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Age-related hearing loss is one of the most prevalent health conditions in older adults.
Although hearing aid technology has advanced dramatically, a large percentage of older
adults do not use hearing aids. This untreated hearing loss may accelerate declines
in cognitive and neural function and dramatically affect the quality of life. Our previous
findings have shown that the use of hearing aids improves cortical and cognitive function
and offsets subcortical physiological decline. The current study tested the time course of
neural adaptation to hearing aids over the course of 6 months and aimed to determine
whether early measures of cortical processing predict the capacity for neural plasticity.
Seventeen (9 females) older adults (mean age = 75 years) with age-related hearing loss
with no history of hearing aid use were fit with bilateral hearing aids and tested in six
testing sessions. Neural changes were observed as early as 2 weeks following the initial
fitting of hearing aids. Increases in N1 amplitudes were observed as early as 2 weeks
following the hearing aid fitting, whereas changes in P2 amplitudes were not observed
until 12 weeks of hearing aid use. The findings suggest that increased audibility through
hearing aids may facilitate rapid increases in cortical detection, but a longer time period
of exposure to amplified sound may be required to integrate features of the signal and
form auditory object representations. The results also showed a relationship between
neural responses in earlier sessions and the change predicted after 6 months of the
use of hearing aids. This study demonstrates rapid cortical adaptation to increased
auditory input. Knowledge of the time course of neural adaptation may aid audiologists
in counseling their patients, especially those who are struggling to adjust to amplification.
A future comparison of a control group with no use of hearing aids that undergoes the
same testing sessions as the study’s group will validate these findings.

Keywords: age-related hearing loss, auditory processing, amplification, cortical auditory evoked potentials,
plasticity, hearing aids, older adults

INTRODUCTION

Aging can lead to sensory impairments such as age-related hearing loss, which is one of the most
common sensory deficits in older adults (Vos et al., 2015; James et al., 2017; Haile et al., 2021).
The global burden study (Haile et al., 2021) anticipates that by the year 2050, 698 million people
will have moderate-to-profound hearing loss that could benefit from rehabilitation services, and
approximately 66% of older adults aged 70 years or older will be reported to have bilateral hearing
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loss (Collins, 1997; Bowl and Dawson, 2019). This age-related
hearing loss may accelerate declines in cognitive and neural
function and dramatically affect the quality of life (Heine and
Browning, 2002; Lin et al., 2013; Loughrey et al., 2018; Rutherford
et al., 2018); indicating a strong need for effective intervention.

Hearing aids are the most common treatment for mild-
to-moderate age-related hearing loss. Although hearing aid
technology has advanced dramatically over the last decade, the
Global Burden of Disease estimates suggest that there is an 83%
unmet need for hearing aids globally, calculated as the proportion
of individuals with moderate-to-severe hearing loss who do not
use a hearing aid (Orji et al., 2020). Our previous findings
have shown that the use of hearing aids improves cortical and
cognitive function (Karawani et al., 2018a) and offsets subcortical
physiological decline (Karawani et al., 2018b). However, many
people do not use their hearing aids (e.g., Bisgaard and Ruf,
2017; Hoppe and Hesse, 2017; Johnson et al., 2018), and one
of the reasons for their lack of use is that they have difficulty
adjusting to amplified sounds (Johnson et al., 2018). A better
understanding of the hearing aid adjustment process and the time
course of adaptation may lead to more effective management
of hearing loss.

New hearing aid users require time to become accustomed
to their hearing aids (e.g., Cox and Alexander, 1992; Gatehouse,
1992; Horwitz and Turner, 1997; Kuk et al., 2003; Munro and
Lutman, 2003; Yund and Woods, 2010; Giroud et al., 2017; Karah
and Karawani, 2022). Evidence supporting auditory adaptation
with hearing aids is mixed, and the extent to which the auditory
system adapts to new input remains unknown. The current
study aims to test the time course of this adjustment period and
to determine how objective measures can be used to provide
information regarding potential hearing aid outcomes that can be
used in the adaptation period. These aims will be accomplished
by examining neuroplastic changes over the course of 6 months
in newly fit hearing aid users.

