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ABSTRACT

Mammals in northern regions chronically suffer from low temperatures during autumn-winter seasons.
The aim of this study was to investigate the response of intestinal amino acid transport and the amino
acid pool in muscle to chronic cold exposure via Min pig models (cold adaptation) and Yorkshire pig
models (non-cold adaptation). Furthermore, this study explored the beneficial effects of glucose sup-
plementation on small intestinal amino acid transport and amino acid pool in muscle of cold-exposed
Yorkshire pigs. Min pigs (Exp. 1) and Yorkshire pigs (Exp. 2) were divided into a control group (17 °C,
n = 6) and chronic cold exposure group (7 °C, n = 6), respectively. Twelve Yorkshire pigs (Exp. 3) were
divided into a cold control group and cold glucose supplementation group (8 °C). The results showed that
chronic cold exposure inhibited peptide transporter protein 1 (PepT1) and excitatory amino acid
transporter 3 (EAAT3) expression in ileal mucosa and cationic amino acid transporter-1 (CAT-1) in the
jejunal mucosa of Yorkshire pigs (P < 0.05). In contrast, CAT-1, PepT1 and EAAT3 expression was
enhanced in the duodenal mucosa of Min pigs (P < 0.05). Branched amino acids (BCAA) in the muscle of
Yorkshire pigs were consumed by chronic cold exposure, accompanied by increased muscle RING-finger
protein-1 (MuRF1) and muscle atrophy F-box (atrogin-1) expression (P < 0.05). More importantly,
reduced concentrations of dystrophin were detected in the muscle of Yorkshire pigs (P < 0.05). However,
glycine concentration in the muscle of Min pigs was raised (P < 0.05). In the absence of interaction
between chronic cold exposure and glucose supplementation, glucose supplementation improved CAT-1
expression in the jejunal mucosa and PepT1 expression in the ileal mucosa of cold-exposed Yorkshire
pigs (P < 0.05). It also improved BCAA and inhibited MuRF1 and atrogin-1 expression in muscle
(P < 0.05). Moreover, dystrophin concentration was improved by glucose supplementation (P < 0.05). In
summary, chronic cold exposure inhibits amino acid absorption in the small intestine, depletes BCAA and
promotes protein degradation in muscle. Glucose supplementation ameliorates the negative effects of
chronic cold exposure on amino acid transport and the amino acid pool in muscle.
© 2023 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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1. Introduction

Mammals frequently experience sustained energy turnover,
especially in chronic cold exposure. Cold exposure is a common
problem and a stressor for animals that live in extreme environ-
ments. Usually, mammals experience active resistance, adaptation
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exposure to low temperatures may lead to irreversible negative
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effects (Selye, 1979). Extensive data have confirmed that cold limits
animal growth and increases feed intake (Bayril et al., 2020;
Toghiani et al., 2020). More worryingly, long-term cold exposure
induces oxidative stress and inflammation in organs, even causing
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death in animals (Liu et al., 2019, 2022; Luo et al., 2019). Adaptation
to low ambient temperature is one of the mechanisms vital to the
survival of mammals. Undoubtedly, mammals need to expend more
energy to cope with low temperature (Yu et al., 2015). To date, since
fatty acids and glucose are the main energy sources, most studies
have focused on heat production of brown adipose tissue and in-
sulin sensitivity in mammals during cold exposure (Chevalier et al.,
2015; Sanchez-Gurmaches et al., 2018; Leiria et al., 2019). However,
neglected amino acids (AA) can also contribute to physiology as
energy sources. So far, there are few reports on the effects of
chronic cold exposure on the digestion and absorption of amino
acids in mammals.

AA are well known nutrient substrates for protein synthesis.
They also participate as bioactive molecules in nutrient metabolism
(Nie et al., 2018). Indeed, when dietary proteins are hydrolyzed by
digestive enzymes, AA and small peptides are released into the
intestinal lumen. Subsequently, they are absorbed with the assis-
tance of AA transporters in the epithelial cells of the intestinal
mucosa. AA transporters specifically mediate the uptake and
transport of AA present in living organisms (Broer and Palacin,
2011). Free AA circulate in the bloodstream and are then absor-
bed and used by various organs and tissues via AA transporters.
Skeletal muscle represents the largest protein and AA reservoir (Qi
and Lu, 2007) and enable movement of the body. AA transporters in
muscle tissue adjust AA flux according to demand to maintain AA
homeostasis. Muscle mass depends on the growth and develop-
ment of muscles, which involves the proliferation and differentia-
tion of muscle cells. Myogenic factor 5 (Myf5) and myoblast
differentiation antigen (MyoD) are the determinants of myogenesis,
which controls the fate of muscle cells. MyoD is regarded as an
important marker of muscle cell proliferation and differentiation
(Zammit, 2017). Myf5 is a myogenic regulatory factor involved in
myoblast specification and maintenance (Panda et al., 2016). The
expression of these 2 factors determines the fate of muscle cells.
Skeletal muscle protein is constantly built up when mammals un-
dergo rapid growth (Aisbett et al., 2017). In this physiological state,
the rate of protein synthesis is greater than protein breakdown
(Rennie et al., 2004). Muscle growth rate is inhibited when the
balance between protein synthesis and breakdown is disrupted. An
increased rate of protein breakdown results in muscle growth
retardation or loss of muscle mass (Bodine and Baehr, 2014), even
triggering some diseases (Kerksick and Leutholtz, 2005). Dystro-
phin is a macromolecular cytoskeletal protein widely used to
evaluate muscle diseases or dysplasia (Mendell et al., 2010; Carter
et al,, 2018). At present, the regulation of dystrophin by chronic
cold exposure in pigs remains to be explored. Furthermore, the
effects of chronic cold exposure on small intestinal AA transport
and AA pool of muscle in pigs are unknown.

