Nagalla et al. Genome Biology 2013, 14:R34
http://genomebiology.com/2013/14/4/R34

Genome Biology

RESEARCH Open Access

Interactions between immunity, proliferation and
molecular subtype in breast cancer prognosis

Srikanth Nagalla', Jeff W Chou?, Mark C Willingham?, Jimmy Ruiz', James P Vaughn®, Purnima Dubey”,
Timothy L Lash>®, Stephen J Hamilton-Dutoit’, Jonas Bergh®®, Christos Sotiriou'®, Michael A Black'' and

Lance D Miller*

Abstract

Background: Gene expression signatures indicative of tumor proliferative capacity and tumor-immune cell
interactions have emerged as principal biology-driven predictors of breast cancer outcomes. How these signatures
relate to one another in biological and prognostic contexts remains to be clarified.

Results: To investigate the relationship between proliferation and immune gene signatures, we analyzed an
integrated dataset of 1,954 clinically annotated breast tumor expression profiles randomized into training and test
sets to allow two-way discovery and validation of gene-survival associations. Hierarchical clustering revealed a large
cluster of distant metastasis-free survival-associated genes with known immunological functions that further
partitioned into three distinct immune metagenes likely reflecting B cells and/or plasma cells; T cells and natural
killer cells; and monocytes and/or dendritic cells. A proliferation metagene allowed stratification of cases into
proliferation tertiles. The prognostic strength of these metagenes was largely restricted to tumors within the
highest proliferation tertile, though intrinsic subtype-specific differences were observed in the intermediate and low
proliferation tertiles. In highly proliferative tumors, high tertile immune metagene expression equated with
markedly reduced risk of metastasis whereas tumors with low tertile expression of any one of the three immune
metagenes were associated with poor outcome despite higher expression of the other two metagenes.

Conclusions: These findings suggest that a productive interplay among multiple immune cell types at the tumor
site promotes long-term anti-metastatic immunity in a proliferation-dependent manner. The emergence of a subset
of effective immune responders among highly proliferative tumors has novel prognostic ramifications.

Keywords: Breast cancer, gene signatures, hierarchical clustering, immune metagene, intrinsic subtypes, metagene
tertiles, multivariable analysis, prognosis, proliferation metagene, survival analysis

Background

Expression profiling studies in human tumors have
enabled new insights into the genes and pathways that
contribute to tumorigenesis and spurred the develop-
ment of gene expression signatures prognostic of patient
outcomes. Genes comprising prognostic signatures often
provide clues to the pathobiological mechanisms that
drive cancer progression. With the aim of discovering
genes with statistical associations with breast cancer
recurrence, we and others have identified a number of
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genes with roles in cellular proliferation [1-6], including
multi-gene proliferation signatures that directly reflect
tumor proliferative capacity [1,4-7]. These signatures are
highly significantly associated with poor patient out-
comes, consistent with the view that uncontrolled cell
proliferation is a central feature of neoplastic disease
and, ultimately, a contributing factor in metastatic pro-
gression [8,9]. Indeed, proliferation-associated genes are
common components of many previously reported prog-
nostic gene signatures, including Genomic Health’s 21-
gene Oncotype Dx test [10,11] (Genomic Health, Inc.,
Redwood City, CA, USA), and frequently account for
the majority of the prognostic power driving the perfor-
mance of these signatures [12-14]. Thus, a clear
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biological understanding of how prognostic genes relate
to different aspects of tumor pathobiology is imperative
to both the optimal construction of prognostic models
and the elucidation of key regulators of cancer behavior.

In recent years, we and others have observed that ele-
vated expression levels of many genes involved in
immune response pathways are associated with reduced
risk of breast cancer recurrence [15-19]. These observa-
tions support the view that cancer-leukocyte interactions
in the microenvironment of established tumors may
function to limit the growth and metastatic progression
of breast cancer [20-22]. However, the extent to which
these genes reflect different effector cell populations, or
contribute to patient prognosis in the presence of other
predictive biomarkers such as proliferation, remains
unclear.

In this report, we investigate the biological origins of
coordinately expressed genes in breast cancer that exhi-
bit statistical associations with patient distant metasta-
sis-free survival (DMEFS). We identify gene clusters
indicative of tumor-immune cell interactions that orga-
nize into three distinct immunity-related gene signa-
tures, or metagenes, and shed light on their prognostic
implications for tumors of differing proliferative capacity
with an emphasis on highly proliferative breast cancers
and the most aggressive intrinsic molecular subtypes in
particular.

Results

Reproducible clustering of prognostic genes with immune
cell functions

To characterize prognostic gene modules, we created a
multi-study microarray database of 2,116 breast tumor
expression profiles of which 1,954 were annotated with
corresponding clinicopathological data including DMES
(See Additional file 1 for clinical details). To facilitate
gene discovery, we randomized the dataset across study
groups and clinical features into two equivalent patient
subpopulations, termed patient groups 977A and 977B
(Table 1). In each patient group, Cox proportional
hazards regression was conducted to identify genes with
statistically significant associations with DMFS while
controlling for false discoveries (q < 0.1). The analysis
identified 3,094 significant gene probe sets in 977A and
3,304 in 977B (gene details provided in Additional file
2). In parallel, the DMFS-associated genes identified in
each patient group were hierarchically clustered to
enable analysis of gene correlation structure (Figure 1
and Additional file 3). As anticipated, a proliferation
gene cluster was readily identifiable in both patient
groups. This cluster of genes has been previously
described in multiple studies as being significantly asso-
ciated with patient survival [1,2,5,23], and consists of
the highly correlated group of cell cycle genes associated
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Table 1 Clinical characteristics of the randomized patient
groups

977A
Number %

977B
Number %

Characteristic

Age at diagnosis (years)

< 40 89 9 80 8
41-50 197 20 207 21
> 50 494 51 492 50
unknown 197 20 198 20
Distant metastasis-free survival (years)
no recurrence, < 5 617 63 648 66
recurrence, < 5 198 20 184 19
lost to follow-up, < 5 11 11 96 10
no recurrence, 5-to 10 245 25 253 26
recurrence, 5 to 10 51 5 49 5
lost to follow-up, 5 to 10 357 37 395 40
Estrogen receptor status
positive 657 67 686 70
negative 220 23 181 19
unknown 100 10 110 11
Lymph node status
negative 749 77 749 77
positive 217 22 220 23
unknown 11 1 8 1

Histologic grade

well differentiated 105 11 131 13
moderately differentiated 317 31 335 34
poorly differentiated 316 32 260 27
unknown 239 24 251 26
Tumor size (cm)
<20 482 49 505 52
2.11t0 50 363 37 356 36
>50 29 3 19 2
unknown 103 11 97 10
Adjuvant treatment
yes 478 49 488 50
no 490 50 484 50
tamoxifen monotherapy (ER+) 318 33 332 34
chemotherapy 141 14 140 14
unknown 9 I 5 1

Molecular subtypes

Basal 243 25 217 22
HER2-E 93 10 81 8
Claudin-Low 48 5 44 5
Luminal A 264 27 303 31
Luminal B 185 19 188 19

ER+: Estrogen receptor-positive breast cancer; HER2-E: human epidermal
growth factor receptor 2-enriched.

with markers of tumor cell proliferation [6,7,24]. In a
subset analysis, we examined the correlation between
this proliferation gene cluster and clinical markers of
proliferation. As expected, we observed a strong positive
correlation between the average expression of the genes
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Figure 1 Hierarchical clustering of distant metastasis-free survival-associated genes in patient group 977A. The heatmap (far left) shows
the hierarchical clustering of the 3,094 genes (probe sets) associated with distant metastasis-free survival. A zoomed in view of the proliferation
and immune gene clusters are shown with gene dendrograms (right). Clustered genes having average correlations of 0.6 are indicated by
colored branches. Genes representative of the proliferation and immune clusters are shown (far right). Heatmap coloring: mean gene expression
(signal intensity) is colored black, red indicates above-mean expression, green denotes below-mean expression and the degree of color
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comprising this cluster and Ki67 staining (by MIB1 anti-
body) and mitotic index (Additional file 4), consistent
with the notion that these genes quantify tumor prolif-
erative capacity [6,25].

