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Abstract: Spatial frequency domain imaging (SFDI) is a non-contact wide-field optical imaging tech-
nique for optical property detection. This study aimed to establish an SFDI system and investigate the
effects of system calibration, error analysis and correction on the measurement of optical properties.
Optical parameter characteristic measurements of normal pears with three different damage types
were performed using the calibrated system. The obtained absorption coefficient µa and the reduced
scattering coefficient µ’s were used for discriminating pears with different surface damage using a
linear discriminant analysis model. The results showed that at 527 nm and 675 nm, the pears’ quadru-
ple classification (normal, bruised, scratched and abraded) accuracy using the SFDI technique was
92.5% and 83.8%, respectively, which has an advantage compared with the conventional planar light
classification results of 82.5% and 77.5%. The three-way classification (normal, minor damage and
serious damage) SFDI technique was as high as 100% and 98.8% at 527 nm and 675 nm, respectively,
while the classification accuracy of conventional planar light was 93.8% and 93.8%, respectively. The
results of this study indicated that SFDI has the potential to detect different damage types in fruit
and that the SFDI technique has a promising future in agricultural product quality inspection in
further research.

Keywords: spatial frequency domain imaging (SFDI); projector-camera calibration; optical properties;
pears; damage detection; linear discriminant analysis (LDA)

1. Introduction

During the collection and transportation of fruit, collisions are likely to occur, causing
surface defects such as bruises, scratches and abrasions, while damaged fruits are prone to
decay and affect other normal fruits. To reduce unnecessary losses, it is essential to grade
fruits according to the degree of damage suffered. At present, the commonly used rapid
and non-destructive detection methods are mainly visible light imaging and hyperspectral
imaging techniques based on reflectance measurements [1,2], and Raman techniques based
on inelastic scattering [3]. However, these techniques find it difficult to achieve the detection
of fine defects and initial damage in fruits [4,5].

In recent studies, it has been suggested that the degree of small bruises in fruits can be
studied quantitatively by studying the variation in the obtained absorption coefficient µa
and the reduced scattering coefficient µ’s [6]. At present, the commonly used methods for
the detection of optical characteristic parameters mainly include the integrating sphere tech-
nique [7], the time-resolved (TR) technique [8] and the spatially resolved (SR) technique [9].
The integrating sphere technique is a destructive measurement method, and the sample
preparation process is tedious; it cannot achieve rapid non-destructive measurements and
it is often used as a reference method. TR techniques have high measurement accuracy, but
the system is expensive and requires the probe to be in contact with the sample, which
is difficult to apply in damage detection in fruits. SR technique can only perform point
measurements, although the equipment is cheaper and can be non-destructive. These
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methods were described in detail in a recent review by Lu et al. and can be consulted by
those interested [10].

Spatial frequency domain imaging (SFDI) is a non-contact wide-field optical imaging
technique, which was first proposed by Cuccia et al. [11]. This technique uses structured
light and specific optical transmission models to quickly and non-destructively acquire the
large-area optical properties of tissue objects. The principle of the technique is based on
diffusion theory, introducing a spatially modulated source into the steady-state diffusion
equation and realizing spatial resolution measurements. In the past 10 years, SFDI has
been mainly used in medical and biomedical fields, such as skin disease detection [12,13],
blood oxygen content detection [14,15], pig skin burn level detection [16], etc. In recent
years, SFDI has been applied to agricultural product quality detection, such as apple bruise
detection [17] and pear bruise detection [18,19].

In an SFDI system, the basic components include a projection device, a collection
device, optical components (polarizers, filters, neutral density filters, etc.) and so on. The
projection device can be a commercial projector or illumination components with light
emitting diodes (LEDs) [20,21]. The advantage of using illumination components is that a
collimated light source can be used and the fringe frequency accuracy is higher, while the
disadvantage is that the fringe frequency set by the optical grating is difficult to change.
The advantage of using a commercial projector is that changing the fringe frequency is
easier, while the disadvantage is that there is keystone distortion. After eliminating the
projection errors, the commercial projector is more suitable for SFDI research.

In optical imaging systems using a commercial projector as a light source, including
SFDI systems, the main external error sources include: asynchronous acquisition and
projection frame rates, keystone distortion of the projection [22], non-linearity of the pro-
jection intensity and image acquisition [23,24], and lens distortion [25], etc. The mismatch
between the refresh frame rate of the projector and the capture frame rate of the camera
will introduce additional harmonics in the captured image. Commercial projectors are
usually optimized for human vision, which results in the projected pattern being no longer
sinusoidal and not being able to be correctly demodulated, and the non-linearity of the
projection needs to be corrected. The keystone of the projection is mainly caused by the
angle between the projector and the projection plane. Because the beam of the projector is
non-collimated, the distance between the projection plane and the projector will affect the
frequency of the sinusoidal patterns projected on the sample. Therefore, calibration of the
SFDI system is a practical need and is important to reduce the system error and achieve
accurate measurement of the target. The main objective of this study was to calibrate the
system for SFDI and to use the calibrated SFDI system to obtain the optical characteristics
of pears for surface damage discrimination. The specific objectives of this study were (1) to
develop a SFDI system and its control software that can be used for optical property mea-
surements; (2) to perform projector–camera calibration of the SFDI system, and perform
keystone correction and frequency calibrations based on the calibration results; (3) to use
liquid phantoms to calibrate the measurement errors of the system and calculate the µa and
µ’s of ‘crown’ pears; (4) to discriminate the normal pears and pears with different damage
types based on the obtained µa and µ’s.