The balance of mitochondrial dynamics (fission and fusion) is
crucial for muscle contraction and metabolism. In general, the
imbalance of division and fusion leads to abnormal mitochondrial
function (Wei and Ruvkun, 2020). Mitofusin 1 (Mfn1), mitofusin 2
(Mfn2) and mitochondrial dynamin like GTPase (OPA1) contribute
to mitochondrial docking and fusion, and stabilize associations
between mitochondria (Kato and Nishitoh, 2015). Mitochondrial
fission protein 1 (Fis1) and mitochondrial fission factor (MFF) in
the mitochondrial outer membrane participate in fission (Gandre-
Babbe and van der Bliek, 2008). Previous evidence suggests that
muscle atrophy is associated with disruption of mitochondrial
dynamic balance (Romanello et al., 2010; Lee et al., 2020). Thus,
mitochondrial function in muscle tissue is closely related to
muscle development. However, the effect of chronic cold exposure
on mitochondrial balance in muscle tissue is incompletely
characterized.
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As an essential source of organic carbon, carbohydrate in the
diet is critically important to the health of mammals. Carbohydrates
such as starch and maltose are hydrolyzed into monosaccharides
(such as glucose) by digestive enzymes in the intestinal lumen
(Holst et al., 2016). Dietary glucose supplements are readily
absorbed by glucose transporters (Chan and Leung, 2015). There-
fore, it is worth exploring the effects of dietary glucose supple-
mentation on muscle AA levels and muscle development under
chronic cold exposure.

Min pigs are a local pig species in northern China with strong
resistance to stress. Studies have shown that they have a stronger
immune system than Yorkshire pigs (Teng et al., 2020). In addition,
Min pigs have been demonstrated to have better cold adaptability
(Li et al., 2017; Peng et al., 2019). Here, we explored the effects of
chronic cold exposure on AA digestion, absorption and muscle
development in a Min pig model (cold adaptation) and Yorkshire
pig model (non-cold adaptation). In addition, we reveal the
mechanism of cold adaptation based on AA metabolism under
chronic cold exposure via these 2 animal models. Furthermore, we
attempt to ameliorate the negative impacts of chronic cold expo-
sure on AA transport and muscle AA pool in Yorkshire pigs by
adding glucose to the diet. This study provides new evidence for
cold and non-cold adaptations based on AA transport and the AA
pool in muscle.

2. Materials and methods
2.1. Animal ethical statement

The protocols used during this study were approved by the
Ethical and Animal Welfare Committee of Heilongjiang Province,
China. The experimental proposals and procedures for the care and
treatment of animals were approved by the Institutional Animal
Care and Use Committee of Northeast Agricultural University
(NEAU - [2011] - 9). The procedure number is NEAUEC20200208.

2.2. Two chronic cold exposure experiments

Two chronic cold exposure experiments were carried out
simultaneously (Fig. 1A). Twelve Min pigs (Exp. 1) were randomly
divided into a control group (CM, 35.52 + 1.18 kg, 17 + 3 °C, n = 6)
and cold stress group (CSM, 35.48 + 1.29 kg, 7 + 3 °C, n = 6). Twelve
Yorkshire pigs (Exp. 2) were divided into a control group (CY,
24.83 + 0.64 kg, 17 + 3 °C, n = 6) and cold exposure group (CSY,
24.80 + 0.61 kg, 7 + 3 °C, n = 6). The environmental temperature of
the CSM and CSY group was maintained by electronic heaters
(GSM501, Guangzhou Rongce Electronics, Guangdong, China), and
the environmental temperature of the CM and CY group was
derived from natural conditions. All the pigs were fed separately
from a single metabolic cage containing a water dispenser and
feeding tank for free drinking and feeding. These 2 experiments
lasted for 21 days.

2.3. Glucose supplementation in the diet of cold-exposed pigs

Next, a trial was carried out to supplement the diet of cold-
exposed pigs with glucose. Twelve Yorkshire pigs (Exp. 3) were
randomly divided into a control group (Con, 23.54 + 0.84 kg, n = 6)
and glucose supplement group (GS, 23.76 + 0.78 kg, n = 6). The
environmental temperature of the cold exposure group (under
natural conditions) was 8 + 3 °C. As in the previous experiment, all
the pigs were fed separately from a single metabolic cage con-
taining a water dispenser and feeding tank for free drinking and
feeding. This trial lasted for 22 days.
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Fig. 1. Chronic cold exposure inhibits growth and increases feed consumption in pigs. (A) Design of Exp. 1 and 2. (B) The average daily gain (ADG) of Min pigs. (C) The average daily
feed intake (ADFI) of Min pigs. (D) The feed to gain ratio (F:G) of Min pigs. (E) The ADG of Yorkshire pigs. (F) The ADFI of Yorkshire pigs. (G) The F:G of Yorkshire pigs. Data are

expressed as the mean + SEM, n = 6, *P < 0.05.

The diets involved in this study were formulated (Tables 1 and
2) to reference the Ministry of Agriculture of the People’s Repub-
lic of China (MOA, 2020) and National Research Council (NRC, 2012)
recommended requirements. The experiment was carried out at
Acheng Experimental Base of Northeast Agricultural University.

2.4. Sample collection

All pigs were electrocuted and slaughtered after fasting for 12 h.
Venous blood was collected and centrifuged for 15 min at 300xg.
Plasma samples were stored in —20 °C. Two grams of longissimus
dorsi muscle was quickly collected in cryo-storage tubes and then
frozen in liquid nitrogen. In addition, 1 cm? of longissimus dorsi
muscle was cut and preserved in 4% paraformaldehyde for
morphological analysis. Mucosal scrapings were collected from the
duodenum, jejunum and ileum using a glass slide then transferred
to liquid nitrogen for snap freezing. Finally, these samples were
transferred to a —80 °C refrigerator for storage.
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2.5. Digestibility of crude protein

The apparent total tract digestibility (ATTD) of crude protein
(CP) was assessed. Fecal samples were collected during day 17 to 19
of the experiment according to published procedures (Nair et al.,
2019). Twice a day at 07:00 and 20:00, individual feces were
collected and weighed. To avoid ammonia loss, 10 mL of H>SO4 (10%
vol/wt) was added and the feces were then stored at —20 °C. Before
analysis, the fecal samples of each pig were thawed and homoge-
nized. Then, 200 g of feces were removed and left to dry in a hot air
oven at 60 + 2 °C for 72 h and ground through a 1-mm screen. The
feed offered to each pig was weighed daily to calculate the ATTD. CP
in the feces and diet was assessed according to the previous
method (Nair et al., 2019).