Further inspection of the cluster architecture revealed a
large reproducible cluster of genes associated with
immune cell functions that exhibited negligible correla-
tion with the proliferation cluster (Figure 1 and Addi-
tional file 3). Gene ontology (GO) enrichment analysis
of the genes within this large cluster showed highly sig-
nificant enrichment for numerous immune cell pro-
cesses including lymphocyte activation, antigen
processing and presentation, positive regulation of
immune system process, and other annotations specific
for different immune cell lineages (P < 0.0001, false dis-
covery rate (FDR)-adjusted; Additional file 5). Closer
inspection of the nested correlation structure revealed
distinct gene ‘subclusters’ that were highly reproducible
between patient groups (Figure 1 and Additional file 3).
While one predominant proliferation cluster emerged,
three distinct immune gene subclusters (termed immune

subclusters #1, #2 and #3) could be discerned in both
977A and 977B. To investigate the underlying biology
associated with these subclusters, genes comprising each
subcluster were selected from the dendrogram branches
using a threshold of average Pearson correlation of 0.6
(see Methods). The number of gene probe sets per sub-
cluster ranged from 20 to 59, and details regarding their
subcluster membership are shown in Additional file 6.
Although the genes comprising the subclusters were
independently selected from 977A and 977B (based on
correlation structure alone), we observed a high degree
of probe overlap when comparing subclusters across the
two groups (Additional file 7A). The majority of probes
identified within a cluster of one patient group were
also found within the cognate cluster of the other
patient group, though three genes were observed to
exhibit cluster inconsistency (associated with immune
subcluster #2 in one patient group and immune subclus-
ter #3 in the other). For a more decisive comparison of
the expression patterns of the cognate clusters, we
examined the correlation between cognate clusters of
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977A and 977B. We observed near perfect correlations
between cognate clusters with Pearson correlation coef-
ficients (r) ranging from 0.97 to 0.99 (Additional file
7B). For the immune subclusters, this indicated that the
hierarchical organization of the genes into three discern-
ible expression vectors was a reproducible event.

Immune gene subclusters exhibit leukocyte cell type-
specific expression
We hypothesized that the immune gene subclusters
likely reflect the relative abundance of tumor-infiltrating
immune cells. We employed several strategies to investi-
gate this hypothesis. First, we investigated the expression
patterns of the immune cluster genes in the microarray
dataset of Abbas and colleagues, comprising a compre-
hensive collection of human leukocyte gene expression
profiles [26]. Strikingly, the nested correlation structure
and gene composition of the immune gene subclusters,
as observed in the breast tumors, remained largely unal-
tered in this pan-leukocyte dataset after hierarchical
clustering (Figure 2; also see Additional file 8 for greater
detail). Consistent with our hypothesis, we found that
immune cluster #1 consisted of genes (mostly immuno-
globulin-encoding genes) highly and exclusively
expressed in B cell/plasma cell populations (hence
termed the B/P Cluster). By contrast, expression of
genes in immune cluster #2 (such as components of the
T cell receptor-CD3 complex and granzymes) were
found to be mostly restricted to T cells and natural
killer cells (hence termed the T/NK Cluster), whereas
the genes of immune cluster #3 (including major histo-
compatibility complex (MHC) class II (human leukocyte
antigen; HLA) and myeloid-specific markers (for exam-
ple, colony stimulating factor 1 receptor)) were most
consistently expressed at highest levels in monocytes
and dendritic cells (hence termed the M/D Cluster).

Next, we examined the immune gene subclusters for
gene-level enrichment of GO terms [27]. Numerous
highly significant biological annotations emerged that
were consistent with our observations in the Abbas leu-
kocyte dataset. Representative GO terms selected from
among the top 10 most significant terms for each sub-
cluster are shown in Table 2. The B/P cluster was highly
enriched for variable region immunoglobulin genes
involved in antigen binding - consistent with B cell/
plasma cell biology. The T/NK cluster was enriched for
terms consistent with the positive regulation of lympho-
cyte activation and differentiation, T cell signaling and
natural killer cell functions. The M/D cluster was
enriched for significant terms associated with MHC
class II-mediated antigen processing and presentation -
characteristic of macrophages and dendritic cells.

We then tested for direct associations between the
magnitude of expression of the immune gene
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subclusters and the relative abundance of tumor-infil-
trating leukocytes. To reduce dimensionality of the
gene expression data, we averaged the gene signal
intensities within each gene subcluster according to the
method of Dave and colleagues [28] to generate a
‘metagene’ expression value for each breast cancer
case. The immune metagene values were then com-
pared to measurements of immune cell infiltrate
assessed in tumor sections (# = 35) at another institu-
tion [29]. Significant positive trends between metagene
values and immune cell abundance were observed for
each metagene (B/P, P = 0.08; T/NK, P = 0.02; M/D, P
= 0.009; Additional file 9A). Additionally, we extrapo-
lated the immune metagene concept to a more quanti-
tative RNA analysis platform to investigate how the
concept might be generalized to a diagnostic setting.
Genes representative of the B/P and T/NK metagenes
were profiled prospectively in a panel of estrogen
receptor-positive (ER+), formalin-fixed paraffin-
embedded (FFPE) breast tumor sections using the
Panomics QuantiGene Plex 2.0 RNA assay system
(Affymetrix, Santa Clara, CA, USA). Expression levels
of the selected genes were found to be positively and
significantly correlated with total leukocyte counts (B/
P, P = 0.005; T/NK, P = 0.02; Additional file 9B-D).
Taken together, these findings support the view that
the immune gene subclusters reflect the relative abun-
dance of infiltrating immune cell populations.

Immune metagenes risk stratify tumors with high
proliferation rates

We examined the prognostic relationships between the
proliferation and immune metagenes. First, the meta-
gene expression values were used to divide breast cancer
cases into population tertiles. This procedure is illu-
strated in Figure 3 where patient group 977A is shown
divided into proliferation metagene tertiles then further
stratified into low (P"), intermediate (P"), and high (P")
expression tertiles by the B/P metagene. Kaplan-Meier
plots of the DMFS of patients classified by the B/P ter-
tiles are shown. Strikingly, we found that the prognostic
power of the B/P metagene, while distinct from that of
proliferation, is dependent on the proliferative status of
the tumor. Specifically, we observed that its prognostic
power resides exclusively in the highly proliferative
tumors, as defined by the upper proliferation metagene
tertile (Figure 3E). To investigate the robustness of this
phenomenon and to reduce the potential for data over-
fitting, we used each patient group (977A and 977B) in
both training and testing scenarios. For example, using
group 977A as a training set, the gene content of the
proliferation and the immune metagenes were defined
and their corresponding expression tertile cut-points
were determined. These metagenes and tertile cut-points
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Figure 2 Breast tumor-derived immune gene clusters differentiate specific leukocyte cell types. The breast tumor-derived immune gene
clusters were analyzed in the pan-leukocyte expression dataset of Abbas et al. [26]. Signal intensities of the probe sets comprising the tumor-
immune metagenes were extracted by probe set ID from the normalized leukocyte expression profiles of the Abbas dataset and hierarchically
clustered by Pearson correlation and average linkage clustering. Genes belonging to the three immune clusters identified in groups 977A and
9778 are indicated by color (green: B/P Cluster; blue: T/NK Cluster; magenta: M/D Cluster) in the gene dendrogram (left) and to the right of the
figure. Clustered array profiles are delineated by horizontal colored bars (at top of figure) and named according to immune cell type. Array
experimental annotations are provided in Additional file 8. B/P: B cell/plasma cells; M/D: monocytes and dendritic cells; NK; natural killer; T/NK: T
cell and natural killer cells.