Several studies have examined perceptual adaptation in
older adults who were first-time hearing aids users, but they
have had differing conclusions. Some studies show significant
improvement in perceptual measures over time (Gatehouse,
1992; Horwitz and Turner, 1997; Munro and Lutman, 2003;
Reber and Kompis, 2005; Munro, 2008; Olson et al., 2013; Lavie
et al., 2015; Dawes and Munro, 2017; Karawani et al., 2018b;
Karah and Karawani, 2022). For example, Gatehouse (1992)
and Munro and Lutman (2003) tested older adult participants
with sensorineural hearing loss who were fit with hearing aids
monaurally. Following a period of 12 weeks of monaural hearing
aid use in four participants, Gatehouse reported that aided
speech recognition improved in the fitted ear but not in the
unfitted ear. Munro and Lutman (2003) also observed significant
improvements in speech recognition for the fitted vs. unfitted
ears in sixteen participants. Reber and Kompis (2005) tested
older adults who were fit with bilateral hearing aids at 2 weeks
and 6 months after hearing aid use and found improvement in
speech-in-noise recognition over time. Lavie et al. (2015) tested
older adults after 4, 8, and 14 weeks of hearing aid use and
found that unaided dichotic listening scores and unaided speech
identification in noise improved significantly after 8 weeks of

hearing aid use. Recently, Wright and Gagné (2020) showed an
increase in speech in noise performance following 4 weeks of
hearing aid use, suggesting an adaptation effect.

While these studies have suggested that adaptation may be
observed post-fitting from four to eighteen weeks up to 6 months
(e.g., Cox and Alexander, 1992; Gatehouse, 1993; Reber and
Kompis, 2005; Giroud et al., 2017; Wright and Gagné, 2020),
other studies reported that the effects were minimal (Bender et al.,
1993), or not evident at all (Humes and Wilson, 2003; Dawes
et al., 2014a). This inconsistency between studies may have been
due to design and methodology factors, such as unilateral vs.
bilateral fitting, the amount of auditory input and the period of
the hearing aid use, and other hearing loss severity and cognitive
factors (Palmer et al., 1998) or the timing of the baseline test. For
example, Humes and Wilson (2003) tracked speech recognition
changes over a 3-year period of bilateral hearing aid use in
nine older adults at intervals of 1, 6, 12, 24, and 36 months
after hearing aid fitting, and little evidence of speech recognition
improvement in aided performance was noted. The initial testing
of aided performance was conducted after 1 month of hearing aid
use, and any possible gains in performance during the first month
(e.g., Dawes and Munro, 2017; Wright and Gagné, 2020) may
have limited the potential for further gains. Therefore, the current
study aimed to examine effects of hearing aid use by controlling
baseline measures on the day of fitting.

In addition to perceptual and behavioral measures, research
has been conducted to study neural changes induced by newly
fit hearing aids in older adults using subcortical (Philibert et al.,
2005; Karawani et al., 2018b) and cortical (McCullagh, 2009;
Dawes et al., 2014b; Giroud et al., 2017; Rao et al., 2017; Habicht
et al., 2018; Karawani et al., 2018a; Maruthy, 2019; Glick and
Sharma, 2020) electrophysiological measures. Other research has
been conducted in experienced users (e.g., Gatehouse, 1995;
Munro et al., 2007; Bertoli et al., 2011; McClannahan et al., 2019).
In the following paragraphs, we focus on previous studies that
have evaluated changes in cortical auditory evoked potentials
(CAEPs) in new hearing aid users.

The CAEP has been used to examine the effects of auditory
stimulation and amplification while wearing hearing aids in
normal-hearing and hearing-impaired participants (e.g., Korczak
et al., 2005; Billings et al., 2007, 2011; Van Dun et al., 2016; Jenkins
et al., 2018). More specific to the current study, CAEPs have been
used to examine neural changes in hearing ability following a
period of hearing aid use (McCullagh, 2009; Dawes et al., 2014b;
Giroud et al., 2017; Rao et al., 2017; Karawani et al., 2018a;
Habicht et al., 2018; Maruthy, 2019). CAEPs have relatively high
temporal resolution and can provide detailed insights into the
neural processing of auditory signals and integrative processing
in the auditory cortices (for a review, see Eggermont, 2007).