2.6. Detection of trypsin activity

Samples of 0.5 g of duodenal mucosa and jejunal mucosa were
placed in ice-cold 0.9% sodium chloride solution (1:9, wt:vol). They
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Table 1

Composition of experimental diets.’

Item Content, %

Ingredients
Corn 73.00
Soybean meal, de-hulled 15.30
Full-fat soybean meal, puffed 5.00
Fish meal 2.00
Soybean oil 1.00
L-Lysine 0.39
DL-Methionine 0.04
L-Threonine 0.12
L-Tryptophan 0.02
Calcium hydrogen phosphate 1.19
Limestone 0.66
Salt 0.28
Premix * 1.00

Nutrient levels >
NE “, Mcal/kg 2.50
Crude protein 16.03
Lysine 0.98
Methionine 0.29
Threonine 0.60
Leucine 0.17
Calcium 0.66
Total phosphorus 0.56
Available phosphorus 033
Sodium 0.14
Chlorine 0.19

! This diet was formulated to reference the Ministry of Agriculture of the
People’s Republic of China (MOA, 2020) and National Research Council
(NRC, 2012) recommended requirements.

2 Provided the following per kilogram of diet: Fe, 160 mg; Cu, 150 mg;
Mn, 40 mg; Zn, 140 mg; Se, 0.4 mg; I, 0.5 mg; vitamin A, 8,000 IU; vitamin
D3, 2,000 IU; vitamin E, 30 mg; vitamin By, 1.60 mg; vitamin B,, 5.00 mg;
vitamin Bg, 5.00 mg; vitamin B;2, 0.01 mg; pantothenic acid, 20 mg; niacin,
15 mg; biotin, 0.05 mg.

3 Nutrient levels were calculated values.

4 NE: net energy.

were then thawed and homogenized for 60 s and centrifuged at
13,000 x g for 20 min at 4 °C. After that, the supernatant was
collected for assaying. Trypsin activity was analyzed using a pre-
vious method (Chen et al., 2018). Commercial kits (Nanjing Jian-
cheng Bioengineering Institute, Nanjing, China) were used to assess
the protein concentration and trypsin activity, according to the
manufacturer’s guidelines.

2.7. Determination of free AA

The free AA profile was determined in the longissimus dorsi
muscle by using a previous method (Sun et al., 2020). A 100-mg
sample was hydrolyzed with 8 mL of 6 mol/L HCI (reflux for 24 h
at 110 °C) to convert protein-bound AA to free AA. Then, 1 mL of the
hydrolysate was obtained and lyophilized. The freeze-dried sample
was homogenized with 1 mL of 0.02 mol/L HCI, and then centri-
fuged at 14,000 x g for 15 min. The final supernatants were used for
AA analysis via a High-speed Amino Acid Analyzer (Hitachi L-8900,
Tokyo, Japan).

2.8. Total RNA extraction, reverse transcription and relative
quantitative real-time PCR

The tissue samples were homogenized in 1 mL TRIzol Reagent
(Invitrogen, Carlsbad, CA, USA), and the total RNA was isolated
according to the manufacturer’s instructions. The quality of the
total RNA was determined by confirming that the ratio of OD,g9 and
ODygp was between 1.8 and 2.0. The total RNA was reverse-
transcribed using a PrimeScript TM RT reagent kit (TaKaRa,
Biotechnology, Dalian, China). The total RNA was reverse-
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Table 2
Composition of glucose diets.!

Item Content, %

Ingredients
Corn 60.68
Soybean meal, de-hulled 17.53
Full-fat soybean meal, puffed 5.00
Fish meal 2.00
Soybean oil 1.00
Glucose 10.00
L-Lysine 0.35
DL-Methionine 0.05
L-Threonine 0.11
L-Tryptophan 0.01
Calcium hydrogen phosphate 1.25
Limestone 0.62
Salt 0.40
Premix ? 1.00

Nutrient levels *
NE 4, Mcal/kg 2.63
Crude protein 16.03
Lysine 0.98
Methionine 0.29
Threonine 0.60
Leucine 0.17
Calcium 0.66
Total phosphorus 0.56
Available phosphorus 0.34
Sodium 0.19
Chlorine 0.26

1 This diet was formulated to reference the Ministry of Agriculture of the
People’s Republic of China (MOA, 2020) and National Research Council
(NRC, 2012) recommended requirements.

2 Provided the following per kilogram of diet: Fe, 160 mg; Cu, 150 mg;
Mn, 40 mg; Zn, 140 mg; Se, 0.4 mg; I, 0.5 mg; vitamin A, 8,000 IU; vitamin
D3, 2,000 IU; vitamin E, 30 mg; vitamin B4, 1.60 mg; vitamin B,, 5.00 mg;
vitamin Bg, 5.00 mg; vitamin By, 0.01 mg; pantothenic acid, 20 mg; niacin,
15 mg; biotin, 0.05 mg.

3 Nutrient levels were calculated values.

4 NE: net energy.

transcribed using an Integrated First-strand cDNA Synthesis Kit
(Dining, Beijing, China). Next, the 2 x Fast qPCR Master Mixture
(Dining, Beijing, China) was used to perform real-time PCR in an ABI
7500 Fast Real-Time PCR System (Foster City, CA, USA). Every re-
action was performed at least twice. The relative amount of each
target mRNA was normalized to the B-actin mRNA level. Informa-
tion on all the primers is shown in Table S1. The relative gene
expression was calculated using the 2-88C hormalized to B-actin
expression.