were used to group 977B cases into low, intermediate  phenotype defined by the upper tertile of the prolifera-
and high expression tertiles for survival analysis. Shown  tion metagene (the P™ tertile).

in Figure 4 are the cross-group test results for each of

the immune metagenes. Consistently, we observed that Immune metagenes have non-redundant associations

all three immune metagenes displayed a highly signifi-  with metastatic recurrence

cant positive association with DMFS that is conditionally ~ Although the immune metagenes form distinct gene
prognostic - dependent on the high proliferation subclusters, their expression profiles are intrinsically

Table 2 Gene Ontology enrichment analysis of immune cluster genes.

Gene Ontology term %' Univariate P-value? FDR-adjusted P-value®
B/P Cluster Immunoglobulin 345 4.6E-25 1.8E-23
Immunoglobulin V-set 379 2.6E-18 2.5E-17
Antigen binding 276 8.7E-16 1.2E-14
Immunoglobulin-like fold 448 9.7E-16 4.8E-15
Immune response 414 2.0E-13 26E-11
T/NK Positive regulation of immune system process 244 1.7E-08 2.5E-05

Cluster

Natural killer cell mediated cytotoxicity 19.5 9.7E-07 5.9E-05
Positive regulation of lymphocyte activation 17.1 3.3E-07 6.9E-05
T cell 122 1.3E-06 7.2E-05
Positive regulation of lymphocyte differentiation 122 3.7E-06 3.3E-04
M/D Cluster MHC class II, alpha/beta chain, N-terminal 39.1 7.0E-22 34E-20
Class I histocompatibility antigen 39.1 1.3E-19 19E-18
MHC class Il protein complex 39.1 4.6E-20 3.3E-18
Immunoglobulin C1-set 435 7.0E-18 1.7E-16
Antigen processing and presentation 47.8 1.3E-18 3.0E-16

'percentage of cluster genes (relative to all genes on array) annotated for a given ontology term; >modified Fisher’s Exact Test; 3Benjamini and Hochberg false
discovery rate-adjusted P-value. B/P: B cell/plasma cell cluster; M/D: monocytes and dendritic cell cluster; T/NK: T cell and natural killer cell cluster.
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Figure 3 Prognostic stratification of highly proliferative tumors by the B/P metagene. The (A) proliferation metagene and (B) B/P metagene
of group 977A were used to stratify patients into low (PY), intermediate (P") and high (P") expression tertiles. Kaplan-Meier plots showing distant
metastasis-free survival of patients grouped according to the B/P metagene tertiles are shown for each of the proliferation tertiles: (C) low, (D)
intermediate and (E) high. Log-rank test P-values are shown. B/P: B cell/plasma cell metagene; DMFS: distant metastasis-free survival.

correlated (that is, they are subcomponents of a larger
immune gene cluster), suggesting the possibility that the
metagenes could exhibit prognostic redundancy, as pre-
viously hypothesized [30]. To address this question, we
compared the prognostic significance of the immune
metagenes to one another via multivariable analysis. We
constructed Cox regression models inclusive of pair-
wise combinations of the metagenes or all three meta-
genes, simultaneously (Table 3). In all pair-wise compar-
isons (models 1 to 3), the metagenes contributed
significant independent prognostic information reflective
of their non-redundant contributions to prognosis. In a
fully combined model (model 4), the B/P and M/D
metagenes exhibited the greatest non-redundant prog-
nostic power. Additionally, we assessed the prognostic
contributions of the immune metagenes in the presence
of conventional variables including nodal status, T stage
(tumor size), histologic grade, age, ER status and

treatment status (Table 4). While the majority of vari-
ables showed moderately to highly significant associa-
tions with DMFS by univariable analysis, in the
combined model, only the B/P metagene, nodal status,
tumor size and treatment remained significant, with
greatest significance observed for the B/P metagene (P =
0.0001). Together, these findings demonstrate that the
immune gene signatures capture distinct aspects of
patient prognosis with the B/P signature, in particular,
imparting the most significant and additive prognostic
power in highly proliferative breast cancer compared to
the other immune metagenes and conventional prognos-
tic markers.

Immune metagenes risk stratify aggressive clinical and
intrinsic subtypes

Next we investigated the impact of the immune meta-
genes on conventional clinical breast cancer subtypes
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(ER+ or ER-) and the Sorlie-Perou intrinsic molecular
subtypes [31]. First, we examined the distribution of the
molecular subtypes as a function of the proliferation
metagene (Additional file 10). As expected, the least
aggressive subtype, luminal A (LumA,) was found pre-
dominately in the low and intermediate proliferation ter-
tiles, whereas the more aggressive luminal B (LumB),
Basal-like, and human epidermal growth factor receptor
2-enriched (HER2-E) subtypes were most abundant in
the high proliferation tertile. When analyzed for associa-
tions with DMFS, all three immune metagenes retained
significant prognostic power in the Basal-like, LumB and
HER2-E subtypes (P™ tertile). This is illustrated by the
B/P metagene in Additional file 10, and described
further in Table 5.

In light of recent work illuminating prognostic roles for
immune-related genes in specific pathological contexts
such as ER- or HER2+ breast cancer [17,30,32,33], we
asked whether the prognostic performance of the
immune metagenes was exclusive to the high prolifera-
tion tertile in specific tumor subtypes (Table 5). In clini-
cal ER- tumors and Basal-like breast tumors alike, all
three immune metagenes were positively associated with
DMES in the high proliferation tertile (P™) and also the
intermediate proliferation tertile (P") - the latter observa-
tion indicating that tumor subtype modifies the prolif-
eration dependency of the immune metagenes’
prognostic impact. In LumB tumors, the T/NK and M/
D metagenes (but not B/P) also trended towards or
reached significance, respectively, in the P! tertile,
whereas no metagene achieved significance in the P' ter-
tile of the ER+, LumA or HER2-E tumor subtypes. The
Claudin-Low (CL) subtype is a rare subset of Basal-like
breast tumors with distinguishing features such as high
immune cell infiltrate, stem cell-like features and prop-
erties characteristic of epithelial-to-mesenchymal transi-
tion [34,35]. We identified 92 CL tumors in our dataset.
Unlike other Basal-like tumors, which tend to be highly
proliferative, we observed a fairly uniform distribution
of CL tumors across the proliferation tertiles, and as
expected, the CL tumors showed a bias towards belong-
ing to the upper tertiles of the immune metagenes (data
not shown). However, the immune metagenes were not
found to be prognostic in CL tumors as a whole, nor in
the intermediate or high proliferation tertiles (compris-
ing only 22 cases and 39 cases, respectively). In the low
proliferation tertile (P-), we observed an unexpected
inverse survival association for some immune meta-
genes, such as the T/NK metagene, which achieved sta-
tistical significance in the low-proliferating ER-, LumB
and CL subtypes. Together, these data suggest that the
prognostic impact of the immune metagenes in breast
cancer are both proliferation- and subtype-dependent,
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and may signal either good or poor outcome depending
on the tumor’s proliferative configuration and subtype
context.