2. Materials and Methods
2.1. SFDI System Construction
2.1.1. Hardware

A schematic diagram of the developed SFDI system is illustrated in Figure 1. It mainly
includes a camera, a filter wheel, two polarizers, a rangefinder, a projector, a sample stage
and its controller, a computer and other fixtures. The system was built in a black box with
dimensions of 1000 × 1000 × 1000 mm3. It is a wide-field imaging system using a 16-bit
high-performance Scientific Complementary Metal-Oxide-Semiconductor (sCMOS) camera
(Iris 9TM, Photometrics, Inc., Tucson, AZ, USA). The area array of the sCMOS camera is
2960 × 2960 pixels, and the peak quantum efficiency (QE) is greater than 73%. During
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the camera acquisition process, the sCMOS camera is cooled down to around 0 ◦C at an
ambient temperature of 30 ◦C to minimize dark current. The camera was connected to the
computer through the manufacturer’s paired peripheral component interconnect express
(PCI-Express) capture card, which simultaneously implemented camera control and data
transmission, and greatly increased the transmission speed of 16-bit image data. A large-
aperture lens (LEM2520CD-H2, Vision Datum Co., Ltd., Hangzhou, China) was mounted
on the camera. There was a filter wheel (FW102, Beijing Optical Century Instrument Co.,
Ltd., Beijing, China) and a polarizer (OCZ203, Beijing Optical Century Instrument Co.,
Ltd., Beijing, China) in front of the lens. Six band-pass filters (Mega-9 Co., Ltd., Shanghai,
China) were installed in the filter wheel. The distance between the camera and the sample
stage was about 400 mm, and the field of view was about 150 × 150 mm2. There was a
rangefinder (CD33, Optex Co., Ltd., Shiga, Japan) on the side of the camera to measure
the distance from the sample to the camera in the vertical direction, which affected the
frequency calibration.
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Figure 1. Schematic diagram of the developed SFDI system.

The light source was a Nippon electronic company (NEC) projector (NEC NP-V302WC,
NEC Corporation, Tokyo, Japan), and the color wheel of the projector was removed. There
was a neutral density filter (NE2R10 A, Thorlabs, Inc., Newton, NJ, USA) and a polarizer
(OCZ203, Beijing Optical Century Instrument Co., Ltd., Beijing, China) in front of the
projector. The neutral density filter can uniformly attenuate the light, and the polarizer in
front of the projector can be used in conjunction with the polarizer in front of the camera
lens to eliminate specular reflections.

In order to obtain a good projection effect, the optical axis of the projector and the
camera should be on the same plane and at a small angle to obtain sinusoidal structured
light and reduce specular reflection. Both the camera and the projector were installed above
the sample stage.

The sample stage consisted of a horizontal translation stage (MTS123, Beijing Optical
Century Instrument Co., Ltd., Beijing, China) and a vertical translation stage (MVS101,
Beijing Optical Century Instrument Co., Ltd., Beijing, China). Under the control of the
motor controller, the sample could be adjusted to the proper position. The horizontal
translation stage had a travel of 300 mm and a displacement resolution of 0.0032 mm. The
vertical translation stage had a travel of 55 mm and a displacement resolution of 0.1 mm.
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2.1.2. Software

As shown in Figure 2, the acquisition and control software of the SFDI system was
developed on the LabVIEW 2018 environment (National Instruments, Austin, TX, USA). In
the LabVIEW programming environment, software development kits (SDKs) provided by
camera manufacturers were used to implement camera control, projection–camera acqui-
sition synchronous operation, stage movement and camera–stage distance measurement.
A histogram of a single shot image was displayed during image acquisition and could
be used to determine whether the image was overexposed. The preprocessed projection
image was read from the specified folder in the computer by the software written in the
lab. Projection and shooting were performed sequentially, and a proper amount of delay
(1.5 s) was added to prevent the order of projection and shooting from being disordered.
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2.1.3. System Operation

Before collecting images, the parameters of the projector should be set—sharpness,
contrast, brightness, etc.—so that the projection contrast is high enough but not saturated.
The projection image was pre-processed by keystone correction. The picture size was set to
the projector’s standard resolution of 1280 × 800 pixels, which allowed the image to be
projected without loss of resolution.

Before shooting, the path of the projection image and the path to save the image were
set. The software automatically read the serial number of the picture, and read the image
to project or save the captured image in order. To ensure imaging quality, the exposure
time had to be set after each sample placement. A single image was taken, and the sample
position was observed and adjusted to the middle of the field of view. A histogram was
used to set the exposure time to increase the signal to noise ratio (SNR).

2.2. System Calibrations

The system calibration aimed to obtain an accurate projection of the gray response,
which is calibrated by a standard whiteboard:

Rac(x, fx) =
Iac(x, fx)

Iref
Rd.ref(f x) (1)

In the optical calibration and correction experiments, Iac(x,fx) is the reflected grayscale
of the different frequency sinusoidal patterns projected, Iref is the reflected grayscale of a
full white projected pattern, Rd,ref(fx) is the reflectance of a standard whiteboard (0.99 in this
study) (150 × 150 mm2, Guangzhou Jingyi Photoelectric Technology Co., Ltd., Guangzhou,
China) and Rac(x,fx) is the reflectance after calibration.
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2.2.1. Projector–Camera Calibration

The camera calibration was performed by MATLAB (The MathWorks, Inc., Natick,
MA, USA). The external parameter matrix of the camera was used to determine if the
camera was installed correctly.

After the camera calibration, a ceramic checkerboard was used for projector–camera
calibration. The gray code pattern was projected onto the ceramic checkerboard and de-
coded to obtain the relationship between the calibration board’s corner points and the
projection’s coordinates [26]. The gray code pattern was generated by Visual Studio 2017
(Microsoft Corporation, Redmond, WA, USA). After calibration, the internal parameter ma-
trix of the projector and the camera, the external parameter matrix of the projector–camera
setup, and the coordinates of the corner points on the camera image and the projected
pattern could be obtained. The calibration result was judged by the reprojection error.

The relative position of the projector and the camera was determined by the external
parameter matrix of the projector–camera setup, and the optical axis of the projector
and the camera were adjusted to the same plane. The height h of the projector from the
checkerboard plane and the projection angle (the pitch angle α and the yaw angle β) were
given by the external parameter matrix of the camera and the projector–camera setup. The
average pixel length of the checkerboard Xc,mean was obtained by calculating the average
distance between the coordinates of all corner points.