2.9. Western blot analysis

Samples were homogenized in RIPA lysis buffer (Beyotime
Biotechnology, Shanghai, China) supplemented with PMSF (Beyo-
time Biotechnology, Shanghai, China). The protein concentrations
were determined by using a BCA Protein Assay kit (Beyotime
Biotechnology, Shanghai, China) according to the manufacturer’s
instructions. After SDS-PAGE, protein was transferred to a poly-
vinylidene fluoride (PVDF) membrane through electrophoretic
transfer. The membrane was blocked in TBST which contained 5%
nonfat dry milk at room temperature for 2 h. The blots were
incubated with primary antibodies overnight at 4 °C. Subsequently,
primary antibodies against cationic amino acid transporter-1 (CAT-
1), excitatory amino acid transporter 3 (EAAT3), peptide transporter
protein 1 (PepT1), mitochondrial fission factor (MFF), muscle at-
rophy F-box (atrogin-1), muscle RING-finger protein-1 (MuRF1)
and B-actin were added. The blots were incubated with primary
antibodies overnight at 4 °C. After thoroughly washing 3 times by
TBST, the membranes were incubated with (HRP Goat Anti-Rabbit
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IgG [H + L]) for 2 h at 25 °C. After that, the membranes were
washed 3 times and antibody reactivity was detected by chem-
iluminescence through the BeyoECL Star fluorescence detection kit
(Beyotime Biotechnology, Shanghai, China). These bands were
imaged by a gel imaging and analysis system (UVItec, Cambridge,
Britain), and band intensity was assessed using the Image ] system,
with correction for background and loading controls. f-Actin was
used to normalize the intensity of the bands. The antibody infor-
mation mentioned above is shown in Table S2.

2.10. Determination of dystrophin in longissimus dorsi muscle

A 10% longissimus dorsi muscle homogenate (samples were
added to physiological saline at a 1:9 ratio) was first prepared. Total
protein concentration in the homogenate was detected by a BCA
Protein Assay kit (Beyotime Biotechnology, Shanghai, China). Then,
an ELISA kit was used to detect dystrophin in longissimus dorsi
muscle according to the instructions (Enzyme Biosystems,
Shanghai, China).

2.11. Histopathological examination

Muscle tissue fixed in 4% paraformaldehyde was embedded in
paraffin (5 pm thickness sections). The sections were stained with
hematoxylin and eosin (H&E). Then, they were captured by light
microscopy to observe the development of the longissimus dorsi
muscle at 200x magnification. Images were captured (scale
bar = 100 um) by a Nikon DS-F12 digital camera (Nikon, Tokyo,
Japan).

2.12. Statistical analysis

In this study, each pig was considered to be a statistical unit.
Firstly, the normality and homogeneity of variances of the data
were evaluated. Then, all data were analyzed by t-Test (SPSS 22.0;
IBM-SPSS Inc., Chicago, IL, USA) and visualized via GraphPad Prism
(Graph Pad Software Inc., San Diego, CA, USA). The data are
expressed as the mean + SEM. P < 0.05 was considered statistically
significant (* means P < 0.05 and ** means P < 0.01). A trend was
defined as 0.05 < P < 0.1.

3. Results

3.1. Feeding and growth of Min pig models and Yorkshire pig
models

In Exp. 1, chronic cold exposure significantly decreased average
daily gain (ADG), increased average daily feed intake (ADFI) and
feed to gain ratio (F:G) of Min pigs (Fig. 1B—D, P < 0.05). Similarly, in
Exp. 2, the ADG of Yorkshire pigs was decreased, the ADFI and F:G
were increased by chronic cold exposure (Fig. 1E—G, P < 0.05).

3.2. The ATTD of crude protein (CP) of Min pig models and Yorkshire
pig models

The ATTD of CP for Min pigs during chronic cold stress is shown
in Fig. 2A. Compared with the CM group, the ATTD of CP was
significantly increased in the CSM group (P < 0.05). The ATTD of CP
for Yorkshire pigs during chronic cold stress is shown in Fig. 2B. The
ATTD of CP in Yorkshire pigs was not altered (P > 0.05).

3.3. Trypsin activity of Min pig models and Yorkshire pig models

Trypsin activity in the duodenal mucosa and jejunal mucosa was
measured in Exp. 1 and Exp. 2. For Min pigs, trypsin activity in the
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duodenal mucosa and jejunal mucosa of the CSM group was not
changed by chronic cold stress (Fig. 2C and D and , P > 0.05).
However, for Yorkshire pigs, the trypsin activity in the jejunal
mucosa of the CSY group tended to be attenuated (Fig. 2F,
P = 0.064), although the trypsin activity in the duodenal mucosa
was not altered (Fig. 2E, P > 0.05).

3.4. Amino acid transport in the small intestine of Min pig models
and Yorkshire pig models

Next, we examined the effects of chronic cold exposure on AA
transporters in the small intestine. In Exp. 1, the mRNA and protein
expression of CAT-1, PepT1 and EAAT3 in the duodenal mucosa was
upregulated in the CSM group (Figs. 3A, and 4A—4C, P < 0.05). The
expression of AA transporters in the jejunal mucosa was not
affected by chronic cold exposure in the CSM group (Fig. 3B,
P> 0.05). For the ileal mucosa, the mRNA expression of PepT1 in the
CSM group was up-regulated (Fig. 3C, P < 0.05).

In Exp. 2, compared with the CY group, the expression of CAT-1,
PepT1, EAAT3 and 4F2hc in the duodenal mucosa of the CSY group
was not changed (Fig. 3D, P > 0.05). However, the expression of
CAT-1 in the jejunal mucosa of the CSY group was inhibited (Figs. 3E
and 4D, P < 0.05). The mRNA and protein expression of PepT1 and
EAAT3 in the ileal mucosa of the CSY group was also down-
regulated (Figs. 3F, 4E and 4F, P < 0.05).

3.5. Free amino acids and amino acid transporters in the
longissimus dorsi muscle of Min pig models and Yorkshire pig
models

The development of muscle tissue depends largely on AA. We
characterized the mRNA expression of AA transporters in the
longissimus dorsi muscle, and the levels of free AA in the long-
issimus dorsi muscle of Min pigs (Fig. 5C) and Yorkshire pigs
(Fig. 5E) under chronic cold exposure. In Exp. 1, the expression of
LAT-2 in longissimus dorsi muscle was enhanced in the CSM group
(Fig. 5A, P < 0.05). Interestingly, glycine increased in the muscle of
the CSM group compared with the CM group (Fig. 5D, P < 0.05).