As mentioned earlier, a number of studies have tracked the
results of using bilateral newly fit hearing aids using CAEPs for
a period of 4 weeks to 6 months in older adults. Specifically,
Rao et al. (2017) studied P3 peak changes using an oddball
paradigm to assess neural changes after 4 weeks of hearing aid
use and found a significant reduction in P3a amplitude. Giroud
et al. (2017) also used an active oddball paradigm, and reported
significant reductions in the global field power in the P3b after
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3 months of intensive hearing aid use. Habicht et al. (2018)
combined electrophysiology (N2 and P3 responses) and eye
tracking to compare newly fit hearing aid users with experienced
users. The first-time hearing aid users group showed smaller
N2 amplitudes than the experienced users at baseline; however,
no changes in N2 amplitudes were observed over time (after
24 weeks in the first-time hearing aid group). McCullagh (2009)
observed earlier N1 latencies after 6–8 weeks of hearing aid use
but did not observe changes in N1 and P2 amplitudes or P2
latency. They suggested that the change observed in N1 latency
reflects a physiological adaptation effect.

Karawani et al. (2018a) compared a group of first-time
hearing aid users with a hearing-matched control group with
no use of hearing aids after a period of 6 months. The use
of hearing aids was associated with improvement in working
memory performance and increased cortical response amplitudes
for the N1 and P2 peaks. The N1 component is believed to
reflect early triggering of attention to auditory signals (Näätänen,
1990; Čeponien et al., 2002). Therefore, this finding suggests
that increased auditory experience gained through hearing aid
use for 24 weeks resulted in greater allocation of attentional
resources to the signal. The P2 peak component is believed
to reflect auditory object identification (Ross et al., 2013), and
changes in P2 amplitudes were positively related to working
memory improvement. These amplitude enhancements suggest
that hearing aid use may alter cortical processing and reflect
a physiological adaptation effect. These results contrast with
those of Dawes et al. (2014b) who did not report changes in
cortical amplitudes/latencies after hearing aid use, possibly due
to differences in stimuli. Dawes et al. (2014b) presented pure-
tone stimuli through insert earphones while Karawani et al.
(2018a) presented speech stimuli through free-field speakers.
Stimulus type might affect the neural encoding in the central
auditory system (Tremblay et al., 2004; Billings et al., 2011; Xie
et al., 2021), and the P1-N1-P2 complex is sensitive to stimulus
characteristics (e.g., Papanicolaou et al., 1984; Ostroff et al., 2003;
Michalewski et al., 2005).

Our previous study (Karawani et al., 2018a) showed changes
in neural processing after 6 months of hearing aid use. In the
current study, we aimed to determine the time course of the
changes in CAEP amplitudes noted in that previous study (N1
in quiet, P2 in quiet, and P2 in noise) at six time points: 0,
2, 6, 12, 18, and 24 weeks of hearing aid use. We also aimed
to determine if these measures can be used by the clinician to
provide information regarding potential adaptation to newly fit
hearing aid individuals. We should note that that a control group
was tested during the first and last sessions, but the study lacked
a control group that underwent testing during the other four
sessions.

MATERIALS AND METHODS

Participants
Data from thirty-one older adults (18 females) between the ages
of 60–84 years were included in this study. These data were
taken from a larger research study (previously published in
Karawani et al., 2018a,b) from the Washington D.C. metro area.

All participants were native English speakers recruited through
printed advertisements in local senior living communities
and Craigslist advertisements. The Institutional Review Board
of the University of Maryland, College Park approved all
procedures. All participants provided written, informed consent
prior to participation and received compensation for their
time. Participants underwent bilateral audiometric threshold
assessment of pure-tone air-conduction (from 250 to 8,000 Hz)
and bone-conduction (from 250 to 4,000 Hz) thresholds. They
had sensorineural symmetrical hearing loss with no air-bone
gaps or asymmetries between ears exceeding 15 dB HL. All
participants underwent cognitive evaluation using the Wechsler
Abbreviated Scale of Intelligence (Zhu and Garcia, 1999) and had
normal IQs (≥85). The Montreal Cognitive Assessment (MoCA)
was used to screen for mild cognitive impairment (Nasreddine
et al., 2005), a cutoff of 22/26 was used as suggested by Dupuis
et al. (2015) for individuals with hearing loss. Participants had
no history of neurological or psychiatric diseases, were native
English speakers (with no report of bilingualism), and had no
significant history of musical training.

Participants that met the inclusion criteria listed above were
fit with bilateral hearing aids and were seen in several testing
sessions during a period of 6 months. The final number of
participants that completed all six sessions and were included in
the experimental group of the current study was 17 (9 females,
mean age = 75 years ± 6); their audiograms are shown in
Figure 1.