2.2.2. Keystone Correction

The existence of the projection angle will cause keystone distortion of the projected
pattern. The projection angles are the pitch angle α, the yaw angle β and the roll angle. In
actual installation, the pitch angle is inherent to the system, but the yaw angle and the roll
angle should be avoided as much as possible. The hardware design of this study can avoid
the existence of the roll angle. Therefore, in this study, a small amount of yaw error was
considered, and the roll angle error was ignored to simplify the calculation formula. The
effect of the pitch angle α and the yaw angle β on the projection was mainly considered,
and the effect of keystone distortion was minimized through error parameters.

The method of projector keystone correction in this study is similar to the inverse
perspective transform [27]. The original projection image was used to generate a corrected
projection image through inverse perspective transformation, and then an image without
keystone distortion was projected. The specific steps were as follows:
1© Use the projector’s calibration parameters and the original image to generate point

coordinates of the world coordinates plane, where the set angle was opposite to the
actual angle of the projector.

2© Convert the scattered point coordinates into pixel coordinates to obtain a corrected
projection image.

3© Calculate the error and set the projection image at different angles until the error has
been minimized.

A simplified correction formula can be obtained when the roll angle is ignored.
Pi = {pp, qp, 1, 1} is a point in the image plane of projector, pp and qp represent pixel
coordinates, and Pg is a point on the corresponding checkerboard plane. The relationship
between the two is Pg = Tg

i Pi, where:

Tg
i = h


− 1

fu
c2

1
fv

s1s2
1
fu

cuc2 − 1
fv

cvs1s2 − c1s2 0
1
fu

s2
1
fv

s1c1 − 1
fu

cus2 − 1
fv

cvs1c2 − c1c2 0
0 1

fv
c1 − 1

fv
cvc1 + s1 0

0 − 1
hfv

c1
1

hfv
cvc1 − 1

h s1 0

 (2)

where α is the pitch angle; β is the yaw angle; c1 = cosα; s1 = sinα; c2 = cosβ; s2 = sinβ; h is
the height of the projector from the checkerboard plane, given by the external parameter
matrix; and fu, fv, cu and cv represent the horizontal focal length, the vertical focal length,
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horizontal optical center coordinates and the vertical optical center coordinates of the
projector, respectively, given by the internal parameter matrix of the projector.

Pg = {xg, yg, −h, 1} represents the world coordinate point, which is also a point on the
checkerboard plane. The corrected image coordinate point Pic is calculated by Pic = Ti

gPg, where:

Ti
g =


fuc2+cuc1s2 cuc1c2 − s2fu −cus1 0

s2(c vc1 − fvs1) c2(c vc1 − fvs1) −fvc1 − cvs1 0
c1s2 c1c2 −s1 0
c1s2 c1c2 −s1 0

 (3)

Through this inverse process, pixel coordinates can be obtained from world coordi-
nates. After two steps of transformation, the original image can be transformed into a
keystone correction pattern.

The error is the average of the standard deviation of pixels in the vertical fringe
direction, that is, for an image with a m × n pixel area with a horizontal fringe:

ep = ∑n
i=1

stdcow(i)
n

(4)

where stdcow(i) represents the normalized pixel standard deviation of the i-th column.
Different pitch angles α and yaw angles β around the calibrated angle were set to

generate the corresponding keystone corrected patterns. After obtaining the reflectance
image, we calculated the keystone correction error by Equations (3) and (4) to find the
optimal keystone correction angle.

2.2.3. Frequency Calibration

Unlike the traditional 3D reconstruction of structured light, SFDI projects sinusoidal
structured light onto the surface of the object. It studies the process of projecting a sinu-
soidal surface light source to a highly scattering object. The calculations of µa and µ’s are
frequency sensitive [28], so the frequency at which the sinusoidal patterns are actually
generated needs to be calibrated.

For frequency calibration, an image of a ceramic checkerboard placed horizontally
on the sample stage and perpendicular to the camera’s optical axis was required. When
whiteboard or liquid phantom images are collected, the height of the vertical translation
stage needs to be adjusted so that the collection plane is at the same height to ensure that
the actual frequency does not change.

The camera calibration results can be used to calculate the average pixel length Xc,mean
of the checkerboard. The actual period of the projected pattern can then be calculated by
using Equation (5):

Tr

Tc
=

Xr

Xc,mean
(5)

where Tr represents the actual period of the projected pattern, Tc represents the pixel
period of the image captured by the camera, Xr represents the actual cell length of the
checkerboard (5 mm in this study) and Xc,mean represents the average pixel length of the
checkerboard image.

The ratio of the fringe generation period Tp to the actual period Tr is:

rp
r =

Tp

Tr
(6)

When the actual period required is known, the pixel period can be obtained by
the period ratio. First, a sinusoidal pattern was preset according to the actual projection
situation (the size of the pattern actually projected on the sample) with a period of Tp(0) = 40
pixels. This was projected onto a standard whiteboard to calibrate the image reflectance. A
region of interest (ROI) was selected and averaged along the direction of the vertical fringes
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to obtain a sinusoidal average reflectance curve. The number of fringe periods of the ROI
was calculated by the number of minimum points on the curve. Tc was calculated by the
pixel coordinates of the minimum points. The period ratio rp

r (0) could then be calculated.
Sixteen reference frequencies were used: 0 mm−1, 0.007 mm−1, 0.0084 mm−1,

0.0098 mm−1, 0.0112 mm−1, 0.0126 mm−1, 0.014 mm−1, 0.028 mm−1, 0.042 mm−1,
0.056 mm−1, 0.070 mm−1, 0.084 mm−1, 0.098 mm−1, 0.112 mm−1, 0.126 mm−1 and
0.14 mm−1. The expected actual period is the reciprocal of the reference frequency. By
using rp

r (0) and the 16 expected actual periods Tre(k) (k = 1,2 . . . ,16), the 16 projection
periods Tp(k) were calculated by Equation (6).

In the first step, the 16 generated images were projected and Tc(k) was calculated.
The 16 actual period verification values Tv(k) were then calculated by Equation (5). Corre-
sponding to the expected actual period Tre, the period percentage error et was:

et =

∣∣∣∣Tre − Tv

Tre

∣∣∣∣× 100% (7)

In the second step, we substituted Tv as Tr into Equation (6) and updated the 16
corresponding period ratios rp

r (k). Using the updated period ratios rp
r (k) and the expected

actual period Tre(k), the projection period Tp(k) was calculated again. The actual period
verification values Tv(k) and the relative period error et(k) were then calculated again.