In Exp. 2, for the Yorkshire pig models, the expression of LAT-2 in
longissimus dorsi muscle was enhanced by chronic cold exposure
(Fig. 5B, P < 0.05). Surprisingly, the concentration of leucine also had
a tendency to be decreased (Fig. 5F, P = 0.096), and the concentra-
tion of isoleucine and valine in the CSY group was decreased (Fig. 5G
and H, P < 0.05). In particular, all 3 AA were BCAA.

3.6. The dystrophin concentration in muscle of Min pig models and
Yorkshire pig models

We focused on the dystrophin concentration in both models
during chronic cold exposure. In Exp. 1, the dystrophin concentra-
tion in Min pig models was not affected by chronic cold exposure
(Fig. 6A, P> 0.05). However, in Exp. 2, the dystrophin concentration
in the longissimus dorsi muscle was decreased in the CSY group
(Fig. 6B, P < 0.05).

3.7. The mitochondrial dynamic balance in the muscle of Min pig
models and Yorkshire pig models

In addition, we investigated the mitochondrial dynamic balance
in the longissimus dorsi muscle. In Exp. 1, the expression of PPARG
coactivator 1 alpha (PGC-1a), Mfn1, Mfn2, MFF, Fis1 and OPA1 was
not changed in the CSM group (Fig. 6C, P > 0.05). In Exp. 2, for the
Yorkshire pig models, MFF mRNA and protein expression was
inhibited in the longissimus dorsi muscle of the CSY group
compared with the CY group (Fig. 6D and G, P < 0.05).



T. Teng, X. Song, G. Sun et al.

Animal Nutrition 12 (2023) 360—374

A Crude protein C Duodenal mucosa D Jejunal mucosa
*
78- — < 300+ < 2201
. o o
5 5
£ : L] g 200 . .
S 2004 u =)
> =~ 1801
= = [ ]
= o 2
5 £ 160
< 1004 ©
® = 140
8 e ¢
o el o
F o . . F 120 : T
» » » » N N
c e © & S S
B Crude protein E Duodenal mucosa F Jejunal mucosa
80- < 300- g 400 P=0.064
9 o
" % L4 % (X}
g n £ 250- = £ 300-
o * o > o 2 $
g 767 * | z 2 o® =
= — -
E . ¥ 22 — = 2% . =
< 741 . © 0 um 7]
i 0 - s
c 1504 L £ 1001
724 - 7 2
o (=3
- 2
70 : y F 100 . r F 0 T ;
A K\ A A A A
9 & 9 & 9 &

Fig. 2. Effects of chronic cold exposure on the apparent total tract digestibility (ATTD) of crude protein and trypsin activity in small Intestine. (A) The ATTD of crude protein of Min
pig models. (B) The ATTD of crude protein of Yorkshire pig models. (C) Trypsin activity in duodenal mucosa of Min pig models. (D) Trypsin activity in jejunal mucosa of Min pig
models. (E) Trypsin activity in duodenal mucosa of Yorkshire pig models. (F) Trypsin activity in jejunal mucosa of Yorkshire pig models. Data are expressed as the mean + SEM, n = 6,
*P < 0.05. CM and CY indicate the control groups; CSM indicates the cold stress group; and CSY indicates the cold exposure group.

3.8. Chronic cold exposure induces muscle cell atrophy and
promotes protein degradation in Yorkshire pigs

Aiming at some negative effects of Yorkshire pig models during
chronic cold exposure, we focused on muscle morphology of York-
shire pig models in Exp. 2. As shown in Fig. 6E and F, notably, muscle
cell atrophy was observed in the longissimus dorsi muscle of the CSY
group compared with the CY group. Subsequently, expression of
genes related to muscle development was detected. The expression
of MyoD1 and Myf5 was not affected in the CSM group (P > 0.05).
The expression of MyoD1 and Myf5 in the longissimus dorsi muscle
was inhibited in the CSY group (Fig. S1, P < 0.05). Next, we investi-
gated the expression of key proteins in the protein degradation
pathway of Yorkshire pig models with muscular dysplasia induced
by chronic cold exposure. MuRF1 and atrogin-1 protein expression
was up-regulated in the CSY group (Fig. 6H, P < 0.05).

3.9. Glucose supplementation improves the ATTD of crude protein of
cold-exposed pig models

Based on the above results, we attempted to use glucose as an
energy supplement to improve AA transport and AA pools in the
muscle of pigs exposed to chronic cold exposure (Exp. 3, Fig. 7A). In
the absence of interaction between chronic cold exposure and
glucose supplementation, the ATTD of crude protein, the expres-
sion of key AA transporters in the intestinal mucosa and long-
issimus dorsi muscle of cold-exposed pigs supplemented with
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dietary glucose is characterized in Fig. 7. Dietary glucose supple-
mentation increased the ATTD of crude protein in cold-exposed
pigs (Fig. 7B, P < 0.05).

3.10. Glucose supplementation improves the expression of amino
acid transporters in the intestinal mucosa of cold-exposed pig models

Then, in Exp. 3, for the expression of key AA transporters in the
intestinal mucosa, CAT-1 mRNA and protein expression in the je-
junal mucosa, the expression of PepT1 mRNA and protein in the
ileal mucosa of the GS group was promoted (Fig. 7D—F, P < 0.05).
The expression of EAAT3 mRNA in the ileal mucosa was promoted
(Fig. 7E, P < 0.05), but protein levels were not altered (Fig. 7F,
P > 0.05). AA transporters in the duodenal mucosa were not
modulated (Fig. 7C, P > 0.05).

In addition, 4F2 heavy chain (4F2hc) and L-amino acid
transporter-2 (LAT-2) mRNA expression in the longissimus dorsi
muscle was not changed (Fig. 7G, P > 0.05).