Immune cell metagenes are prognostic across treatment
regimens

Given the potential of the immune metagenes for addi-
tive prognostic effects, we asked if simple tertile-based
metrics might shed light on the prognostic interplay
between the metagenes and if such interactions could
form the basis of an integrated model for patient prog-
nosis in treatment-specific contexts. Focusing on the pH
tertile (n = 657), we explored the prognostic attributes
of specific combinations of low and high tertiles among
the three immune metagenes, without applying mathe-
matical optimization or weighting strategies. As shown
in Figure 5A (left panel), we observed that patients hav-
ing one, two or three low immune tertiles all had rela-
tively poor outcomes, ranging from 41% to 52% DMES
at 8 years. No significant survival differences were
observed between patients having one, two or three low
immune tertiles. Conversely, having high tertiles for all
three metagenes was significantly more favorable than
having only two or one high tertile assignments (middle
panel). Moreover, having high tertiles for all three meta-
genes was statistically significantly more favorable than
having two high tertiles plus an intermediate tertile
(that is, for the remaining metagene) or having two high
tertiles plus a low tertile (right panel). These observa-
tions suggest that a tumor exhibiting a low tertile for
any one of the three immune metagenes portends a
poor survival outcome that trumps the benefit of having
one, or even two, high immune tertiles among the other
two metagenes.

Next, we examined how this classification model
might impact patient prognosis in specific therapeutic
populations (Figure 5B). Lymph node-negative (LN-)
patients who did not receive adjuvant therapy after sur-
gery (left panel) exhibited a marked reduction in 10-year
DMES if their tumors displayed one or more low
immune tertiles (green survival curve). In ER+, LN-
patients who received tamoxifen monotherapy, the
group with consistently high immune tertiles (red curve,
middle panel) exhibited highly favorable outcomes (>
90% 10-year DMFS). A group with similarly favorable
prognosis (identified by three high immune tertiles) was
also observed in patients with highly proliferative ER-
and Basal-like breast cancer who received adjuvant che-
motherapy (red curve, right panel). The majority of
these cases would be clinically classified as triple nega-
tive breast cancer - a particularly aggressive and treat-
ment-limited form of the disease. These data suggest
that the classification of patients according to immune
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Figure 4 Analysis of the immune metagenes in 1,954 breast cancer cases. Test cases were assigned to proliferation and immune tertiles
based on the training set parameters and the results combined for an integrated survival analysis. Shown are Kaplan-Meier survival estimates of
the (A) B/P, (B) T/NK and (C) M/D metagene tertiles as they stratify the low, intermediate and high proliferation tertiles. Log-rank test P-values
are shown. B/P: B cell/plasma cell metagene; M/D: monocytes and dendritic cell metagene; T/NK: T cell and natural killer cell metagene.

metagenes can impact patient prognosis in ways that
could influence treatment decisions for certain thera-
peutic subgroups.

Discussion

The immune contexture of human cancer, defined as
the abundance, location and functional orientation of
tumor-infiltrating immune cells [36,37], is gaining recog-
nition as a principal determinant of the biological and
clinical behavior of many cancer types. Although it is
well-established that the immune contexture may elicit
both pro- and anti-tumorigenic responses, a growing
body of evidence indicates that the presence of

abundant tumor-infiltrating leukocytes, within estab-
lished tumors, foretells favorable prognosis. This asso-
ciation has been rigorously documented for a number of
malignancies, most notably cancers of the skin [38,39],
ovary [40,41], colon [42-45] and breast [20-22], under-
scoring the broad protective effects of anti-cancer
immunosurveillance [46-48].

In this work, we investigated the prognostic relevance
of transcriptomic footprints of the immune contexture
of breast cancer and identified both immune and biolo-
gical configurations of breast cancer with distinct prog-
nostic attributes. Historically, immunohistochemical
measures of the relative abundance of infiltrating
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Table 3 Multivariable survival analysis with immune
metagenes in the high proliferation tertile.

P" (n = 657) Multivariate

Variables Hazard ratio P-value®
(95% CI)?

Model 1

B/P (LI, H)' 0.72 (0.58 to 0.89) 0.003

T/NK (L, 1, H) 0.73 (0.59 to 0.90) 0.003

Model 2

B/P (L, 1, H) 0.73 (0.62 to 0.89) 0.002

M/D (L, 1, H) 0.70 (0.57 to 0.85) 0.0004

Model 3

T/NK (L, 1, H) 0.77 (0.60 to 0.99) 0.04

M/D (L, I, H) 0.70 (0.55 to 0.90) 0.006

Model 4

B/P (L, I, H) 0.76 (0.61 to 0.94) 0.01

M/D (L, 1, H) 0.75 (0.58 to 0.97) 0.03

T/NK (L, 1, H) 0.88 (067 to 1.15) 0.34

"metagene tertiles (L: low; I: intermediate; H: high); > 95%. B/P: B cell/plasma
cell metagene; M/D: monocytes and dendritic cell metagene; T/NK: T cell and
natural killer cell metagene.

immune cells in breast tumors, viewed as non-specific
infiltrate or as specific leukocyte subpopulations (such
as CD8+ T cells), have led to some controversy with
regard to the role of the immune system in patient
prognosis [20,49-52]. However, prominent immune cell
infiltrate observed within late-stage, high-grade, or
lymph node-positive breast cancers has consistently
been associated with recurrence-free survival of patients
[20,51-54]. More recently, we and others have employed
bioinformatic strategies to investigate the biological
underpinnings of genes associated with breast cancer
outcomes [15-19]. A common finding among these stu-
dies was the favorable prognosis associated with high
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expression of various immune-related gene cassettes
representing admixed immune cell populations
[15,19,55,56] or B cell-enriched [18,30,32,57] or T cell-
enriched [17,18,33] cell populations, specifically, among
ER- or HER2+ breast  cancer  patients
[15,17,19,30,32,33,55-57]. In the current work, we
demonstrate for the first time that a proliferation meta-
gene reflecting tumor proliferative capacity can sharply
demarcate breast cancer cases into proliferative sub-
classes (low, intermediate and high) where the prognos-
tic attributes of immune gene signatures are
differentially manifested.

We identified three distinct expression vectors, or
metagenes, within breast tumors that distinguish differ-
ent tumor-infiltrating leukocyte populations: the B/P
metagene (B cells/plasma cells); the T/NK metagene (T
cells/natural killer cells); and the M/D metagene (mono-
cytes/dendritic cells). While analysis at the population
level revealed that the prognostic power of each
immune metagene was uniformly restricted to tumors
comprising the P tertile, analysis by intrinsic subtypes
further defined the prognostic orientation of the
immune metagenes. For example, the immune meta-
genes were not associated with DMFS in CL and LumA
subtypes of the P' tertile, although the small number of
cases examined (# = 39 and n = 20, respectively) may
have been statistically limiting. Conversely, the immune
metagenes were significantly prognostic in both the P*
and P' tertiles in the ER-, Basal-like and LumB subtypes.
An interesting and unexpected finding was the prognos-
tic implications of the immune metagenes in the P* ER-,
Basal-like and LumB tumors comprising 13%, 9% and
7% of their respective populations. Not only were the
immune metagenes not associated with favorable prog-
nosis in the P" tertile, but statistically significant poor-

Table 4 Univariable and multivariable survival analysis with immune metagenes and conventional variables in the

high proliferation tertile.