2.2.4. Calibration of the Optical Properties

Phantoms are often used to verify the accuracy of a system or an algorithm. In this
study, TiO2 (T104950-500 g, Aladdin, Shanghai, China) was used as the scattering agent,
and Indian ink (Royal Talens, Apeldoorn, The Netherlands) was used as the absorber.
Different concentration gradients were set to linearly correct µa and µ’s.

In total, 6 wavelengths were used in this study: 460 nm, 503 nm, 527 nm, 630 nm,
658 nm and 675 nm. Two sets of liquid phantoms were set up, and each set of liquid
phantoms had 9 samples. Liquid phantoms in the first set were labeled #1 to #9, the TiO2
volume fraction was 0.1%, and the ink volume fraction ranged from 0.004% to 0.02% (with
an interval of 0.002%). Liquid phantoms in the second set were labeled #10 to #18, the ink
volume fraction was 0.006% and the TiO2 volume fraction ranged from 0.04% to 0.2% (with
an interval of 0.02%).

The reference value of µa of the liquid phantoms were calculated by the Lambert–Beer
law. A spectrometer (QE65pro, Ocean Insight Co., Ltd., Orlando, FL, USA) was used
to measure the collimated transmittance T of the pure absorption sample, and µa was
calculated by:

µa =
−ln(T)

d
=
−ln(I /I0)

d
(8)

where d is the optical path length of the pure absorption solution.
The reduced scattering coefficient µ’s of the liquid phantoms was calculated by Mie

scattering simulation. According to the refractive index, the volume fraction, the diameter
of the TiO2, the refractive index of deionized water and the wavelength, reference µ’s
values can be obtained by using the Mie program [29] based on MATLAB.

The three-phase pattern with a projection frequency of fx was applied to the liquid
phantoms. The three-phase demodulation was performed by using Equation (9), and the
reflectance was calibrated by the standard whiteboard using Equation (10):

Mac(x, fx) =

√
2

3

√
(I 1 − I2)

2+(I 2 − I3

)2
+(I 1 − I3)

2 (9)

Rd(x, fx) =
Mac(x, fx)

Mac,ref(x, fx)
Rd.ref(f x) (10)

where I1, I2 and I3 represent the reflection intensity of the sample collected by the three-
phase projected pattern, Rd(x, fx) represents the reflectance after calibration, Rd,ref(fx)
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represents the reflectance of the standard whiteboard, Mac(x, fx) represents the amplitude
envelope of the diffuse reflection light collected by the sample and Mac,ref(x, fx) represents
the amplitude envelope of the diffuse reflection light collected by the standard whiteboard.

After the reflectance had been calibrated, multi-frequency fitting inversion was per-
formed by Equation (11).

Rd(fx) =
3Aµ′ s/µtr(

µ′ e f f /µtr+1
)(

µ′ e f f /µtr+3A
) (11)

where:
A =

1− Reff
2(1 + Reff)

(12)

Reff= 0.636n + 0.668+0.71/n− 1.44/n2 (13)

µ′ e f f =

√
µe f f

2+(2πf x

)2
(14)

µe f f =
√

3µa(µ a+µ
′
s
)

(15)

where Rd(fx) represents the reflectance after calibration, A represents the proportional
constant, Reff represents the effective reflection coefficient, n represents the refractive
index. µ’eff represents the scalar attenuation coefficient in the spatial frequency domain,
µeff represents the effective attenuation coefficient and µtr = µa + µ’s represents the full
attenuation coefficient, where µa and µ’s refer to the absorption coefficient and the reduced
scattering coefficient, respectively.

For a set m of phantoms, the linearity error of the system due to TiO2 precipitation
and other reasons was corrected by:

k(µa)λ = ∑m
i=1

µa(i)ref/µa(i)mea
m

(16)

k(µ ′s)λ = ∑m
j=1

µ
′
s(j)ref/µ

′
s(j)mea

m
(17)

where µa(i)ref and µa(i)mea, respectively, represent the reference values and measured
values of µa for the i-th phantom; µ’s(j)ref and µ’s(j)mea represent the reference values and
measured values of µ’s for the j-th phantom, respectively; and k(µa)λ and k(µ’s)λ represent
the correction ratio of µa and µ’s, respectively.

Therefore:
µa,cal= k(µ a)λµa,mea (18)

µ
′
s,cal= k(µ ′s)λµ

′
s,mea (19)

where, respectively, µa,cal and µ’s,mea represent the calibrated values and measured values
of µa for the phantoms, and µ’s,cal and µ’s,mea represent the calibrated values and measured
values of µ’s the phantoms.

2.3. Sample Preparation

Eighty normal crown pears with no surface defects were purchased from a local fruit
store and placed in a laboratory at 19 ◦C (room temperature) and 55% humidity for about
24 h. All pears were equally divided into four groups: Group A was the normal group,
without any treatment. Group B was the bruise group. In a pendulum device, a 20 mm
diameter steel ball with a weight of 31.3995 g was released from a height of 0.3 m and hit
the equatorial part of the pear to cause slight bruises. Group C was the scratch group. A
razor blade was used to make a few light strokes near the equator of the pear to produce
shallow scratches. Group D was the abrasion group, for which sandpaper was gently
rubbed a few times near the equator of the pear, causing a slight abrasion (Figure 3).
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2.4. Discriminant Model Analysis

Linear discriminant analysis (LDA) is a supervised pattern recognition method [30],
which mainly projects high-dimensional pattern samples into the optimal discriminative
vector space to extract classification information and compress the dimensionality of the
feature space. Optimization analysis was performed using the Statistics and Machine
Learning Toolbox 11.3 in MATLAB 2018a.