Study Design
All participants in the experimental group were fit with bilateral
hearing aids and tested in six testing sessions as shown in
Figure 2. Hearing aids were fit at the first session, and the
participants returned for follow-up testing at 2, 6, 12, 18, and
24-week intervals. Electrophysiological testing was conducted
at each session.

Data from a control group who underwent identical testing
sessions in sessions one and six were used in the analysis
to ensure that there were no cortical changes between these
sessions. These control data from the first and sixth sessions were
published in Karawani et al. (2018a). The control group consisted
of 14 participants (9 females; mean age 74 ± 6) and were fit
with bilateral hearing aids during the two testing sessions, but
they did not use any hearing aids through the period between
sessions one and six. The control group serves as a comparable
group to the experimental group in these demographic factors
(presented in Table 1): age, gender, pure-tone average hearing
and high-frequency hearing, IQ, and MoCA scores; p > 0.08. The
control group’s data analysis showed that there was no cortical
change in amplitudes of the peaks P1, N1, and P2 between
sessions 1 and 6 in quiet [P1: t(13) = 0.236, p = 0.816; N1:
t(13) = 1.102, p = 0.290; P2: t(13) = 0.238, p = 0.816] or
in noise [P1: t(13) = 0.769, p = 0.455; N1: t(13) = 0.527,
p = 0.607; P2: t(13) = 0.425, p = 0.678]. In addition, there was
no significant change in latencies of the peaks P1, N1, and P2
between sessions 1 and 6 in quiet [P1: t(13) = 0.265, p = 0.795;
N1: t(13) = 0.676, p = 0.511; P2: t(13) = 1.940, p = 0.075]
or in noise [P1: t(13) = 1.946, p = 0.074; N1: t(13) = 0.689,
p= 0.503; P2: t(13)= 0.123, p= 0.240]. There were no significant
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FIGURE 1 | Individual pure-tone air-conduction thresholds for participants from 125 to 8,000 Hz. The solid gray line indicates group average pure tone thresholds.

FIGURE 2 | Study design. Six testing sessions were conducted. The first session included the hearing aid fitting and EEG recording and the second to sixth sessions
(EEG recording and hearing aid checks of data logging) were conducted after the hearing aid fitting in time intervals shown in weeks.

differences between the control and the experimental group in
session 1 in any of the cortical components across conditions
[t(29) < 1.087, p > 0.285] (Figure 3). The sections below refer
to the analysis conducted for the seventeen participants in the
experimental group.

Hearing Aid Fitting
The hearing aid fitting procedure was previously described in
Karawani et al. (2018a). Receiver-in-the-canal Widex Dream 440
hearing aids were used for bilateral fitting. The hearing aids had
size M receivers (to ensure accommodation to hearing losses up
to 85 dB HL from 125 to 8,000 Hz) and domes most appropriate
for their hearing loss, (open: thresholds for 250–500 Hz < 30 dB
HL; tulip: individual thresholds for 250–500 Hz ≥ 30 dB HL).

The hearing aid fitting was performed immediately following
the audiologic examination on the first day of testing. For the
purpose of this study, a single automatic program was used. In
addition, the participants did not have the opportunity to alter
the hearing aid gain. Real-ear measurements were performed
to verify the fitting (for more details please refer to Karawani
et al., 2018b). Most of the output values met the Goodness of
Fit test (F > 5.315, p < 0.030, R-squared > 0.181). Maximum
power output measurements were conducted to ensure that the
hearing aids did not exceed maximum tolerance limits. On the
first day, the participants received an in-service on hearing aid
use and were instructed to begin wearing their hearing aids at
least 8 h per day. Participants were advised that the hearing aids
were set according to their audiometric thresholds, and that for
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TABLE 1 | Demographics.

Experimental Control t(29) P-value

N 17 14

Age range (years) 60–84 62–84

Age (years) 75.41
(6.71)

73.71
(5.79)

0.739 0.466

Male/female 8/9 5/9 1.036 0.309

Pure-tone average hearing
(0.5–4 kHz; dB HL)

42.20
(7.18)

40.21
(8.37)

0.713 0.482

High-frequency hearing
(6–8 kHz; dB HL)

65.58
(11.54)

60.98
(13.47)

1.026 0.314

IQ 114.05
(9.32)

112.72
(6.94)

1.673 0.120

MOCA 26.88
(1.69)

25.24
(2.45)

1.811 0.088

Groups were matched on all demographic factors. Means (SDs) are displayed
for age, sex distribution, hearing, IQ, and Montreal Cognitive Assessment (MoCA)
scores. Number of participants in each group (N), t-values with degrees of freedom
and P-values of the group comparison are also shown.

the purposes of the study aims, no changes could be made to
the settings. They were also told that they would adjust to the
prescribed amplification if they wore their hearing aids on a daily
basis. Upon request, at the end of 6 months, changes were made to
features such as gain, amplification, directionality, etc. To ensure
compliance, monitoring of hearing aid use (average hours/day)
was done at each follow-up session through the hearing aid data
logging function available through the Widex software platform
(group average= 9.31 h/day± 2 h).