P (n = 421) Univariable Multivariable
Variables Hazard ratio P-value® Hazard ratio P-value
(95% CI1)’ (95% ClI)
B/P (LI, H)' 0.55 (045 to 0.66) < 0.0001 0.59 (045 to 0.78) 0.0001
M/D (L, I, H) 0.62 (0,51 to 0.75) < 0.0001 0.89 (0.65 to 1.21) 045
T/NK (L, I, H) 0.62 (0.51 to 0.75) < 0.0001 0.98 (0.71 to 1.35) 09
LN Status (-+)° 1.38 (0.99 to 1.94) 0.06 175 (112 to 274) 0.01
Tumor Size (T1, T2, T3)? 137 (1.02 to 1.85) 0.04 144 (1.05 to 1.97) 0.02
Histologic Grade (1,2,3)* 0.72 (0.54 to 0.95) 0.02 0.80 (0.59 to 1.08) 0.14
Age (< 40 yrs, > 40 yrs)® 1.26 (0.83 to 1.91) 0.28 9(0.73 t0 1.72) 061
ER Status (+-)° 0.68 (0.49 to 0.96) 0.03 0.87 (0.60 to 1.26) 046
Systemic Treatment (no, yes) 1.02 (0.74 to 141) 0.89 1.56 (1.02 to 2. 39) 0.04

"metagene tertiles (L: low; I: intermediate; H: high); 2lymph node status (negative or positive); *tumor size by American Joint Committee on Cancer criteria (T1 <

2.cm, T2 > 2 cm but < 5 cm, T3 > 5 cm); *Nottingham histologic grade (1: well differentiated, 2: moderately differentiated, 3: poorly differentiated); ®
95% confidence interval; ® likelihood ratio test. B/P: B cell/plasma cell metagene; M/D: monocytes

diagnosis; ¢ estrogen receptor status (positive or negative); ”
and dendritic cell metagene; T/NK: T cell and natural killer cell metagene.

age at
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Table 5 Univariable survival analysis of immune metagenes stratified by subtype and proliferation tertile.
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Subtype P P! pH

HR (95%Cl) P-value? HR (95%Cl) P-value HR (95%Cl) P-value
ER- n=51° n =101 n =249
B/P (LI, H": 0.81 (033 to 2.00) 0.65 0.60 (041 to 0.89) 0.01 0.63 (048 to 0.83) 0.001
T/NK (L, I, H): 367 (113 t0 11.9) 0.01 0.54 (0.38 to 0.78) 0.001 0.59 (044 to 0.78) 0.0003
M/D (L, I, H): 3.90 (1.28 to 11.9) 0.003 0.65 (045 to 0.94) 0.02 0.59 (045 to 0.78) 0.0002
ER+ n =542 n = 458 n =343
B/P (L, I, H): 0.77 (0.56 to 1.04) 0.09 1.03 (0.81 to 1.30) 0.83 0.56 (045 to 0.69) < 0.0001
T/NK (L, 1, H): 0.80 (0.59 to 1.10) 0.17 098 (0.78 to 1.23) 0.85 0.60 (048 to 0.73) < 0.0001
M/D (L, I, H): 0.86 (0.64 to 1.16) 033 0.93 (0.74 to 1.18) 0.57 0.59 (048 to 0.73) < 0.0001
Basal-like n=40 n=113 n =307
B/P (L, I, H): 0.97 (047 to 2.02) 094 0.64 (0.43 to 0.96) 0.03 0.67 (0.52 to 0.85) 0.001
T/NK (L, I, H): 1.63 (0.68 to 3.95) 023 048 (0.33 to 0.69) 0.0002 0.65 (0.57 to 0.83) 0.0006
M/D (L, I, H): 1.87 (0.74 to 4.72) 0.14 054 (037 to 0.79) 0.002 0.60 (047 to 0.77) < 0.0001
HER2-E n=14 n =66 n =94
B/P (L, I, H): 0.70 (0.17 to 2.85) 0.62 0.72 (046 to 1.14) 0.16 0.51 (0.34 to 0.78) 0.002
T/NK (L, 1, H): 0.08 (0.007 to 0.9) 0.02 0.79 (0.53 to 1.16) 023 046 (0.31 to 0.68) 0.0001
M/D (L, I, H): 0.66 (0.24 to 1.85) 043 0.96 (0.64 to 1.46) 0.86 0.53 (0.36 to 0.78) 0.001
Luminal B n=26 n=135 n=212
B/P (L, I, H): 228 (0.82 to 6.32) 0.11 097 (065 to 143) 0.86 0.52 (038 to 0.71) < 0.0001
T/NK (L, I, H): 2.81 (1.06 to 7.49) 0.03 0.68 (0.43 to 1.08) 0.09 0.60 (0.45 to 0.80) 0.0002
M/D (L, I, H): 2.23 (0.83 to 5.96) 0.11 0.50 (0.30 to 0.83) 0.003 0.57 (042 to 0.77) < 0.0001
Luminal A n =347 n =200 n=20
B/P (L, I, H): 0.71 (044 to 1.13) 0.14 0.95 (0.58 to 1.56) 0.83 141 (0.52 to 3.86) 0.50
T/NK (L, I, H): 0.57 (033 to 0.97) 0.03 1.08 (0.68 to 1.72) 0.73 0.98 (0.34 to 2.79) 0.96
M/D (L, I, H): 0.70 (044 to 1.12) 013 1.10 (0.71 to 1.71) 0.66 145 (044 to 4.79) 0.55
Claudin-Low n =31 n=22 n=39
B/P (L, I, H): 2.1 (0.53 to 8.00) 024 1.5 (0.59 to 3.79) 0.38 1.06 (0.56 to 2.03) 0.85
T/NK (L, I, H): > 100 (0.00 to +inf) 0.02 0.70 (0.28 to 1.74) 045 0.87 (044 to 1.73) 0.69
M/D (L, I, H): > 100 (0.00 to +inf) 0.05 063 (0.24 to 1.63) 0.36 0.78 (043 to 1.44) 044

"metagene tertiles (L: low; I: intermediate; H: high); ?likelihood ratio test P-value; *number of cases in specified subtype and proliferation tertile. Cl: confidence
interval; ER: estrogen receptor-positive breast cancer; HER2-E: human epidermal growth factor receptor 2-enriched; HR: hazard ratio.

outcome associations were observed, particularly for the
T/NK metagene. That these observations were made in
relatively small sample populations (ranging from 26 to
51 cases) necessitates caution when interpreting the
results. However, that the poor-outcome association of
the T/NK metagene achieved statistical significance in
both the ER- and LumB (ER+) subpopulations suggests
the possibility of the existence of a low proliferation-
associated, ER-independent tumor phenotype where T
cell and/or natural killer cell abundance may signify
pro-metastatic rather than anti-metastatic behavior. By
contrast, in the LumA tumors of the P* tertile (n =
347), all three immune metagenes trended towards asso-
ciations with favorable DMFS, with the T/NK metagene
achieving statistical significance. Together, these obser-
vations paint a complex picture of how tumor-immune
cell interactions regulate malignant progression and sug-
gest that the pro- or anti-tumorigenic properties of infil-
trating immune cells vary not only with the proliferative

status of the tumor, but are determined, in part, by fac-
tors associated with intrinsic subtype.