Two LDA models were compared to assess the accuracy of the classification of pears
with different impairments using SFDI with spatially modulated light. The first model used
data from a subset of the SFDI data. The images were acquired when the spatial frequency
was 0 mm−1, which represents the dataset under conventional planar light irradiation. The
second model used the full SFDI dataset.

A ROI of 400 × 400 pixels (26 × 26 mm2) was selected for data processing, and a
region of 200 × 200 pixel points was generated by 2 × 2 binning to reduce the time for data
processing. Each sample was labeled and trained in the four categories (A (normal pear), B
(bruised pear), C (scratched pear) and D (scuffed pear)) as described above after inversion
to obtain µa and µ’s, and then averaged. The accuracy of the model was determined using
k-fold cross-validation for 5 folds.

3. Results and Discussion
3.1. Projector–Camera Calibration Results

Via Equation (1), the projected normalized reflectance image was obtained by a
standard whiteboard. Images of a standard whiteboard were obtained under a white field
and from projections at set frequencies.

As shown in Figure 4a, a total of 21 gray code patterns and their complementary
images were generated. The generated gray code pattern was projected onto a ceramic
checkerboard calibration board, as shown in Figure 4b. By changing the angle of the
calibration plate, and shooting about 10 groups in total, the result was considered to
be more accurate. Gray code decoding and projector calibration were realized through
open-source software [26]. The calibration software interface is shown in Figure 4c. The
reprojection error of the projector was 0.63 pixels, and the reprojection error of the camera
was 2.32 pixels. The reprojection error of the camera here was larger than the results
obtained by Moreno and Taubin [26]; this may be due to the fact that the parameters in the
program cannot be configured when using the software, but the reprojection error of the
projector was similar. Overall, the projector–camera calibration results are reliable.
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Figure 4. Gray code patterns: (a) generated gray code pattern; (b) captured image; (c) projector
calibration software.

After calibration, it was found that Xc,mean = 78.3 pixels, h = 527 mm, α = 18◦, β = 0.6◦

and the internal parameter matrix of the projector was (2116.8, 0, 670.4; 0, 2122.4, −186.8;
0, 0, 1).

3.2. Keystone Correction Results

Figure 5a shows the sinusoidal pattern without keystone correction, and Figure 5b
shows the keystone-corrected pattern. The keystone-corrected pattern was projected onto
a standard whiteboard. The reflectivity of the image was calculated by Equation (1), and
the reflectivity of the image was used to determine the correction effect. Figure 5c shows
the reflectivity of the image before correction, and Figure 5d shows the reflectivity of the
image after correction. The range of α was 12◦–22◦, with gradient of 1◦. The range of β
was 0◦–1◦, with a gradient of 0.1◦. As shown in Figure 5e, the minimum correction error
ep = 0.017 pixels, the corresponding pitch angle α = 20◦ and the yaw angle β = 0.5◦. If
the angle gradient were smaller, the number of images to be acquired would grow. If
the roll angle were added, the equation would become very complicated. However, the
hardware design of this study can also avoid the existence of a roll angle. The error after
keystone correction was very small, and it can be considered that the captured image has
no obvious deformation. After simplifying the correction process, the keystone can still be
corrected accurately.
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3.3. Frequency Calibration Results

After keystone correction, the actual frequency of the sinusoidal pattern was calibrated.
The average pixel period of the captured image Tc(0) was 158.2 pixels. The calculation
showed that the actual period of the projected pattern Tr(0) = 10.1 mm, and the period
ratio rp

r (0) = 3960 pixel m−1. The calculated value rp
r (0) was used as the initial period

ratio, and the required projection pixel period was calculated. The verification results were
obtained at each frequency, and the period ratio rp

r (k) was updated at each frequency by
Equations (5) and (6) and re-checked after the projection collection.

When the frequency was less than 0.014 mm−1, a complete sinusoidal pattern could not
be captured on the whiteboard. Therefore, only nine frequencies larger than 0.014 mm−1

were used for the calibration; other frequencies were estimated according to the frequency
calibration results. Frequency is the reciprocal of the period. The relationship between
the expected frequency and its two-step verification values at each frequency is shown in
Figure 6a. The relative error of period at each frequency was calculated by Equation (7).
As shown in Figure 6b, the average percentage error after calibration reduced from 2.1%
to 0.1%.
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3.4. Optical Property Calibration Results

Liquid phantoms were used to calibrate the optical properties measured by the SFDI
system. The reference values of µa and µ’s of the phantoms were calculated at six wave-
lengths. The relationship between the reference value of the optical properties and the
volume fraction is shown in Figure 7. The reference value of µa was calibrated linearly. The
reference values of µ’s was related linearly to the volume fraction of TiO2. Both µa and µ’s
increased with increasing wavelengths.
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values of µ’s.

The determination coefficients of the measured absorption coefficient µa and the ink
volume fraction at six wavelengths are shown in Table 1. This shows that the reference
values of µa and the volume fraction of ink are highly linearly related.

Table 1. Determination coefficients of the measured µa and the ink volume fraction at six wavelengths.

Wavelength (nm) 460 503 527 630 658 675

R2 0.9955 0.9964 0.9961 0.9965 0.9965 0.9963

The projection image was corrected and calibrated. The captured images were demod-
ulated in three phases after the ROI (300 × 300 pixels) was selected, and the reflectance
was calibrated. Multi-frequency fitting was used for inversion. After the optical properties
had been obtained, the measured values and the reference values were fitted linearly to
eliminate the linearity error of the system: the first set of data was used for µa calibration
and the µ’s test; the second set of data was used for the µa test and µ’s calibration.

The average error of the six selected wavelengths is shown in Table 2. The overall
average error of µa and µ’s at six wavelengths was less than 8.88% and 4.54%, respectively,
which is slightly better than the values reported by Matthew et al. in their recent study
(23% and 6%) [31]. Linear calibration of the liquid phantoms can make the measured
value of the sample closer to the true value. There is still some error in µa and µ’s after
the linear calibration, which means that there are still other non-linear errors, such as an
unstable light source [32], and theoretical errors of diffusion approximation [33], which
have noticeable impacts on the measurement of µa. In this study, the inversion method
of multi-frequency fitting was adopted. Other improved inversion methods [17] can be
adopted in further research.

