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 The Role of Adrenomedullin in Cardiovascular Response  
to Exercise – A Review 

by 
Krzysztof Krzeminski1 

Adrenomedullin (ADM), the product of the vascular endothelial and smooth muscle cells, and cardiomyocytes, 
is considered to be a local factor controlling vascular tone, cardiac contractility and renal sodium excretion. The aim of 
this article was to review the existing data on the effect of different types of exercise on plasma ADM concentration in 
healthy men. The results of studies on the effect of dynamic exercise on the plasma ADM are contradictory. Some 
authors reported an increase in plasma ADM, while others showed a slight decrease or did not observe any changes. The 
inverse relationship between plasma ADM and mean blood pressure observed during maximal exercise support the 
concept that ADM might blunt the exercise-induced systemic blood pressure increase. Positive relationships between 
increases in plasma ADM and those in noradrenaline, atrial natriuretic peptide (ANP) or interleukin-6 observed 
during prolonged exercise suggest that the sympathetic nervous system and cytokine induction may be involved in 
ADM release. Increased secretion of ADM and ANP during this type of exercise may be a compensatory mechanism 
attenuating elevation of blood pressure and preventing deterioration of cardiac function. Studies performed during 
static exercise have showed an increase in plasma ADM only in older healthy men. Positive correlations between 
increases in plasma ADM and those in noradrenaline and endothelin-1 may indicate the interaction of these hormones 
in shaping the cardiovascular response to static exercise. Inverse relationships between exercise-induced changes in 
plasma ADM and those in cardiovascular indices may be at least partly associated with inotropic action of ADM on the 
heart. Interactions of ADM with vasoactive peptides, catecholamines and hemodynamic factors demonstrate the 
potential involvement of this peptide in the regulation of blood pressure and myocardial contractility during exercise. 
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Introduction 

There are two types of exercise, dynamic 
(isotonic) and static (isometric), depending on the 
kind of muscle contraction. Both dynamic and 
static exercise cause an increase in heart rate and 
cardiac output. During dynamic exercise the 
increase in cardiac output results mostly from an 
accelerated heart rate. Stroke volume also 
increases, due to a larger preload and myocardial 
contractility. Systolic blood pressure increases 
linearly with the workload and diastolic blood 
pressure shows only minor changes or tends to 
decrease in the normotensives. Total peripheral  
 

 
resistance decreases as a result of vasodilatation  
induced mainly by local metabolic factors in the 
working muscles.  

Static exercise in healthy people is 
characterized by a large increase in systolic and 
diastolic arterial blood pressure resulting from the 
combination of increased cardiac output and 
sympathetically mediated vasoconstriction in 
both visceral organs and inactive skeletal muscles 
(Victor et al., 1989a; Middlekauff et al., 1997; 
Momen et al., 2003). The increase in cardiac 
output results primarily from an accelerated heart  
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rate. Stroke volume during static hand grips at 
loads greater than 20% of the maximal voluntary  
contraction (MVC) can be significantly reduced 
due to the increased left ventricular afterload 
(Bezucha et al., 1982; Chapman and Elliot, 1988). 

Neural mechanisms of cardiovascular 
regulation during exercise 

The hemodynamic responses to exercise 
are regulated by central and peripheral 
mechanisms. The central mechanism, termed as 
“central command”, involves parallel activation of 
motor and cardiovascular centers (Goodwin et al., 
1972). The neural signals from the motor cortex 
irradiate to autonomic neurons in the brainstem, 
leading to sympathetic activation and 
parasympathetic withdrawal (Dipla et al., 2012; 
Iellamo, 2001; Nobrega et al., 2014; Williamson 
2010, 2015). The peripheral neural mechanism 
involves signals arising from contracting skeletal 
muscle receptors (mechanoreflex and 
metaboreflex), arterial baroreceptors (baroreflex) 
and arterial chemoreceptors (arterial 
chemoreflex). Reflex input from the exercising 
skeletal muscle to cardiovascular regulatory 
centers within the medulla oblongata has been 
termed as the “exercise pressor reflex” (Kaufman 
et al., 1984; McCloskey and Mitchell, 1972; Megan 
et al., 2011; Mitchell et al., 1983). The exercise 
pressor reflex is especially prominent during 
static exercise, where increases in intramuscular 
pressure limit the blood flow to active skeletal 
muscle. Both central command and the exercise 
pressor reflex stimulate cardiac sympathetic nerve 
activity and are involved in the resetting of the 
carotid baroreflex during exercise (Iellamo et al., 
1997; Gallagher et al., 2006; Tsuchimochi et al., 
2009).  