3.11. Glucose supplementation improves AA pools and protein
degradation in longissimus dorsi muscles of cold-exposed pigs

Subsequently, in Exp. 3, we focused on the effects of dietary
glucose supplementation on AA pools and protein degradation in
longissimus dorsi muscles of cold-exposed Yorkshire pigs. We
characterized the AA pools in the longissimus dorsi muscle
(Fig. 8A). Interestingly, leucine and isoleucine concentrations were



T. Teng, X. Song, G. Sun et al.

A

Duodenal mucosa

c 59 *
) — " = CM
g —
g BEm CSM
Q.
x
o 3
§ *
14 24 |_|
£
Q
2 14
s
[T}
o oA
N N Ny <
A’ A A XS
& QQ’Q & bgm
C Ileal mucosa
c 2.59 I I
g = CM
® 2,07 mE CSM
Qo
x
@ 1,54
<
-
€ 1.04
[+}]
2 0.54
]
T
@ 0.0
N N ¢ <
A’ L A X
(‘Y' QQQ Q,V‘v. bgql
E Jejunal mucosa
c 2.09
_% O CY
g 1.54 * O CSYy
3 —
[
< 1.0
14
=
g 051
s
Q
X 0.0 T T T T
N N ) <
A’ A A X
s Q“Q @VY ‘3‘»

Animal Nutrition 12 (2023) 360—374

o v}

Jejunal mucosa

c 2.51
.% m CM
o 2.0 B CSM
o
x
T 1.5-
<
Z
X 1.01
(]
2 0.5
(]
°
@ 0.0-
N N ) (<]
A’ A A O
& Q“Q & ‘:('1.
D Duodenal mucosa
c 2.5-
'% BE CY
g 2.0 = CSY
Q.
x
o 1.5
<
2
X 1.0
[
2 0.54
]
o
0.0 T . : ;
N N <) (<]
A’ A A X
(;v. QQ'Q Q,Vy. bgq‘
F Ileal mucosa
c 2.0
£ I CY
7]
g 1.5" % % * D CSY
3 l H
< 1.0
n:
E
2 0.5
®
: i
© 0.0 . E : r
N N ) (<]
A’ A A SN
& QQ’Q @VY b{b

Fig. 3. Chronic cold exposure regulated the mRNA expression of amino acid transporters in small intestinal mucosa. (A) The duodenal mucosa of Min pig models. (B) The jejunal
mucosa of Min pig models. (C) The ileal mucosa of Min pig models. (D) The duodenal mucosa of Yorkshire pig models. (E) The jejunal mucosa of Yorkshire pig models. (F) The ileal
mucosa of Yorkshire pig models. Data are expressed as the mean + SEM, n = 6, *P < 0.05, **P < 0.01. CM and CY indicate the control groups; CSM indicates the cold stress group; and
CSY indicates the cold exposure group. CAT-1 indicates cationic amino acid transporter-1; PepT1 indicates peptide transporter protein 1; EAAT3 indicates excitatory amino acid

transporter 3; 4F2hc indicates 4F2 heavy chain.

increased in the GS group (Fig. 8B and D, P < 0.05), and valine also
tended to be upregulated (Fig. 8C, P = 0.093). Interestingly, elevated
levels of tyrosine were also detected in the GS group (Fig. 8E,
P < 0.05). The concentration of dystrophin in the longissimus dorsi
muscle of the GS group was increased compared with the Con
group (Fig. 8F, P < 0.05). Compared with the control group, dietary
glucose supplementation inhibited atrogin-1 expression in cold-
exposed pigs (Fig. 8G, P < 0.05). MuRF1 also had a tendency to be
suppressed (Fig. 8G, P = 0.09). Moreover, dietary glucose supple-
mentation significantly enhanced the expression of Myf5 in long-
issimus dorsi muscle of cold-exposed pigs (Fig. S2, P < 0.05).
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4. Discussion

Low temperature is one of the critical factors among various
environmental stressors that mammals have to face, especially in
northern latitudes during winter. Cold stress severely impedes the
regular growth of mammals and challenges the immune system
and metabolism. Early data have certainly established that cold
stress in livestock is common in winter (Young, 1983). Recent
studies have shown that long-term exposure of animals to low
temperatures inhibits growth, along with adverse effects such as
inflammation (Liu et al., 2019, 2022; Luo et al., 2019). As the
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Fig. 4. Analysis of the relative expression of amino acid transporter proteins in small intestinal mucosa. (A-C) Cationic amino acid transporter-1 (CAT-1), peptide transporter protein
1 (PepT1) and excitatory amino acid transporter 3 (EAAT3) in duodenal mucosa of Min pig models. (D) CAT-1 in jejunal mucosa of Yorkshire pig models. (E and F) PepT1 and EAAT3
in ileum mucosa of Yorkshire pigs. Data are expressed as the mean + SEM, n = 6, *P < 0.05. CM and CY indicate the control groups; CSM indicates the cold stress group; and CSY

indicates the cold exposure group.

building blocks of peptides and proteins, AA are necessary for all
life-sustaining processes. Normal AA metabolism is an important
process to sustain life (Keutgen and Pawelzik, 2008). AA trans-
porters are responsible for the exchange and flow of free AA be-
tween tissues and blood. However, it is unclear how chronic cold
exposure modulates small intestinal AA transporters and muscle
AA pools, both during cold adaptation and during non-cold adap-
tation. In this research, firstly, we investigated the effects of long-
term low temperature on the utilization of AA using Min pigs and
Yorkshire pigs as models. In order to adapt to the cold, the initial
body weight of Min pigs was different from that of the Yorkshire
pigs, but they were both in the stage of rapid growth. The results
showed that the ATTD of crude protein in the CSM group was
enhanced, which was not observed in the CSY group. This suggested
a possibility in the Min pig model that there exists a mechanism to
improve the utilization of crude protein in the diet, although the
growth rates of both Min pigs and Yorkshire pigs were limited by
chronic cold exposure. Diet is the primary modality for mammals to
obtain exogenous AA. Dietary protein is hydrolyzed by proteases
and broken down into di- and tripeptides and free AA (Vranova
et al., 2013; Gao et al., 2020). The small intestinal is the primary
place for digestion and absorption of crude protein in animals (Liu
et al., 2020), especially the duodenum and jejunum. This depends
on trypsin in the intestinal lumen. Trypsin is a typical digestive
enzyme that is secreted by the pancreas (Shen et al., 2013). Trypsin
is produced by serine proteases and secreted in an inactive tryp-
sinogen form by pancreatic acinar cells, and released into the in-
testinal lumen at the duodenum (Ferrari et al., 2021). We examined
the effects of chronic cold stress on trypsin activity in duodenal and
jejunal mucosa. The results showed that the trypsin activity in je-
junal mucosa had a trend toward inhibition in the CSY group,
suggesting that protein digestion ability was weakened. Studies
have shown that chronic cold stress modulates intestinal inflam-
matory cell infiltration, intestinal development and mucosal barrier
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function (Liu et al., 2019; Sun et al., 2022). Thus, chronic cold
exposure may dilute the ability for the small intestine to digest
crude protein by inducing damage to the small intestine.