Cortical Auditory Evoked Potentials
All tests were conducted in an electrically-shielded sound-
attenuated booth. Participants wore their hearing aids during
the recording session and were seated in an upright position at
a distance of two meters from an Interacoustics SP90 speaker
at 0◦ azimuth (as described in Karawani et al., 2018a,b). This
seating position was identical in all testing sessions. During the
recordings, participants watched a silent, closed-captioned movie
of their choice to facilitate a relaxed but wakeful state. Cortical
auditory-evoked potentials (CAEPs) were recorded to a 170-ms
speech syllable/ga/presented through the Interacoustics speaker
via Presentation software (Neurobehavioral Systems, Inc.) in
two listening conditions: (1) 80 dB SPL in quiet (referred to as
quiet condition) and (2) 80 dB SPL in the presence of 70 dB
SPL 6-talker babble [+ 10 dB Signal-to-noise ratio (SNR), noise
condition]. The 6-talker babble was taken from the Words-in-
Noise sentence lists (Wilson et al., 2003) and was continually
looped every 4.6 s. For more specific details of stimulus features,
please refer to Karawani et al. (2018a). A Larson Davis System
824 sound level meter was used to perform calibration prior
to each session to ensure that the /ga/and noise stimuli were
within± 1 dB of the stimulus level at ear level.

Recording
The Biosemi Active-Two acquisition system (BioSemi B.V.,
Amsterdam, Netherlands) was used to record responses at a
sampling frequency of 2,048 Hz via a 32-channel electrode cap.

The offsets for all channels were below 50 µV, and earlobes served
as references. Six hundred artifact-free sweeps were collected
for each condition.

Data Processing and Analyses
MATLAB (MathWorks, version R2011b) was used for offline
processing. Zero-phase offline bandpass filtering was performed
from 1 to 30 Hz, using a 4th-order Butterworth filter. An electro-
oculography reduction method (Romero et al., 2006; Schlögl
et al., 2007) was used to remove eye movements. Each sweep
consisted of a time window of −100 to 400 ms with respect to
the stimulus onset. The offline artifact-reject criterion was set
at ± 100 µV. The final average response was composed of the
first 500 artifact-free sweeps.

Data Analysis
Karawani et al. (2018a) found significant amplitude increases for
N1 in quiet and for P2 in quiet and in noise; therefore, in the
current manuscript, we limited our analyses to these components.
An automated peak-peaking algorithm in MATLAB was used to
calculate mean response amplitudes from the Cz electrode for the
expected time regions of each of the dominant cortical peaks: N1
(80–150 ms) and P2 (160–250 ms) in the quiet condition, and
N1 (150–200 ms) and P2 (225–275 ms) in the noise condition.
The test-retest reliability of the CAEP amplitudes is moderate
relative to brainstem amplitudes (Bidelman et al., 2018). Because
we wanted to maximize test-retest reliability, we chose to measure
changes in the Cz amplitude, which is more robust in quiet and
noise (Papesh et al., 2015).

Statistical Analysis
Changes across six sessions: Repeated measures analyses of
variance (RMANOVA) were performed using time (6 sessions)
as a within-subject factor for amplitude and latency of peaks
N1 (in quiet and in noise) and P2 (in quiet and in noise),
followed by planned paired t-tests. Predictive measures: As
stated in the introduction, we also aimed to determine if
these amplitude measures can be used by the clinician to
provide information regarding potential adaptation to newly fit
hearing aid individuals. Therefore, regression model analysis
was conducted to determine whether earlier sessions predicted
improvement in the final session. Confidence intervals (Lambert
et al., 1991): We calculated the confidence intervals for
amplitudes across participants at session 1, and then used this
measure as a criterion to determine the presence of singificant
amplitude changes in individual participants at each follow-up
session.