How tumor proliferation rate relates to pro- or anti-
cancer immune cell behavior has, to our knowledge, not
been studied; however, it is plausible that proliferation
status could act as a surrogate for one or more immu-
nomodulatory pathological contexts. For example, it has
been widely observed that, in breast cancer, the rates of
proliferation and cell death are positively correlated
[58-61]. Apoptosis and necrosis are associated with both
enhanced lymphocytic infiltrate in breast cancer [60]
and enhanced immunogenic response [62-64]. Thus, cell
death that increases available tumor antigen may attract
antigen-presenting cells that in turn recruit and/or acti-
vate T and B cells in the tumor. Furthermore, increased
angiogenesis [65], which supports increased prolifera-
tion, may allow better tumor access by immune cells.
These possibilities may explain, in part, the high rate of
recurrence-free survival observed in the high immune
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A. P": immune tertile combinatorial analysis
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Figure 5 Combinatorial analysis of immune tertile configurations in prognosis of highly proliferative breast cancer. (A) The prognostic
impact of combinations of low and high immune metagene tertiles are investigated by Kaplan-Meier analysis. (B) Kaplan-Meier plots illustrate
the prognostic attributes of low and high immune tertile combinations in specific therapeutic subgroups of patients. Log-rank test P-values are
shown. ER: estrogen receptor; LN: lymph node; TAM: tamoxifen monotherapy; CHEMO: chemotherapy.
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metagene tertiles of highly proliferative breast cancer.
Furthermore, a reduced proliferative (and apoptotic)
capacity could reflect a tumor microenvironment more
conducive to immunosuppression, and subsequently,
poorer survival outcomes. In such an instance, for
example, CD4+/FOXP3+ T regulatory cells may predo-
minate over CD8+ cytotoxic T cells. The abundance
and location of tumor-infiltrating T regulatory cells, as
well as their ratio with cytotoxic T cells, have previously
been shown to associate with poor breast cancer out-
comes [66-69].

Most previously described immune gene signatures
discovered in microarray analyses (including the meta-
genes described herein) trace back to a common origin
for their discovery: a gene cluster of approximately 600
genes highly expressed by tumor-infiltrating leukocytes
and whose expression patterns form a larger, diverse
immune gene cluster when analyzed in bulk tumor tis-
sues [17]. However, the different gene selection meth-
odologies used, and the variation in size and
composition of patient populations examined, may
together explain the diversity in gene make-up across
the reported signatures, as well as conflicting observa-
tions regarding the prognostic performances of similarly

derived immune gene cassettes [17]. For example, we
and others have observed that not all genes of this lar-
ger immune gene cluster are prognostic of breast cancer
survival, with some carrying substantially more prognos-
tic weight than others. Although the unsupervised gene
selection methods used in previous studies have demon-
strated predictive power of the immune genes, the
supervised strategy we employed (that is, selecting genes
with significant DMFS associations prior to metagene
construction) enabled the parsing out of the immune
genes with greatest prognostic strength. These genes
may point not only to specific cellular components of
the immune contexture, but also to immunological
functional orientations required for tumor rejection. A
more precise assessment of the cellular origins and
functional attributes of these genes is needed.

Rody and colleagues [17] deconstructed the larger
immune gene cluster into seven metagenes that
appeared to reflect various components of the immune
system. In multivariable analysis, only a T cell-related
metagene was found to be significantly correlated with
disease-free survival (P = 0.01) when considering a
mixed population of 1,263 patients with breast cancer;
consequently, this was the metagene carried forward for
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further analysis in ER and HER2 status-specific popula-
tions. By contrast, our multivariable analysis revealed
that multiple immune metagenes may contribute addi-
tive prognostic information when considered in combi-
nation with one another. This is likely due in part to
our focus on immune genes with a priori associations
with DMFS, as well as the fact that our analysis was
confined to the highly proliferative breast tumors as
defined by our proliferation metagene, while that of
Rody and colleagues was not restricted to the more pro-
liferative cases. Furthermore, the composition of our
immune metagenes also varied with those of Rody and
colleagues. Although 80% of the probe sets comprising
our B/P metagene overlapped with the Rody IgG (B cell)
metagene, only 60% of our T/NK probe sets overlapped
with the Rody LCK (T cell) metagene, and our M/D
metagene comprised of novel probe sets not selected by
their methods.

Our observation that the prognostic attributes of the
immune metagenes are largely non-redundant may
reflect the importance of cooperative interplay among
different immune cell types in metastasis-protective
immunity. Indeed, proteins critical for such interactions
are evidenced in the composition of our metagenes. For
example, CD27, a component of the T/NK metagene,
encodes a type I transmembrane protein of the tumor
necrosis factor receptor superfamily that plays key roles
in the expansion and memory of activated CD8+ killer
T cells [70,71] as well as B-cell activation and immuno-
globulin synthesis [72,73]. In natural killer cells, high
expression of CD27 is associated with greater effector
function and enhanced interaction with dendritic cells
compared to CD27-low natural killer cells that exhibit a
higher stimulation threshold and express inhibitory
receptors [74]. Moreover, the M/D metagene comprises
a number of MHC class II (HLA) alpha and beta chain
paralogs expressed by professional antigen-presenting
cells. The products of these genes present extracellular
antigens to T lymphocytes thereby stimulating expan-
sion of T helper cells and, subsequently, the down-
stream activation of plasma B cells. If such interactions
are essential to the maintenance of DMEFS, this could
explain our observation that patients having even a sin-
gle low tertile immune metagene assignment are unli-
kely to achieve a durable remission (Figure 5A).

Tertile-based cut-points were used in our analysis to
characterize prognostic interactions in broad terms, not
to develop optimized prognostic classifiers. Nevertheless,
we observed that the tertiles could be used to identify
significant therapy-relevant risk groups. ER+, LN- breast
cancer is frequently treated with hormonal therapy
alone or in combination with chemotherapy. In recent
years, the decision to withhold chemotherapy from a
fraction of these patients has been justified by the 21-
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gene Oncotype Dx test (Genomic Health, Inc.) which
relies on a gene-based classification algorithm. Because
proliferation genes carry the greatest prognostic weight
in this algorithm [10,11], it is not surprising that vir-
tually all of the highly proliferative cases are assigned to
the high and intermediate risk groups where the use of
chemotherapy is indicated. Interestingly, we observed
that about 23% of the highly proliferative, ER+, LN-
cases possessed high tertiles for all three immune meta-
genes, and subsequently exhibited excellent 10-year
DMES following tamoxifen monotherapy. This high sur-
vival rate of this group (> 90% at 10 years) is similar to
the disease-free survival rate of the Oncotype Dx low-
risk group [10]. This indicates that the immune meta-
genes may have value in identifying a second low-risk
fraction of patients from among the highly proliferative
(high Oncotype Dx recurrence score) cases who might
also be spared unnecessary chemotherapy. Furthermore,
this same high tertile immune metagene profile identi-
fied patients with ER-, Basal-like breast cancer (predo-
minantly triple negative breast cancer) that would have
excellent 10-year survival following adjuvant chemother-
apy. By contrast, cases associated with one or more low
immune metagenes exhibited > 50% probability of dis-
tant metastasis before 5 years. Thus, the immune meta-
genes could aid in the selection of patients most in need
of, and most suitable for the testing of, new therapeutic
agents being evaluated in clinical trials. It should be
noted that these prognostic observations may reflect
some bias related to historical treatment standards such
as the use of adjuvant CMF (cyclophosphamide, metho-
trexate and 5-fluorouracil), FAC (5-fluorouracil, doxoru-
bicin and cyclophosphamide) and AC
(cyclophosphamide and doxorubicin). In recent years,
the addition of taxanes to chemotherapeutic regimens
has reduced the rate of breast cancer relapseby 10% to
15%. Thus, the extent to which the immune metagenes
would retain prognostic value in light of today’s taxane-
inclusive regimens warrants prospective evaluation.
Furthermore, mounting evidence that anthracyclines and
taxanes both possess immunomodulatory activity that
impacts treatment efficacy [75-78] provides further
rationale for investigating the clinical importance of the
immune metagenes in patients treated with chemother-
apy. Finally, further work will be necessary to determine
the optimal diagnostic platform for immune metagene
assessment, as well as the precise metagene thresholds
that provide maximal prognostic utility within specific
breast tumor subtypes.