The absorption of exogenous AA in the intestine determines the
metabolism or deposition of AA in extraintestinal tissues (Baker,
2009; Rezaei et al., 2013). This process relies on AA transporters
and peptide transporters. AA transporters have distinctive sub-
strate specificities (Prasad et al., 1999; Closs et al., 2006). Currently,
2 modes of AA transport are recognized. The first state is one AA is
transported into the cell in exchange for the excretion of another
AA (Verrey et al., 1999; Bode, 2001; Meier et al., 2002). The second
pathway is to transport AA by coupling of Na*, K*, H (Broer, 2002).
The flow of AA in tissues and organs is regulated by AA transporters.
They are actively involved in maintaining AA homeostasis. CAT-1 is
a member of the sodium-independent cationic AA transporters that
transport arginine specifically, and it also has a high affinity for
lysine (Liao et al., 2008; Chafai et al., 2017; He et al., 2020). Asan H™
dependent peptide transport protein, PepT1 is responsible for the
absorption of oligopeptides (mainly dipeptides and tripeptides)
and peptide-derived substances (Hu et al., 2008; Xu et al., 2014).
EAAT3 in the small intestine can transport free anionic AA, such as
glutamate, and also mediates the uptake of cysteine (Chen and
Swanson, 2003; Fan et al., 2004; Ye et al., 2016). We found that
the mRNA and protein expression of CAT-1, PepT1 and EAAT3 in
duodenal mucosa were upregulated in the CSM group. Moreover,
PepT1 mRNA expression in ileal mucosa was also increased in the
CSM group. These results indicated that the small intestine of Min
pigs has a stronger ability to transport AA in the diet under chronic
cold exposure. This was an important reason for the increase of
ATTD of crude protein induced by low temperature. Previous
studies have shown that the small intestine of animals exposed to
low temperatures spontaneously increases absorption area to
enhance the use of nutrients in diet (Chevalier et al., 2015). This
may also be one of the reasons why Min pigs are better adapted to
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cold and have higher intake of AA in the diet. However, of note, the
results for AA transporters in the small intestine of Yorkshire pig
were reversed. The mRNA and protein expression of CAT-1 in the
jejunal mucosa of the CSY group were inhibited. Furthermore, the
mRNA and protein expression of PepT1 and EAAT3 in the ileal
mucosa in the CSY group were also inhibited. These data indicated
that the absorption of exogenous free AA in Yorkshire pigs under
chronic cold exposure was limited. Previous studies have shown

that chronic cold stress induces intestinal damage (Su et al., 2018;
Liu et al,, 2019). AA transporters were restricted in Yorkshire pigs
during chronic cold exposure, likely due to impaired intestinal
development. However, additional evidence is required. There is
plenty of evidence that energy deprivation can exacerbate intesti-
nal and muscle injury (Steinberg and Kemp, 2009; Zhou et al,,
2011). In this study, we attempted to increase the energy intake
of pigs by adding glucose to the diet. We found that glucose
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supplementation in the diet promoted the mRNA and protein
expression of CAT-1 in jejunal mucosa and PepT1 in the ileal mu-
cosa of a cold-exposure Yorkshire pig model. AA transport in the
small intestine was improved. This may also be responsible for the
increased ATTD of crude protein in the GS group.
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The presence of proteinogenic AA in the diet is vital for muscle
growth. Providing the AA needed to synthesize muscle protein
requires an adequate intake of dietary protein. We characterized
free AA in the longissimus dorsi muscle of Min pigs and Yorkshire
pigs under chronic cold exposure. Interestingly, there were large
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differences between Min pigs and Yorkshire pigs. Our data showed
that the concentration of glycine was increased in the longissimus
dorsi muscle of the CSM group. Glycine, as non-essential AA, is the
precursor of glutathione biosynthesis. Glycine and serine are
interconvertible via serine hydroxymethyl transferase (He et al.,
2018; Zhou et al., 2018). During chronic cold exposure, glycine
levels in the longissimus dorsi muscle increased, which was
beneficial for enabling the antioxidant system to resist oxidative
damage induced by chronic cold exposure. Conversely, the con-
centration of valine, leucine and isoleucine in the longissimus
dorsi muscle of the CSY group decreased. These 3 essential AA
form the BCAA family. Skeletal muscle is a major site of BCAA
utilization. BCAA can be converted into energy directly and
improve muscle function. Dietary supplementation of BCAA sup-
presses muscle loss (Magne et al., 2013; Wall and van Loon, 2013),
probably due to upregulation of mTOR (Jewell et al., 2013; Jackman
et al., 2017). Chronic cold exposure depleted BCAA in the long-
issimus dorsi muscle of Yorkshire pigs. This was perhaps because
cold stress forced the breakdown of BCAA in muscle tissue to
provide energy. The difference in free AA in the longissimus dorsi
muscle between Min pigs and Yorkshire pigs under chronic cold
exposure was of enormous interest to us. Therefore, we evaluated
the expression of AA transporters in the longissimus dorsi muscle.
Our results showed that the mRNA expression of LAT-2 in the
longissimus dorsi muscle of Min pigs and Yorkshire pigs was
enhanced by chronic cold exposure. LAT-2 is member of the
neutral AA transporters, which are involved in the transport of
BCAA (Fuchs and Bode, 2005; Wang and Holst, 2015). More neutral
AA were absorbed into the muscle in both models driven by
chronic cold exposure. Even so, the level of BCAA in the muscle of
cold-exposed Yorkshire pigs was still reduced. These results
demonstrated that chronic cold exposure depleted large amounts
of BCAA in the longissimus dorsi muscle in a non-cold adaptation
model. Notably, glucose supplementation elevated the level of
BCAA in the longissimus dorsi muscle. In addition, tyrosine levels
were also elevated. Apparently, the AA pools in muscle of cold-
exposed pigs were improved.