RESULTS

Changes Across Six Sessions
The RMANOVA showed a main effect of time [F(5, 16) = 2.055,
p = 0.006, η2

p = 0.128]. Post hoc pairwise comparisons between
sessions after adjusting for multiple comparisons (Benjamini
and Hochberg, 1995) showed that changes from session 1 were
observed earlier for N1 amplitude than those for P2 amplitude,
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FIGURE 3 | Response amplitudes. N1 and P2 mean amplitudes for the experimental (red circles) and control (black squares) groups across sessions 1 (first) and 6
(last) in quiet (A,B) and noise (C,D) conditions. Error bars represent standard error of the mean. *P < 0.05. n.s, not significant. There were no significant differences
between the control and experimental groups in session 1 in any of the cortical amplitudes in quiet [N1: t(29) = 0.665, p = 0.511; P2: t(29) = 1.331, p = 0.194] or in
noise [N1: t(29) = 0.597, p = 0.555; P2: t(29) = 0.505, p = 0.617] (modified with permission from Karawani et al., 2018a).

such that N1 amplitude in quiet increased as early as 2 weeks after
the hearing aid fitting (p = 0.031), but P2 amplitude in quiet did
not increase until 6 weeks after hearing aid fitting (p = 0.033).
Furthermore, a significant increase in P2 amplitudes in noise
was observed in the final session—24 weeks following the initial
hearing aid visit (p = 0.012) (Figures 4, 5), but N1 in noise
amplitudes did not show any significant changes (p > 0.3). Taken
together, these results demonstrate evidence of neuroplasticity
in N1 amplitudes earlier (2 weeks following hearing aid fitting)
than P2 amplitude changes (6 weeks after hearing aid fitting).
The time course of neuroplasticity during the period of hearing
aid use is reflected in Figure 5. For each participant, amplitude
values were adjusted such that session 1 (day 1) values were
fixed to 0, then, for each subsequent session, amplitude values
were presented as the difference (in µV) from session 1. The
RMANOVA was also conducted on the peak latency values and

no main effect of time was observed [F(5, 16) = 1.156, p= 0.334],
consistent with our previous finding of no change in latency
between sessions 1 and 6.

Predictive Measures
We tested whether changes in N1 amplitude that were observed
in the earlier sessions predicted the increase in amplitude in
the final session (week 24), thus providing a prognosis for
eventual hearing aid improvement. Therefore, we examined
the amplitude of N1 in quiet at the first session along with
the change in amplitude in session 2 and session 3; i.e., 2,
and 4 weeks after fitting, to determine whether clinicians can
use these measures in these early sessions to provide the
patient with expectations regarding the adaptation process.
The “Enter” method of linear regression was used since
it specifies the order of variables in the model, and the
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FIGURE 4 | Grand averaged waveforms of the experimental group at the vertex electrode Cz, in quiet (right) and noise (left) conditions over the six sessions.

FIGURE 5 | Change in amplitudes (in µV) from the first session for N1 in quiet (A), P2 in quiet (B) and P2 in noise (C) are plotted for each individual (gray lines) as
well as for the average (black lines).

independent variables were entered in the following order:
amplitudes at session 1, change in amplitude at session 2 and
change in amplitude at session 3, with change in amplitude
at session 6 as the dependent variable. To rule out strong
correlations between predictor variables, collinearity diagnostics
were performed showing satisfactory variance inflation factor

(highest = 1.30) and tolerance (lowest = 0.76) scores. The
analysis showed that the earlier sessions highly predict variance
in the sixth session (R2

= 0.655, p = 0.004) (Table 2). Of
the three measures, the amplitude change at session 3 was the
only variable that significantly predicted change at session 6
(p= 0.01).
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Confidence Intervals
The 85% confidence intervals were calculated for session 1 across
measures to determine the criterion for significant amplitude
change in an individual (see Table 3). This percentage was
chosen rather than the conventional 95% confidence interval
due to our relatively small sample size and preliminary nature
of the study (Lee et al., 2014). For N1 amplitudes in quiet the
criterion for significant change was 0.61 µV, for P2 amplitude
in quiet the criterion was 0.50 µV, and for P2 amplitude in
noise the criterion was 0.25 µV. The results show that for N1
amplitude in quiet, 47% of the participants demonstrated a
significant increase after 2 weeks (i.e., 47% had a change larger
than 0.61 µV) and 64% demonstrated a significant increase
after 6 weeks (Table 4). For P2 amplitude in quiet, 50% of the
participants demonstrated a significant increase after 12 weeks,
and for P2 amplitude in noise, improvement in 50% of more
of the participants was not observed until 24 weeks of the use
of hearing aids.