The exercise pressor reflex is triggered by 
stimulation of sensory receptors located on 
unencapsulated endings of group III (thinly 
myelinated fibers) and group IV (unmyelinated 
fibers) afferent nerve fibers. The endings of group 
III afferents terminate in the skeletal muscle 
collagenous connective tissue and respond mainly 
to mechanical stimuli (mechanoreflex), while the 
endings of group IV afferents terminate within the 
walls of small capillaries, venules and lymphatic 
vessels of skeletal muscle, and respond mainly to 
metabolic changes in the contracting muscles 
(metaboreflex). It has been shown that the group  
 

 
IV afferents release vasodilator peptides such as 
substance P and calcitonin gene-related peptide  
(CGRP) (Kruger et al., 1989; von During and  
Andres, 1990). Metabolic by-products following 
muscle contraction such as hydrogen ions, lactic 
acid, adenosine monophosphate (AMP), 
adenosine-5'-diphosphate (ADP), inosine 
monophosphate (IMP), diprotonated inorganic 
phosphate and reactive oxygen species have the 
ability to stimulate both metabo- and mechano-
receptors and therefore, play an important role in 
evoking the exercise pressor reflex (Green, 1997; 
Hanna and Kaufman, 2004; Kaufman et al., 1983; 
Kaufman and Rybicki, 1987; Rotto et al., 1990; 
Zając et al., 2015). It is considered that 
intramuscular acidosis is one of the most 
important factors that triggers metaboreflex-
mediated increases in muscle sympathetic nerve 
activity (Pryor et al., 1990; Rotto et al., 1989; Victor 
et al. 1988). It has been demonstrated that 
mechanical stimulation of muscle afferents 
contributes to the initial blood pressure response 
during contraction, while metabolic stimuli are 
necessary to maintain this response (Baum et al., 
1995). Endo et al. (2013) suggested that the muscle 
mechanoreflex also played an important role in 
mediating vasoconstriction within inactive limbs.  

The exercise pressure reflex has been 
shown to increase sympathetic nerve activity to 
the non-exercising muscle, heart and kidneys (Hill 
et al., 1996; Mark et al., 1985; McCloskey et al., 
1972; Momen et al., 2003; Saito, 1995; Saito et al., 
1990). In the heart, sympathetic stimulation 
increases heart rate and heart muscle contractility 
as well as accelerates atrioventricular conduction 
(Kaufman and Forster, 1996; Matsukawa et al., 
1994; Mitchell, 1983). Kaufman et al. (1984, 1996) 
showed that the magnitude of the cardiovascular 
reflex response to muscle contraction was 
dependent on active muscle mass and magnitude 
of force or tension production. Stebbins et al. 
(2002) found that increases in heart rate and mean 
arterial pressure as well as activation of central 
command and muscle metabolite-induced 
stimulation of the exercise pressor reflex during 
static and dynamic contraction in humans seemed 
to be similar when peak tension and tension-time 
index were equal. In the kidneys, enhanced 
sympathetic nerve activity causes arteriolar renal 
vasoconstriction, reduces the renal blood flow and 
glomerular filtration rate, increases renin release  
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with activation of the renin-angiotensin-
aldosterone system, increases tubular sodium and  
water reabsorption (Matsukawa et al., 1990; 
Middlekauff et al., 2001; Momen et al., 2003; 
Victor et al., 1989b). This results in increased 
peripheral vascular resistance and thus arterial 
blood pressure. The sympathetic efferent nerves 
to the adrenal medulla and hypothalamus control 
the secretion of adrenal catecholamines and 
vasopressin, which contribute to adjustments in 
vascular resistance.  

Activation of neurohormonal systems as 
well as shear stress enhance production and 
release of endothelin-1 (ET-1) by vascular 
endothelial cells (Wang et al., 2002). Endothelin-1 
causes vasoconstriction, increases sympathetic 
activity, potentiates the vasoconstrictor action of 
noradrenaline and stimulates the renin-
angiotensin-aldosterone system (Bruno et al., 
2011; Miller et al., 1989). Endothelin-1, 
catecholamines as well as hemodynamic shear 
stress stimulate production and secretion of 
adrenomedullin (ADM) and nitric oxide (NO) by 
vascular endothelial and smooth muscle cells to 
oppose vasoconstriction (Cardillo et al., 2000; 
Cardillo et al., 2009; Haynes and Webb 1998). 
Production and secretion of ADM are linked to 
the endothelin-B receptors subtype (ETB-R) 
(Jougasaki et al., 1998). Adrenomedullin reduces 
the activity of the sympathetic nervous system as 
well as secretion of endothelin-1 and 
catecholamines (Andreis et al., 1997; Del Bene et 
al., 2000; Khan et al., 1999; Kohno et al., 1995a; 
Tschakovsky et al., 2002; Yűksel et al., 2002).  