Table 2. Average error of the measured optical properties at six wavelengths.

Wavelength (nm) 460 503 527 630 658 675 Average

Relative error (%)
µa 6.92 8.47 8.54 11.03 10.12 8.23 8.88
µ’s 4.02 5.08 4.55 6.21 4.76 2.6 4.54
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3.5. Damage Discrimination Results

Figure 8 shows the µa and µ’s pseudo-color plots of normal pears and three different
damage types (bruised, scratched and abraded) at 527 and 675 nm. It can be seen from the
figure that the µa of the damaged region is larger than that of the normal area, while µ’s
is the opposite, which is similar to other results in the literature [6,17]. Compared with
µa mapping, the type of damage is easier to identify in µ’s mapping and can be roughly
distinguished. This is due to the fact that a pear generally undergoes physical structural
changes when damage occurs, which affects the µ’s of the sample [18]. It can also be seen
that at 527 nm, both µa and µ’s are larger than at 675 nm, which is due to the fact that
the pear has a smaller absorption peak near 527 nm, while the µ’s of the pear tapers off
in visible (VIS) and near-infrared (NIR) range [34]. Secondly, it can be seen that there are
many spots in the figure, which are the pear’s epidermal breathing pores.
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From the results (Table 3) of the four classifications (normal, bruised, scratched and
abraded), it can be seen that the SFDI technique was better at detecting and classifying
pears with different damage types compared with the traditional planar light technique.
The classification accuracy at 527 nm was higher than that at 675 nm, which was probably
the result of the absorption peak of pears near 527 nm. When the classification results were
analyzed, it was found that bruised and scratched pears were misclassified more often,
which may be because both belong to minor damage and thus the average ua and u’s values
in the region are close. Hence, the pears were classified into three classes: normal, minor
damage and serious damage, and the same LDA method was used to classify them. The
results showed that the classification of the new method was more accurate; in particular,
the classification accuracy of the SFDI detection technique at 527 nm was up to 100%. In the
study of Zhang et al. [6], the optical properties of apples with different levels of bruising
were measured using integrating spheres and classified based on this, with an accuracy of
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92.5%. This further illustrates the feasibility of using optical properties for non-destructive
detection of early fruit damage.

Table 3. The five-fold cross-validation outcomes for two models.

Wavelength (nm) 527 675

Cross-validation accuracy
for the training set (%)

Four categories (bruised,
scratched and abraded)

0 mm−1 (planar) 82.5 77.5
All spatial frequencies (SFDI) 92.5 83.8

Three categories (normal, minor
damage and serious damage)

0 mm−1 (planar) 93.8 93.8
All spatial frequencies (SFDI) 100 98.8

Compared with the reference literature [18,35], the µa obtained in this experiment is
small and the µ’s is large. In order to further explore the reason for this, the peel of the
same batch of samples was removed for flesh image processing, and it was found that the
peel has a certain influence on the µa and µ’s of pears, which was reported in the study
of Hu et al. [36]. In addition, the experiment was only carried out at two wavelengths
(527 and 675 nm) and the near infrared part was not studied due to system limitations;
however, the pear had significant absorption peaks in the near infrared part [34], and the
SFDI system could be improved to carry out more wavelength experiments in the future.

4. Conclusions

In this study, an optical calibration and correction method was proposed for the SFDI
system. After optical calibration and correction, the accuracy of the system’s measurement
was verified by using liquid phantoms. Projector–camera calibration, projection keystone
correction and frequency calibration ensured that the projected pattern was not distorted
and made the experimental conditions closer to the ideal experimental conditions to reduce
the experimental error. Next, the optical parameters of normal pears and three different
damage types of pears were measured using the calibrated SFDI system, and the LDA
method was used for discrimination of pears with different surface damage types based
on the obtained µa and µ’s. Further studies can be implemented for investigating the
application prospects of the SFDI technique for the detection of agricultural products
and foodstuffs.

Author Contributions: Conceptualization, Y.L. and X.F.; methodology, Y.L. and X.F.; software, Y.L.
and X.J.; validation, Y.L. and X.J.; formal analysis, Y.L. and X.J.; investigation, Y.L. and X.J.; resources,
X.F.; data curation, Y.L.; writing—original draft preparation, Y.L. and X.J.; writing—review and
editing, Y.L. and X.J.; visualization, Y.L.; supervision, X.F.; project administration, X.F.; funding
acquisition, X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Fund of China (32071904), the
Natural Science Fund of Zhejiang Province (LY20C130008) and the Science Foundation of Zhejiang
Sci-Tech Univ. (ZSTU) (Grand No. 16022177-Y).

Acknowledgments: The authors thank the editors and anonymous reviewers for providing helpful
suggestions for improving the quality of this manuscript.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Su, W.H.; Sun, D.W. Fourier transform infrared and Raman and hyperspectral imaging techniques for quality determinations of

powdery foods: A review. Compr. Rev. Food Sci. Food Saf. 2018, 17, 104–122. [CrossRef]
2. Su, W.H.; Yang, C.; Dong, Y.; Johnson, R.; Page, R.; Szinyei, T.; Hirsch, C.; Steffenson, B.J. Hyperspectral imaging and improved

feature variable selection for automated determination of deoxynivalenol in various genetic lines of barley kernels for resistance
screening. Food Chem. 2021, 343, 128507. [CrossRef]

http://doi.org/10.1111/1541-4337.12314
http://doi.org/10.1016/j.foodchem.2020.128507


Foods 2021, 10, 2151 15 of 16

3. Rivero, F.J.; Ciaccheri, L.; González-Miret, M.L.; Rodríguez-Pulido, F.J.; Mencaglia, A.A.; Heredia, F.J.; Mignani, A.G.; Gordillo, B.
A Study of Overripe Seed Byproducts from Sun-Dried Grapes by Dispersive Raman Spectroscopy. Foods 2021, 10, 483. [CrossRef]

4. Li, J.B.; Huang, W.Q.; Zhao, C.J. Machine vision technology for detecting the external defects of fruits—A review. Imaging Sci. J.
2015, 63, 241–251. [CrossRef]