DISCUSSION

The main goal of the present study was to determine the time
course of neural adaptation to hearing aids and to determine
whether early measures of cortical processing predict the capacity

TABLE 2 | Regression model: Early sessions predicted neuroplastic changes after
6 months of hearing aid use.

R Rchange
2 Fchange df1,df2 p

Model 0.809 0.655 7.589 3,13 0.004

Variables β

Amplitude (session 1) 0.192 0.34

Change in amplitude
(session 2–session 1)

0.362 0.05

Change in amplitude
(session 3–session 1)

0.576 0.01

R for full model and the change in R-squared and statistics (following the addition
of the change in the later sessions), F-values with degrees of freedom and p-values
are presented. Standardized (β) coefficients and significance (p-values) in each
variable’s contribution to the model is also presented for the N1 amplitudes
collected in sessions 1, the change in N1 amplitude observed in sessions 2 and
session 3.

TABLE 3 | Confidence interval of the difference.

85% Confidence interval

Session 1 of the difference

Lower Upper Difference from
the mean (µV)

N1 in quiet −3.77 −2.53 0.61

P1 in quiet 1.71 2.72 0.50

P2 in noise 0.489 0.99 0.25

Values presented for session 1 across the three components: N1 in quiet, P2 in
quiet and in noise.

TABLE 4 | Percentage of the individuals that met the clinical criteria of
improvement.

Session 2 Session 3 Session 4 Session 5 Session 6

N1 in quiet 47% 65% 59% 53% 48%

P1 in quiet 35% 41% 41% 62% 56%

P2 in noise 41% 24% 47% 18% 53%

for neural change. The current study tested neuroplastic changes
induced by hearing aid use over the course of 6 months using
CAEPs. Neural changes were observed as early as 2 weeks
following the initial fitting of hearing aids. The results showed
a neural relationship between responses in earlier sessions and
the change predicted after 6 months of the use of hearing aids.
These results are significant, because a period of 4 weeks is usually
provided for adjustment to the hearing aids, during which the
patient can decide whether or not to keep the hearing aids, and
knowledge of the potential for neural adaptation may be useful in
the decision making process.

A previous study by the authors (Karawani et al., 2018a)
reported significant improvements in CAEPs following 24 weeks
of hearing aid use. The current study suggests that increases in N1
amplitude can be observed as early as 2 weeks following hearing
aid fitting, whereas P2 amplitudes appear to require a longer
time course of 6 weeks to observe similar amplitude increases.
In the following paragraphs, we discuss a possible interpretation
of this finding by considering the generators and mechanisms of
both components.

P2 appears to reflect stimulus detection and identification,
based on the spectral information provided by temporal-lobe
generators, specifically located in auditory cortices of Heschl’s
gyrus (e.g., Lütkenhöner and Steinsträter, 1998). N1 generators
were shown to provide sound feature specifics and serve the
pre-attentive detection of auditory events (Näätänen, 1990).
Therefore, N1 might contribute to the processing of word onsets
(e.g., Eggermont and Ponton, 2002) and phonetic structure (e.g.,
Sanders and Neville, 2003) during the perception of continuous
speech, and reflects sensitivity to sound audibility (Martin
et al., 1997) and early triggering of focused attention to the
incoming auditory stimuli (Čeponienë et al., 2008). P2 generators
might have access to more fine-grained spectral stimulus
information than the N1 generators (Čeponienë et al., 2008),
and therefore P2 peak has been shown to reflect integration of
stimulus features to facilitate auditory object representation and
stimulus identification (Näätänen and Winkler, 1999; Čeponienë
et al., 2008; Ross et al., 2013). This level of resolution was
reflected in the findings of the current study. It appears that
stimulus detection improves rapidly (N1 amplitude changes)
after increased audibility through hearing aid use, but a longer
period of adaptation to hearing aids is required for identification
and assignment of relevance of the stimulus (reflected by
P2). Therefore, increased audibility through hearing aids may
facilitate rapid increases in cortical detection, but a longer
time period of exposure to amplified sound may be required
to integrate features of the signal and form auditory object
representations.
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We note that significant increases in P2 amplitudes were
observed only after session 4. Therefore, it is less likely that
P2 amplitudes were affected by increased stimulus exposure or
repeat testing effects, at least in the early weeks of the study, as has
been reported in previous auditory training studies in normal-
hearing young adults (Tremblay et al., 2010, 2014). Based on
these studies, we might have expected to find P2 but not N1
changes at the second and third follow-up visits. We believe that
the differences in findings may arise from differences in hearing
ability between groups. Perhaps older adults with hearing loss
require more experience with audible sound to show changes in
cortical processing. Therefore, the changes we found for the P2
component in older adults with hearing loss may be a potential
indicator of later adaptation to hearing aids, as discussed above.