The aim of this article was to review the 
existing data on the effect of different types of 
exercise on plasma ADM concentration and to 
describe the relations between exercise-induced 
changes in plasma ADM and those in both 
humoral and hemodynamic factors.  

Structure of adrenomedullin 

Human ADM is a 52-amino acid peptide 
with one intramolecular disulfide bridge and with 
an amidated tyrosine at the carboxy terminus 
(Kitamura et al., 2012). Adrenomedullin gene is 
located on chromosome 11 and its expression can 
be regulated by substances acting through protein 
kinase A, protein kinase C and cytokine receptor 
gp130 (Ishimitsu et al., 2003). This peptide was 
first identified in pheochromocytoma of the  
 

 
human adrenal gland and belongs to the 
calcitonin gene-related peptide family. Synthesis  
of adrenomedullin starts with the precursor 
molecules, termed preproadrenomedullin and 
proadrenomedullin, mainly in endothelial and 
vascular smooth muscle cells in response to shear 
stress, ischemia, hypoxia, acidosis and under the 
influence of catecholamines, angiotensin II, 
vasopressin and cytokines (Hasbak et al., 2002; 
Kitamura et al., 2002; Krzeminski et al., 2006a, 
2006b; Nagata et al., 1999; Niebauer and Cooke, 
1996; Sugo et al., 1994, 1995a, 1995b). Its presence 
has also been shown in the adrenal medulla, 
heart, lung, gastrointestinal organs, kidneys and 
the central nervous system. Hirayama et al. (1999) 
found that the ADM and ET-1 could be 
synthesized and secreted from human cardiac 
myocytes and that the expression and function of 
ADM receptors were modulated by humoral and 
mechanical factors in myocardium. 
Immunohistochemical staining showed the 
presence of ADM in atria, ventricles and muscular 
layer of the aorta in the dog heart (Jougasaki et al., 
1995b). Some vasoactive substances, such as 
angiotensin II and ET-1 have been shown to 
stimulate the production and secretion of ADM 
from both vascular smooth muscle cells and 
cardiomyocytes (Mishima et al., 2001; Sugo et al., 
1995b; Tsuruda et al., 1998). Nishikimi et al. (2003) 
suggested that both mechanical stress and 
cytokines were important stimuli for ADM 
production in the heart. Tsuruda et al. (2000) 
reported enhanced gene expression and 
production of ADM in cultured cardiomyocytes in 
response to static stretching.  

Mechanisms of adrenomedullin action   

Adrenomedullin acts through calcitonin 
receptor-like receptor (CRLR) associated with one 
of the three receptor-activity-modifying proteins: 
RAMP1, RAMP2 or RAMP3 (Nikitenko et al., 
2006; Sexton et al., 2001). Co-expression of 
RAMP1 with CRLR produces a CGRP receptor, 
whereas co-expression of RAMP2 or RAMP3 with 
CRLR produces an ADM receptor (Eguchi et al., 
1994b; Kamitani et al., 1999; McLatchie et al., 
1998). However, Nagoshi et al. (2002) found that 
ADM could also bind with the CRLR/RAMP1 
complex. Some authors believe that ADM acts on 
the heart by specific membrane receptor AM-R 
cDNA located on the surface of rat  
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cardiomyocytes (Kapas et al., 1995; Miller et al., 
1996). This receptor appears to be a relatively  
unique member of a family of membrane 
receptors associated with G protein. The 
vasodilator action of ADM is mainly mediated by 
endothelium-derived NO (Feng et al., 1994; Hirata 
et al., 1995; Miura et al., 1995; Yukihito et al., 
2004). ADM increases endothelial NO synthase 
(eNOS) activity by elevating intracellular free 
calcium concentration (Boussery et al., 2004; 
Shimekake et al., 1995) or by activating 
phosphatidylinositol 3-kinase and protein kinase 
B/Akt (Nishimatsu et al., 2001). It has also been 
shown that ADM increases interleukin-1 (IL-1) -
induced NO synthesis by enhancing the 
expression of inducible NO synthase (iNOS) in 
vascular smooth muscle cells (Hattori et al., 1999; 
Ikeda et al., 1996a). 

Adrenomedullin increases intracellular 
cyclic adenosine monophosphate (cAMP) by 
stimulation of adenylyl cyclase and activation of 
protein kinase A (cAMP/PKA signaling pathway) 
as well as increases cyclic guanosine 3’5’-
monophosphate (cGMP) by stimulation of NO-
activated guanylyl cyclases and activation of 
cGMP-dependent protein kinase (PKG) 
(NO/cGMP/PKG signaling pathway) (Chini et al., 
1995; Coppock et al., 1996; Kohno et al., 1995b; 
Sato et al., 1997). Zhang and Hintze (2001) 
suggested that cAMP increased NO through 
activation of protein kinase A and subsequent 
phosphorylation of endothelial NOS by protein 
kinase B through a phosphatidylinositol 3-kinase–
mediated effect. It has been shown that ADM-
induced increases in NO are mediated by 
activation of protein kinase A and 
phosphatidylinositol 3-kinase (Boo, 2006; 
Nishimatsu et al., 2001).  

