. Thanks also

to the anonymous reviewers who helped substantially to improve the paper.

Last, but not least, thanks to all maintainers of public databases and to all

experimentalists who enabled this analysis by making their data publicly

available.

Funding

This work was supported by the Bavarian Ministry of Education through

funding to the TUM, by a grant from the Alexander von Humboldt founda-

tion through the German Ministry for Research and Education (BMBF:

Bundesministerium für Bildung und Forschung), and by two grants from

BMBF[031L0168 and Program ‘Software Campus 2.0 (TUM)’: 01IS17049]

as well as by a grant from Deutsche Forschungsgemeinschaft [DFG–GZ:

RO1320/4–1]. The authors gratefully acknowledge the support of NVIDIA

Corporation with the donation of one Titan GPU used for this research.

Nicola Bordin acknowledges financial support from the Biotechnology and

Biological Sciences Research Council (UK) [BB/R009597/1].

Conflict of Interest: none declared.

References

Alley,E.C. et al. (2019) Unified rational protein engineering with sequence--

based deep representation learning. Nat. Methods, 16, 1315–1322.

Asgari,E. and Mofrad,M.R. (2015) Continuous distributed representation of

biological sequences for deep proteomics and genomics. PLoS One, 10,

e0141287.

Bahdanau,D. et al. (2016) Neural machine translation by jointly learning to

align and translate. arXiv, 1409.0473.

Becker,S. and Hinton,G.E. (1992) Self-organizing neural network that discov-

ers surfaces in random-dot stereograms. Nature, 355, 161–163.

Beyer,K. et al. (1999) When is “nearest neighbor” meaningful? In:

International Conference on Database Theory. Springer, Berlin, Heidelberg.

pp. 217–235.

Bromley,J. et al. (1993) Signature verification using a "Siamese" time delay

neural network. In Proceedings of the 6th International Conference on

Neural Information Processing Systems. Morgan Kaufmann Publishers Inc.,

Denver, Colorado, pp. 737–744.

Capra,J.A. and Singh,M. (2008) Characterization and prediction of residues

determining protein functional specificity. Bioinformatics, 24, 1473–1480.

Dallago,C. et al. (2021) Learned embeddings from deep learning to visualize

and predict protein sets. Curr. Protoc. Bioinf., 1, e113.

Das,S. et al. (2015) CATH FunFHMMer web server: protein functional anno-

tations using functional family assignments. Nucleic Acids Res., 43,

W148–W153.

Das,S. et al. (2016) Functional classification of CATH superfamilies: a domain-based

approach for protein function annotation. Bioinformatics, 32, 2889.

Das,S. et al. (2020) CATH functional families predict protein functional sites.

Bioinformatics, 37, 1099–1106.

Devlin,J. et al. (2019) BERT: pre-training of Deep Bidirectional Transformers

for Language Understanding. arXiv, 1810.04805. [cs].

Elnaggar,A. et al. (2020) ProtTrans: towards cracking the language of life’s

code through self-supervised deep learning and high performance comput-

ing. bioRxiv.

Ester,M. et al. (1996) A density-based algorithm for discovering clusters

in large spatial databases with noise. In: KDD, Portland, Oregon.

pp. 226–231.

Hamid,M.N. and Friedberg,I. (2019) Identifying antimicrobial peptides using

word embedding with deep recurrent neural networks. Bioinformatics, 35,

2009–2016.

Hannenhalli,S.S. and Russell,R.B. (2000) Analysis and prediction of function-

al sub-types from protein sequence alignments. J. Mol. Biol., 303, 61–76.

Heinzinger,M. et al. (2019) Modeling aspects of the language of life through

transfer-learning protein sequences. BMC Bioinformatics, 20, 723.

Jeffery,C.J. (2003) Moonlighting proteins: old proteins learning new tricks.

Trends Genet., 19, 415–417.

Khersonsky,O. and Tawfik,D.S. (2010) Enzyme promiscuity: a mechanistic

and evolutionary perspective. Annu. Rev. Biochem., 79, 471–505.

Le-Khac,P.H. et al. (2020) Contrastive representation learning: a framework

and review. IEEE Access, 8, 193907–193934.