As mentioned in the introduction, studies have shown mixed
results concerning neural adaptation at subcortical (e.g., Philibert
et al., 2005; Habicht et al., 2018) and cortical levels (e.g., Billings
et al., 2007; Bertoli et al., 2011; Dawes et al., 2014b; Dawes and
Munro, 2017; Giroud et al., 2017; Karawani et al., 2018a). The
current study demonstrates rapid neural adaptation to hearing
aids using CAEPs in older adults. Giroud et al. (2017) also
reported changes in brain activity after the use of hearing aids
for 12 weeks. Maruthy (2019) also showed evidence for neural
plasticity and hearing aid benefits after 1 month of hearing
aid use, using methods similar to those in the present study
(CAEPs) but in younger to middle-aged adults (ages 23–60 year).
They reported earlier P1 and N1 latencies after 4 and 8 weeks
following the initial fitting of hearing aids. Other research has also
documented neural adaptation using other electrophysiological
measures. A recent study using cortical visual evoked potentials
reported that after hearing aid use for a period of 6 months,
reduced cortical activation in temporal and frontal regions with
increased activation in visual regions were observed for visual
stimuli processing (compared to baseline non-hearing aid use),
suggesting neural plastic changes in the cortex after the use
of hearing aids for 6 months (Glick and Sharma, 2020). Using
Functional magnetic resonance imaging (fMRI), Yu et al. (2017)
reported neural changes assessed by fMRI in a clinical case study.
An older adult with bilateral sensorineural hearing loss was fit for
the first time with hearing aids and was tested at baseline and after
8 weeks. After 8 weeks of hearing aid use, increased responses to
audio-visual stimulation was observed, specifically in the superior
temporal sulcus (STS). They suggest that this increased activation
seen in the STS following the use of hearing aids reflects increased
phonological representation of speech sounds, and more efficient
use of auditory cues due to adaptation to acoustic amplification
through hearing aids. Taken together, rapid neural adaptation can
be assessed as soon as 2–4 weeks following hearing aid fitting.
The combination of electrophysiological and imaging paradigms
would be important for further investigation of neuroplastic
changes induced by hearing aids.

CONCLUSION

Age-related hearing loss is considered one of the most prevalent
health conditions in older adults (Yueh et al., 2003). Although

hearing aid technology has advanced dramatically over the last
decade, less than one quarter of the population of older adults
with hearing loss use hearing aids (Popelka et al., 1998; Lin, 2011).
This untreated hearing loss may accelerate declines in cognitive
(Lin, 2011; Lin et al., 2013; Peelle and Wingfield, 2016) and neural
function (Karawani et al., 2018a). The finding of the current study
that cortical changes may occur in as little as 2 weeks may provide
encouragement regarding the potential for neuroplasticity, and
perhaps eventual improvements in perception. Perhaps this
knowledge may increase the patient’s willingness to persist with
the process of adaptation.

LIMITATIONS

This study was a relatively small study with the aim of providing
pilot data for a larger study that includes more participants and
a longer adaptation period. Therefore, a larger cohort would
be needed to overcome inter individual variability. Due to the
limited nature of the study, it was only possible to test the control
group at sessions 1 and 6. Therefore, the observed changes in
the hearing aid use group may be due to repeated testing effects.
Future studies should include a control group that is tested for
the same number of sessions, or perhaps a delayed treatment
group that includes multiple baselines. Another suggestion for
future research is to conduct a similar study design with first
time hearing aid users but with a parallel group of experienced
users, and for a longer period of auditory rehabilitation. In
addition, associating the neural findings with behavioral changes
in speech perception is important, and a future study would
benefit from the inclusion of perceptual/self-assessment measures
at all-time points. Finally, a future study should consider
employing an active listening protocol to eliminate possible
confounds of watching a subtitled movie on attention-related
cortical components.
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