5. Martinsen, P.; Oliver, R.; Seelye, R.; McGlone, V.A.; Holmes, T.; Davy, M.; Johnston, J.; Hallett, I.; Moynihan, K. Quantifying the
diffuse reflectance change caused by fresh bruises on apples. Trans. ASABE 2014, 57, 565–572. [CrossRef]

6. Zhang, S.; Wu, X.; Zhang, S.; Cheng, Q.; Tan, Z. An effective method to inspect and classify the bruising degree of apples based
on the optical properties. Postharvest Biol. Technol. 2017, 127, 44–52. [CrossRef]

7. Hu, D.; Lu, R.; Huang, Y.; Ying, Y.; Fu, X. Effects of optical variables in a single integrating sphere system on estimation of
scattering properties of turbid media. Biosyst. Eng. 2020, 194, 82–98. [CrossRef]

8. Lurie, S.; Vanoli, M.; Dagar, A.; Weksler, A.; Lovati, F.; Zerbini, P.E.; Spinelli, L.; Torricelli, A.; Feng, J.; Rizzolo, A. Chilling
injury in stored nectarines and its detection by time-resolved reflectance spectroscopy. Postharvest Biol. Technol. 2011, 59, 211–218.
[CrossRef]

9. Chen, Y.W.; Chen, C.C.; Huang, P.J.; Tseng, S.H. Artificial neural networks for retrieving absorption and reduced scattering
spectra from frequency-domain diffuse reflectance spectroscopy at short source-detector separation. Biomed. Opt. Express 2016, 7,
1496–1510. [CrossRef] [PubMed]

10. Lu, R.; Van Beers, R.; Saeys, W.; Li, C.; Cen, H. Measurement of optical properties of fruits and vegetables: A review. Postharvest
Biol. Technol. 2020, 159, 111003. [CrossRef]

11. Cuccia, D.J.; Bevilacqua, F.; Durkin, A.J.; Tromberg, B.J. Modulated imaging: Quantitative analysis and tomography of turbid
media in the spatial-frequency domain. Opt. Lett. 2005, 30, 1354–1356. [CrossRef] [PubMed]

12. Travers, J.B.; Poon, C.; Rohrbach, D.J.; Weir, N.M.; Cates, E.; Hager, F.; Sunar, U. Noninvasive mesoscopic imaging of actinic skin
damage using spatial frequency domain imaging. Biomed. Opt. Express 2017, 8, 3045–3052. [CrossRef]

13. Travers, J.B.; Poon, C.; Bihl, T.; Rinehart, B.; Borchers, C.; Rohrbach, D.J.; Borchers, S.; Trevino, J.; Rubin, M.; Donnelly, H.
Quantifying skin photodamage with spatial frequency domain imaging: Statistical results. Biomed. Opt. Express 2019, 10,
4676–4683. [CrossRef]

14. Schmidt, M.; Aguénounon, E.; Nahas, A.; Torregrossa, M.; Tromberg, B.J.; Uhring, W.; Gioux, S. Real-time, wide-field, and
quantitative oxygenation imaging using spatiotemporal modulation of light. J. Biomed. Opt. 2019, 24, 071610. [CrossRef]
[PubMed]

15. Chen, M.T.; Durr, N.J. Rapid tissue oxygenation mapping from snapshot structured-light images with adversarial deep learning.
J. Biomed. Opt. 2020, 25, 112907. [CrossRef]

16. Rowland, R.A.; Ponticorvo, A.; Baldado, M.L.; Kennedy, G.T.; Burmeister, D.M.; Christy, R.J.; Bernal, N.P.; Durkin, A.J. Burn
wound classification model using spatial frequency-domain imaging and machine learning. J. Biomed. Opt. 2019, 24, 056007.
[CrossRef]

17. Sun, Z.; Xie, L.; Hu, D.; Ying, Y. An artificial neural network model for accurate and efficient optical property mapping from
spatial-frequency domain images. Comput. Electron. Agric. 2021, 188, 106340. [CrossRef]

18. He, X.; Fu, X.; Li, T.; Rao, X. Spatial frequency domain imaging for detecting bruises of pears. J. Food Meas. Charact. 2018, 12,
1266–1273. [CrossRef]

19. He, X.; Hu, D.; Fu, X.; Rao, X. Spatial frequency domain imaging for determining absorption and scattering properties of bruised
pears based on profile corrected diffused reflectance. Postharvest Biol. Technol. 2021, 179, 111570. [CrossRef]

20. Erfanzadeh, M.; Nandy, S.; Kumavor, P.D.; Zhu, Q. Low-cost compact multispectral spatial frequency domain imaging prototype
for tissue characterization. Biomed. Opt. Express 2018, 9, 5503–5510. [CrossRef]

21. Applegate, M.B.; Karrobi, K.; Angelo, J.P., Jr.; Austin, W.M.; Tabassum, S.M.; Aguénounon, E.; Tilbury, K.; Saager, R.B.; Gioux, S.;
Roblyer, D.M. OpenSFDI: An open-source guide for constructing a spatial frequency domain imaging system. J. Biomed. Opt.
2020, 25, 016002. [CrossRef]

22. Chae, S.; Yoon, S.; Yun, H. A Novel Keystone Correction Method Using Camera-Based Touch Interface for Ultra Short Throw
Projector. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA , 10–12
January 2021; pp. 1–3. [CrossRef]

23. Chen, X.; Wu, J.; Fan, R.; Liu, Q.; Xiao, Y.; Wang, Y.; Wang, Y. Two-Digit Phase-Coding Strategy for Fringe Projection Profilometry.
IEEE Trans. Instrum. Meas. 2020, 70, 1–9. [CrossRef]

24. Koolstra, K.; O’Reilly, T.; Börnert, P.; Webb, A. Image distortion correction for MRI in low field permanent magnet systems with
strong B-0 inhomogeneity and gradient field nonlinearities. MAGMA 2021, 34, 631–642. [CrossRef]