Lee,D.A. et al. (2010) GeMMA: functional subfamily classification within

superfamilies of predicted protein structural domains. Nucleic Acids Res.,

38, 720–737.

Littmann,M. et al. (2021) Embeddings from deep learning transfer GO anno-

tations beyond homology. Sci. Rep., 11, 1160.

Liu,J. and Rost,B. (2004) CHOP proteins into structural domain-like frag-

ments. Proteins Struct. Funct. Bioinf., 55, 678–688.

MacDougall,A. et al.; UniProt Consortium. (2020) UniRule: a unified rule re-

source for automatic annotation in the UniProt Knowledgebase.

Bioinformatics, 36, 4643–4648.

Madani,A. et al. (2020) ProGen: language modeling for protein generation.

bioRxiv.

Morgat,A. et al.; UniProt Consortium. (2020) Enzyme annotation in

UniProtKB using Rhea. Bioinformatics, 36, 1896–1901.,

Orengo,C.A. et al. (1997) CATH—a hierarchic classification of protein do-

main structures. Structure, 5, 1093–1108.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach.

Learn. Res., 12, 2825–2830.

Peters,M.E. et al. (2018) Deep contextualized word representations. arXiv,

1802.05365. [cs]

Radford,A. et al. (2018) Improving language understanding by generative

pre-training, 12.

Rao,R. et al. (2019) Evaluating Protein Transfer Learning with TAPE. arXiv,

1906.08230. [cs, q-bio, stat]

Rives,A. et al. (2020) Biological structure and function emerge from scaling

unsupervised learning to 250 million protein sequences. bioRxiv.

Sander,J. et al. (1998) Density-based clustering in spatial databases: the algo-

rithm GDBSCAN and its applications. Data Min. Knowledge Discov., 2,

169–194.

Scheibenreif,L. et al. (2019) FunFam protein families improve residue level

molecular function prediction. BMC Bioinformatics, 20, 400.

Sillitoe,I. et al. (2020) CATH: increased structural coverage of functional

space. Nucleic Acids Res., 49, D266–D273.

Sillitoe,I. et al. (2013) New functional families (FunFams) in CATH to im-

prove the mapping of conserved functional sites to 3D structures. Nucleic

Acids Res., 41, D490–498.

Sillitoe,I. et al. (2019) CATH: expanding the horizons of structure-based func-

tional annotations for genome sequences. Nucleic Acids Res., 47,

D280–D284.

Steinegger,M. et al. (2019) HH-suite3 for fast remote homology detection and

deep protein annotation. BMC Bioinformatics, 20, 473.

The UniProt Consortium. (2019) UniProt: a worldwide hub of protein know-

ledge. Nucleic Acids Res., 47, D506–D515.

Tyzack,J.D. et al. (2018) Ranking enzyme structures in the PDB by bound lig-

and similarity to biological substrates. Structure, 26, 565–571.e563.

Vig,J. et al. (2020) BERTology meets biology: interpreting attention in protein

language models. arXiv.

Villegas-Morcillo,A. et al. (2020) Unsupervised protein embeddings outper-

form hand-crafted sequence and structure features at predicting molecular

function. Bioinformatics, 37, 162–170.

Webb,E.C. (1992) Enzyme Nomenclature: Recommendations of the

Nomenclature Committee of the International Union of Biochemistry and

Molecular Biology on the Nomenclature and Classification of Enzymes.

Academic Press, San Diego, California.

Weinberger,K.Q. and Saul,L.K. (2009) Distance metric learning for large mar-

gin nearest neighbor classification. J. Mach. Learn. Res., 10, 207–244.

Yang,J. et al. (2013) BioLiP: a semi-manually curated database for biologically

relevant ligand–protein interactions. Nucleic Acids Res., 41,

D1096–D1103.

Yang,K.K. et al. (2018) Learned protein embeddings for machine learning.

Bioinformatics, 34, 4138.

Zhou,N. et al. (2019) The CAFA challenge reports improved protein function

prediction and new functional annotations for hundreds of genes through

experimental screens. Genome Biol., 20, 244.

Clustering increases EC purity in FunFams 3455