Conclusions

Gene expression profiles that quantify immune cell
abundance within breast tumors are prognostic of
DMES. The prognostic value of these signatures does
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not manifest in all tumor types, but rather can be strati-
fied by tumor proliferative capacity in a manner that
further depends on molecular subtype. Our findings
suggest that multiple immune metagenes measured in
combination may provide actionable prognostic infor-
mation for the most aggressive breast cancer phenotypes
for which prognostic assays remain lacking. This work
sheds new light on the roles of tumor-infiltrating
immune cells in safeguarding patients against distant
metastasis, and suggests an important and quantifiable
interplay between different immune cell populations in
establishing long-term, metastasis-protective immunity.

Materials and methods

Breast cancer microarray datasets

We assembled a multi-study microarray database of
breast tumor expression profiles (n = 2,116) based on
the Affymetrix U133 GeneChip microarray platform.
The database encompasses 15 different breast cancer
populations for which corresponding microarray data
and clinical annotations were extracted from public data
repositories including the Gene Expression Omnibus
(National Center for Biotechnology Information,
Bethesda, MD, USA) [79], ArrayExpress (European
Bioinformatics Institute, Hinxton, Cambridgeshire, UK)
and caArray (National Cancer Institute, Bethesda, MD,
USA) or by direct communication with study authors.
Study population details and literature references are
presented in Additional file 1. Previously unpublished
breast tumor profiles from Belgium, England and Singa-
pore have been deposited in the Gene Expression Omni-
bus [79] and are accessible through GEO Series [GEO:
GSE45255] [80]. Raw array data (CEL files) were pre-
processed and normalized using the R software package
[81] and library files provided by the Bioconductor pro-
ject. In order to preserve a consistent normalization
strategy across all study populations, raw data were
MAS5.0 normalized on individual study populations
using the justMAS function in the simpleaffy library
from Bioconductor [82] (no background correction,
mean target intensity of 600). The specific array plat-
forms employed were the HG-U133A, HG-U133 PLUS
2.0 and HG-U133A2 gene chips. To ensure equal infor-
mation content from each chip type, only probe sets
common to all chip types were utilized in subsequent
analysis. This resulted in the use of 22,268 probe sets
that were common to all microarrays in all study popu-
lations. Cross-population batch effects were corrected
using the COMBAT empirical Bayes method [83]. Of
the initial 2,116 tumor profiles, 2,034 profiles represent
primary invasive breast tumors sampled at the time of
surgical resection, without exposure to neoadjuvant
treatment. Of these, 1,954 cases were annotated with
DMES time and event. Other clinical annotation such as
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treatment type, ER status, nodal status, tumor size, his-
tologic grade and patient age were available for the
majority of cases. The pan-leukocyte expression profiles
of Abbas et al. [26] were downloaded from the Gene
Expression Omnibus [79] [GEO:GSE22886] and MAS5-
normalized in the same fashion as the breast tumor
datasets.

Intrinsic subtype classification

Intrinsic breast cancer subtypes were assigned to sam-
ples using the Single Sample Predictor (SSP) algorithm
described by Hu et al. [84] and utilized by Fan et al.
[85]. Affymetrix probe sets were matched to the genes
comprising the SSP centroids using UniGene annota-
tion. Prior to batch-correction, the expression data for
each gene were mean centered, and Spearman correla-
tion was used to find the centroid most closely asso-
ciated with each tumor sample. In cases where a
correlation greater than 0.1 was not achieved with at
least one centroid, a subtype was not assigned to that
sample (n = 92 cases). Tumors representing the CL sub-
type were identified using the methods of Prat et al.
[35] and the supplementary information from [86].
Briefly, CL centroids were generated using the Prat et
al. microarray data set deposited in [GEO:GSE18229],
with breast tumor samples assigned to the closest sub-
type centroid based on Euclidean distance.

Case randomization

The 1,954 survival-annotated cases were dichotomized
into training and testing sets comprising 977 cases each.
Cases were iteratively randomized to two groups with
monitoring of intergroup survival rates (log-rank test)
and standardized differences [87] for the variables:
DMES time, DMFS event, original study population,
intrinsic subtype and ER status. The first randomization
to achieve the following criteria was selected: log-rank
test P-value for survival difference > 0.99, and < 10%
standardized difference for each of the listed variables.

Statistical analyses

Associations between gene expression and patient survi-
val (DMES) were assessed by Cox proportional hazards
regression (likelihood ratio test) using the R survival
package [88] or by the Kaplan-Meier method (log-rank
test, SigmaPlot 11.0). DMFS was defined as the absence
of clinically confirmed distant relapse. Data were cen-
sored on date of last follow-up (disease-free), date of
diagnosis of a second primary cancer, and local or regio-
nal relapse without evidence of distant recurrence. To
minimize population-specific bias owing to patient fol-
low-up duration, survival analyses were delimited to a
10-year window of patient follow-up. (Notably, only
1.5% of cases were annotated for post 10-year
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recurrence, and no convergence of survival curves post
10 years was observed.) Probe sets (genes) with likeli-
hood ratio test P-values less than 0.01 and FDR-adjusted
q-values less than 0.10 [89] were identified and selected
for supervised hierarchical cluster analysis. Univariable,
multivariable and Kaplan-Meier analyses were per-
formed in SigmaPlot 11.0. For statistical analyses low,
intermediate and high tertile metagene designations
were coded as 1, 2 and 3, respectively. All statistical
tests were two-sided.

Hierarchical clustering

Supervised hierarchical clustering and heatmap visuali-
zation of breast tumor and leukocyte gene expression
profiles were conducted using Eisen’s Cluster (v2.11)
and TreeView (v1.60) software [90,91]. Briefly, normal-
ized log, expression data were mean centered (on genes
only), and genes and tumors were hierarchically clus-
tered by average linkage using uncentered Pearson cor-
relation as the distance metric. Clustered data were
visualized by TreeView using default color saturation
settings.

Metagene construction

Selection and construction of the immune metagenes
was carried out essentially as previously described
[17,28]. Briefly, nested gene correlation structure was
determined by the Pearson distance metric and average
linkage clustering [91]. The selected subclusters were
then defined as the nested branches that generated an
approximate average correlation of 0.6. This threshold
was chosen to satisfy two primary goals: selection of
genes with relatively high magnitude of correlation such
that their correlation could not be considered a chance
event; and selection of a reasonable number of genes (at
least tens of genes) suitable for (GO) enrichment analy-
sis. The metagene value for a given tumor was defined
by averaging the signal intensities of the genes compris-
ing each subcluster [17,28,92]. In cases where two or
more probe sets corresponded to the same gene identity
within a subcluster, these probe sets were first averaged
together, prior to cross-gene averaging, to guard against
overrepresentation of any one gene with respect to its
contribution to the metagene value. The metagene value
(average signal intensity) thresholds defined by tertile
cut-points in the training set are listed in Additional file
11.