Skeletal muscle is the protein pool of the body, in which 60% of
proteins are stored within it in various forms. The regulation of
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skeletal muscle protein synthesis is aligned closely with systemic
and energy status. Skeletal muscle protein is widely mobilized into
AA during stress. The BCAA fulfil a unique role in skeletal muscle
protein metabolism. Studies have shown that enhanced catabolism
of BCAA is related to energy consumption and mitochondrial
function (Butte et al., 2015). Chronic cold exposure induced con-
sumption of BCAA. This observation evoked our curiosity about
mitochondrial function in the longissimus dorsi muscle. Subse-
quently, we assessed the expression of genes related to mito-
chondrial fusion and fission in the longissimus dorsi muscle under
chronic cold exposure. The balance of mitochondrial dynamics is
related to the production of ATP, especially in muscles that require a
vast amount of continuous energy (Rossman et al., 2020). Fusion
and fission of mitochondria are crucial remodeling processes
involved in the cellular adaptation of mitochondria (Pernas and
Scorrano, 2016; Wai and Langer, 2016). MFF promotes mitochon-
drial fission via recruiting DRP1 (Otera et al., 2010). In this research,
the expression of MFF in the longissimus dorsi muscle in the CSY
group was down-regulated by chronic cold exposure. This indicated
that mitochondrial fission might be inhibited in Yorkshire pigs
during chronic cold exposure, although PGC-1a expression was not
altered. Mitochondrial dysfunction caused by the lack of fission can
reduce ATP levels in cells and inhibit cell proliferation (Parone et al.,
2008). Chronic cold exposure promoted the likelihood of inhibition
of muscle cell proliferation in the Yorkshire pig model.

Skeletal muscle development depends on the balance between
protein synthesis and degradation (Bodine and Baehr, 2014). Dur-
ing fasting, muscular dystrophy and other states, the ubiquitin-
proteasome pathway is enhanced to accelerate protein degrada-
tion (Baptista et al., 2010; Hernandez-Garcia et al., 2016). It is the
major machinery responsible for protein degradation in eukaryotic
cells (Hochstrasser, 2009). Here, we assessed the expression of key
proteins in the ubiquitin-proteasome pathway in the longissimus
dorsi muscle of a Yorkshire pig model under chronic cold exposure.
The results showed that chronic cold exposure enhanced the
expression of atrogin-1 and MuRF-1 in the longissimus dorsi
muscle of a Yorkshire pig model. Obviously, the activation of these 2
systems is not conducive to the deposition of muscle protein. We
also investigated the effect of dietary glucose supplementation on
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Fig. 9. Effects of chronic cold exposure on amino acid transport and muscle development in small intestine of Min and Yorkshire pigs, and the relieving effect of dietary glucose
supplementation. AAs = amino acids; CAT-1 = cationic amino acid transporter-1; PepT1 = peptide transporter protein 1; EAAT3 = excitatory amino acid transporter 3; LAT-2 = L-
amino acid transporter-2; MFF = mitochondrial fission factor; MuRF1 = muscle RING-finger protein-1; Atrogin-1 = atrophy F-box. (+) Increased. (—) Decreased.
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protein degradation pathways in the longissimus dorsi muscle of
cold-exposed pigs. The results showed that protein degradation
was inhibited in the GS group, accompanied by down-regulation of
protein expression of atrogin-1 and MuRF-1. This facilitated protein
deposition in muscle under chronic cold exposure. Furthermore,
with increased protein degradation, we found that the concentra-
tion of dystrophin in the longissimus dorsi muscle was decreased in
the CSY group. Impaired structural integrity in the skeletal muscle
leads to reduced cell size and contractile capacity and different
myopathies in mammals (Bonaldo and Sandri, 2013). Weakness and
loss of muscle function is induced by the lack of dystrophin in
muscle (Godin et al,, 2012). The decrease in dystrophin concen-
tration induced by chronic cold exposure is detrimental to the
muscles of Yorkshire pigs. Myoblast differentiation antigen
(MyoD1) and myogenic factor 5 (Myf5) are members of the
myogenic regulatory factor family and play central roles in devel-
opment of muscle (Mohammadabadi et al., 2021) and they deter-
mine the fate of myoblasts. MyoD1 is also regarded as an important
marker of muscle cell proliferation and differentiation, and its
expression level regulates the growth rate muscle (Beilharz et al.,
1992). Myf5 also regulates muscle differentiation and myocyte
proliferation (Timmons et al., 2007). Studies have shown that in-
hibition of MyF5 results in reduced generation of skeletal muscle
(Plank et al., 2014). In our study, we found that both MyoD1 and
Myf5 expression were reduced in the longissimus dorsi muscle of
Yorkshire pigs under chronic cold exposure, which might restrict
muscle development. Combined with the above evidence, our
study suggested that chronic cold exposure was detrimental to
muscle development in Yorkshire pig models.

5. Conclusion

In summary, chronic cold exposure promotes AA transport in
the small intestine and muscle to actively adapt to low temperature
in Min pig models with better cold adaptation. Moreover, glucose
supplementation ameliorated the disturbance of small intestinal
AA transport and the destruction of muscle AA pools (mainly
BCAAs) induced by chronic cold exposure in poorly cold-acclimated
Yorkshire pigs (Fig. 9). Our findings provide new evidence for the
adverse effects of chronic cold exposure in pigs and suggest a
strategy for dietary glucose supplementation.
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