25. An, X.; Li, X. LCD-based method for evaluating modulation transfer function of optical lenses with poorly corrected distortion.
Opt. Eng. 2021, 60, 063102. [CrossRef]

26. Moreno, D.; Taubin, G. Simple, accurate, and robust projector-camera calibration. In Proceedings of the 2012 Second International
Conference on 3D Imaging, Modeling, Processing, Visualization & Transmission, Zurich, Switzerland, 13–15 October 2012;
pp. 464–471. [CrossRef]

27. Aly, M. Real time detection of lane markers in urban streets. In Proceedings of the 2008 IEEE Intelligent Vehicles Symposium,
Eindhoven, The Netherlands, 4–6 June 2008; pp. 7–12. [CrossRef]

http://doi.org/10.3390/foods10030483
http://doi.org/10.1179/1743131X14Y.0000000088
http://doi.org/10.13031/trans.57.10355
http://doi.org/10.1016/j.postharvbio.2016.12.008
http://doi.org/10.1016/j.biosystemseng.2020.03.012
http://doi.org/10.1016/j.postharvbio.2010.10.005
http://doi.org/10.1364/BOE.7.001496
http://www.ncbi.nlm.nih.gov/pubmed/27446671
http://doi.org/10.1016/j.postharvbio.2019.111003
http://doi.org/10.1364/OL.30.001354
http://www.ncbi.nlm.nih.gov/pubmed/15981531
http://doi.org/10.1364/BOE.8.003045
http://doi.org/10.1364/BOE.10.004676
http://doi.org/10.1117/1.JBO.24.7.071610
http://www.ncbi.nlm.nih.gov/pubmed/30868804
http://doi.org/10.1117/1.JBO.25.11.112907
http://doi.org/10.1117/1.jbo.24.5.056007
http://doi.org/10.1016/j.compag.2021.106340
http://doi.org/10.1007/s11694-018-9740-5
http://doi.org/10.1016/j.postharvbio.2021.111570
http://doi.org/10.1364/BOE.9.005503
http://doi.org/10.1117/1.JBO.25.1.016002
http://doi.org/10.1109/icce50685.2021.9427614
http://doi.org/10.1109/TIM.2020.3032185
http://doi.org/10.1007/s10334-021-00907-2
http://doi.org/10.1117/1.oe.60.6.063102
http://doi.org/10.1109/3DIMPVT.2012.77
http://doi.org/10.1109/ivs.2008.4621152


Foods 2021, 10, 2151 16 of 16

28. He, X.; Jiang, X.; Fu, X.; Gao, Y.; Rao, X. Least squares support vector machine regression combined with Monte Carlo simulation
based on the spatial frequency domain imaging for the detection of optical properties of pear. Postharvest Biol. Technol. 2018, 145,
1–9. [CrossRef]

29. Mätzler, C. MATLAB Functions for Mie Scattering and Absorption. 2002. Available online: https://omlc.org/software/mie/
maetzlermie/Maetzler2002.pdf (accessed on 27 July 2021).

30. Paiva, D.N.A.; Perdiz, R.D.; Almeida, T.E. Using near-infrared spectroscopy to discriminate closely related species: A case study
of neotropical ferns. J. Plant Res. 2021, 134, 509–520. [CrossRef] [PubMed]

31. Applegate, M.B.; Spink, S.S.; Roblyer, D. Dual-DMD hyperspectral spatial frequency domain imaging (SFDI) using dispersed
broadband illumination with a demonstration of blood stain spectral monitoring. Biomed. Opt. Express 2021, 12, 676–688.
[CrossRef]

32. Gioux, S.; Mazhar, A.; Cuccia, D.J. Spatial frequency domain imaging in 2019: Principles, applications, and perspectives. J. Biomed.
Opt. 2019, 24, 071613. [CrossRef]

33. Bodenschatz, N.; Brandes, A.R.; Liemert, A.; Kienle, A. Sources of errors in spatial frequency domain imaging of scattering media.
J. Biomed. Opt. 2014, 19, 071405. [CrossRef] [PubMed]

34. He, X.; Fu, X.; Rao, X.; Fang, Z. Assessing firmness and SSC of pears based on absorption and scattering properties using an
automatic integrating sphere system from 400 to 1150 nm. Postharvest Biol. Technol. 2016, 121, 62–70. [CrossRef]

35. Qin, J.; Lu, R. Measurement of the optical properties of fruits and vegetables using spatially resolved hyperspectral diffuse
reflectance imaging technique. Postharvest Biol. Technol. 2008, 49, 355–365. [CrossRef]

36. Hu, D.; Lu, R.; Ying, Y. Spatial-frequency domain imaging coupled with frequency optimization for estimating optical properties
of two-layered food and agricultural products. J. Food Eng. 2020, 277, 109909. [CrossRef]

http://doi.org/10.1016/j.postharvbio.2018.05.018
https://omlc.org/software/mie/maetzlermie/Maetzler2002.pdf
https://omlc.org/software/mie/maetzlermie/Maetzler2002.pdf
http://doi.org/10.1007/s10265-021-01265-9
http://www.ncbi.nlm.nih.gov/pubmed/33826013
http://doi.org/10.1364/BOE.411976
http://doi.org/10.1117/1.JBO.24.7.071613
http://doi.org/10.1117/1.JBO.19.7.071405
http://www.ncbi.nlm.nih.gov/pubmed/24474551
http://doi.org/10.1016/j.postharvbio.2016.07.013
http://doi.org/10.1016/j.postharvbio.2008.03.010
http://doi.org/10.1016/j.jfoodeng.2020.109909

	Introduction 
	Materials and Methods 
	SFDI System Construction 
	Hardware 
	Software 
	System Operation 

	System Calibrations 
	Projector–Camera Calibration 
	Keystone Correction 
	Frequency Calibration 
	Calibration of the Optical Properties 

	Sample Preparation 
	Discriminant Model Analysis 

	Results and Discussion 
	Projector–Camera Calibration Results 
	Keystone Correction Results 
	Frequency Calibration Results 
	Optical Property Calibration Results 
	Damage Discrimination Results 

	Conclusions 
	References