QuantiGene analysis of immune genes from FFPE breast
tumor tissues

Thirty FFPE tissue blocks from surgically resected pri-
mary ER+ breast tumors were selected from a biobank
of primary breast tumors representing recurrent cases
and controls (that is, cancers that did not metastasize)
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maintained at Aarhus University Hospital, Denmark
(SJHD and TLL) [93]. The blocks derived from patients
with centrally confirmed [94] ER+ stage II breast cancer
diagnosed in 2000 or 2001. From each block, three 10-
micron sections were cut to slides, the first of which
was hematoxylin and eosin (H&E) stained to identify
regions of highest tumor cellularity, which were then
demarcated on the unstained slides. The H&E-stained
slides were subsequently examined by a tumor patholo-
gist at Wake Forest School of Medicine, NC, USA
(MCW) for estimation of total leukocyte infiltrate within
the demarcated regions of high tumor cellularity. Two
slides were rejected based on evidence of poor preserva-
tion. For the remaining 28 samples, total leukocyte con-
tent was scored into four categories defined as low/
absent, intermediate-low, intermediate-high, and high
(irrespective of spatial considerations such as intra-
tumoral or intra-stromal associations). As proof of prin-
ciple and to test the technology platform, three genes
were selected from each of two of the immune meta-
genes for analysis by Panomics QuantiGene Plex 2.0
(Affymetrix, Santa Clara, CA, USA)). Genes that dis-
played strong correlation with their cognate metagene
and, simultaneously, large dynamic range of gene
expression by microarray were selected for this purpose.
Specifically, probe sets were designed to detect /GKC,
IGLL5 and IGHAI (the B/P metagene) and LCK, CD3E
and CD27 (the T/NK metagene). Four housekeeping
genes (ACTB, GAPDH, ACTGI, and EIF4G2) were
included for normalization. Normalized expression
ratios were generated by dividing the background-sub-
tracted expression values by the geometric mean of the
housekeeping genes. Lastly, the expression ratios were
averaged to generate metagene values, and these values
were correlated to total leukocyte abundance by Pearson
correlation.

Gene Ontology enrichment analysis

The DAVID Bioinformatics Resource (Database for
Annotation, Visualization and Integrated Discovery)
[27,95] version 6.7, sponsored by the National Institute
of Allergy and Infectious Diseases, National Institutes of
Health, was used to investigate the statistical enrichment
of biological terms and processes associated with the
genes comprising the immune gene clusters. Briefly,
Affymetrix probe set unique identifiers were imported
into DAVID [96] and the functional annotation tools
were utilized as described [95].

Additional material

Additional file 1: Table S1 - Data table of patient populations
comprising the breast cancer microarray database. Reference data
for each breast cancer population is provided.
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Additional file 2: Spreadsheet S1 - Distant metastasis-free survival-
associated genes selected from patient groups 977A and 977B.
Selected probe sets and their corresponding Cox regression coefficient,
hazard ratio, confidence interval and FDR g-value are shown for 977A (
tab) and 9778 (2" tab).

Additional file 3: Figure S1 - Hierarchical clustering of distant
metastasis-free survival-associated genes in group 977B. The
heatmap (far left) shows the hierarchical clustering of the 3,304 genes
(probe sets) associated with distant metastasis-free survival. A zoomed in
view of the proliferation and immune gene clusters are shown with
gene dendrograms (right). Clustered genes having average correlations
of approximately 0.6 are indicated by colored branches. Heatmap
coloring: mean gene expression (signal intensity) is colored black, red
indicates above-mean expression, green denotes below-mean expression
and the degree of color saturation reflects the magnitude of expression
relative to the mean.

-‘St

Additional file 4: Figure S2 - The proliferation metagene score is
highly correlated with tumor cell proliferation rate. Two hundred
and thirty-two primary breast tumors from the Uppsala population [3]
were annotated for markers of proliferation including Ki-67 staining levels
(by immunohistochemistry, MIBT monoclonal antibody) and mitotic
index. Shown is the correlation between the (A) proliferation metagene
and mitotic index and (B) Ki-67 staining. The metagene is depicted in
(C), and tumor samples are ordered (in all figures) from left to right in
ascending order, according to the proliferation metagene score (average
log intensity of the proliferation genes). The Pearson product-moment
correlation coefficient (r) and P-value are shown (box insert, A, B).

Additional file 5: Table S2 - Ontology analysis and gene
components of the immune gene cluster. Table A: Gene Ontology
analysis of 161 gene probe sets comprising the large immune gene
cluster demarcated in Figure 1. Table B: Probe sets and their
corresponding gene names that comprise the immune gene cluster.

Additional file 6: Spreadsheet S2 - Table of Affymetrix probe sets
and corresponding genes that comprise the proliferation and
immune metagenes.

Additional file 7: Figure S3 - Concordance among gene clusters
derived from patient groups 977A and 977B. (A) Expression patterns
of probes comprising the proliferation (P) and immune clusters (IC) were
compared between 977A and 977B. All selected probes (n = 210) and
tumors (n = 1,954) were hierarchically clustered, then the tumors were
partitioned (in cluster order) by patient group. Genes comprising the
proliferation and immune clusters are distinguished by color according
to the key shown. (B) Proliferation and immune cluster metagene values
(ie, averaged log;, signal intensities; see Methods), derived from 977A and
977B, were compared to one another by Pearson correlation. Pearson
coefficients (r) are represented by heatmap and described by the color
key. r values corresponding to the cognate clusters are shown in white
font. Biological titles equated with the immune clusters elsewhere in the
manuscript are shown for continuity.

Additional file 8: Figure S4 - Breast cancer immune and
proliferation gene clusters differentiate specific leukocyte cell types.
This figure is derived from Figure 2 of the main text, but includes
original experimental annotations for each array sample (as labeled in
[26]) and includes the genes of the proliferation metagene cluster.
Dendrograms are omitted for space.

Additional file 9: Figure S5 - Magnitude of immune metagene
expression correlates with abundance of immune cell infiltrate.
Histological characterization of immune cell abundance was previously
conducted for 35 tumors (22 ER+, 13 ER-) from Guy's Hospital, London
[29], for which corresponding tumor material was profiled on expression
microarrays and included in our multi-study microarray database [97]. (A)
Distributions of mean-centered metagene values (977A) are shown as
box and whisker plots for each measure of immune cell abundance (L =
low, | = intermediate, H = high). Shaded rectangles define the
interquartile ranges. The midline of each rectangle marks the median
value. T-bars extending from the interquartile range mark the 5th and
95th percentiles, and outliers are indicated by open circles. P-values for
differential distributions were generated by Kruskal-Wallis one-way

analysis of variance by ranks (Sigma Plot 11.0). (B-D) Genes
representative of the T/NK and B/P metagenes were prospectively
analyzed for expression in a panel of 28 ER+ breast tumors using the
Panomics QuantiGene Plex 2.0 assay system (Affymetrix; see paper
Methods). H&E-stained, FFPE breast tumor samples exhibiting (B) high or
(C) low levels of infiltrating immune cells are shown. Red arrows indicate
small, darkly staining nuclei of leukocytes; blue arrows mark tumor cell
nuclei. (D) Distributions of mean-centered metagene values (based on
three representative genes, per metagene) are shown as a function of
immune cell abundance (L = low; I/L = intermediate-low; I/H =
intermediate-high; H = high). Box and whisker plot parameters and
statistical method are the same as for (A).

Additional file 10: Figure S6 - The immune metagenes are
prognostic of outcome in the aggressive intrinsic subtypes. (A)
Intrinsic subtype distributions are shown (colored vertical bars) relative to
the proliferation metagene, whereby tumors are ranked by the
proliferation metagene from left to right in ascending order. (B) The
percentage of each tumor subtype comprising the three proliferation
tertiles is shown. (C) Kaplan-Meier plots show the P HER2-enriched (left),
luminal B (middle) and Basal-like (right) populations stratified by the B/P
metagene.

Additional file 11: Table S3 - Metagene value thresholds defined by
tertile cut-points in the training set and subsequently applied to
the test set.
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