Adrenomedullin has also been shown to 
activate other signal transduction mechanisms 
including potassium-ATP channels (Sakai et al., 
1998) and c-fos expression (Moody et al., 1997; 
Sato and Autelitano, 1995). Furthermore, in an 
isolated perfused rat heart ADM induced both 
Ca2+ release from Ca2+ stores and activation of 
protein kinase C (PKC) via cAMP-independent 
mechanisms (Szokodi et al., 1998). Lamping (2001) 
suggested that relaxation of vascular smooth 
muscle to selected endothelium-independent 
agents was mediated by an interaction between  
cGMP and cAMP pathways.  
 

 
Physiological action of adrenomedullin 

Many studies have revealed a wide range 
of biological actions of ADM on cardiovascular, 
renal and endocrine systems, the central nervous 
system as well as cellular growth and 
differentiation (Hinson et al., 2000; Jougasaki et 
al., 1995a, 1995c; Lainchbury et al., 1997; Nicholls, 
2004; Parkes and May, 1997; Samson et al., 1999). 
Adrenomedullin is a potent vasodilator that 
reduces systemic and pulmonary vascular 
resistance, induces renal vasodilation, increases 
the glomerular blood flow and filtration rate, 
sodium excretion and myocardial contractility, as 
well as inhibits renin release, decreases plasma 
aldosterone and vasopressin levels (He et al., 
1995; Hinson, 2000). 

The vasodilatory action of ADM may be 
mediated by endothelium-derived NO and/or 
vasoactive prostanoids (endothelium-dependent 
vasodilation) as well as by an increase in 
intracellular cAMP (endothelium-independent 
vasodilation) (Eguchi et al., 1994a; Ishizaka et al., 
1994).      
   The effect of ADM on myocardial 
contractility is controversial. Some authors believe 
that ADM has a positive inotropic effect (Ihara et 
al., 2000; Szokodi et al., 1996, 1998), while others 
that it has a negative inotropic effect mediated by 
the NO-cGMP pathway (Ikenouchi et al., 1997) or 
has no effect on myocardial contractility 
(Lainchbury et al., 2000). It has been shown that 
ADM inotropic action is mediated via 
CRLR/RAMP2 or CRLR/RAMP3 complexes and 
involves the activation of adenylyl cyclase and 
cyclic AMP production in cardiomyocytes (Bell 
and McDermott, 1994; Ihara et al., 2000; 
McLatchie et al., 1998; Sato et al., 1997; Szokodi et 
al., 1998). It has also been shown that ADM has an 
ability to rapidly facilitate intracellular Ca2+ 
release and enhance cardiac contractility via 
mechanisms involving Ca2+ release from 
intracellular ryanodine- and thapsigargin-
sensitive Ca2+ stores, activation of protein kinase C 
and protein kinase A, as well as Ca2+ influx 
through L-type Ca2+ channels (Huang et al., 1999; 
Szokodi et al., 1998). In addition, ADM dilates the 
coronary artery and attenuates myocardial 
remodeling (Lainchbury et al., 1997; Nicholls, 
2004; Rademaker et al., 2003).  

Some authors reported a strong link 
between plasma ADM and the renin-angiotensin- 
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aldosterone system (Charles et al., 2000, 2003; 
Krzeminski et al., 2012). Angiotensin II increases 
the expression of ADM-mRNA and inotropic 
action of ADM onthe heart (Mishima et al., 2003; 
Onitsuka et al., 2005; Romppanen et al., 1997).  

Hypotensive, diuretic and inotropic 
properties of ADM and its interactions with 
vasoactive substances demonstrate the potential 
involvement of this peptide in the regulation of 
blood pressure and cardiac contractility as well as 
in maintenance of water and electrolyte 
homeostasis during exercise.   

Adrenomedullin and dynamic exercise  
Studies on the effect of dynamic exercise 

on plasma ADM concentration have yielded 
contradictory results. Tanaka et al. (1995) reported 
an increase of plasma ADM during three 4-min 
steps of submaximal cycle exercise (workloads: 
25, 50 and 75 Watts) in healthy subjects and in 
patients with various diseases. The increase of 
adrenomedullin was inversely related to systolic 
blood pressure. Similarly, Piquard et al. (2000) 
found a significant increase in plasma ADM 
during maximal bicycle exercise both in normal 
subjects and in the heart transplant recipients. 
Tanaka et al. (1995) suggested that the exercise-
induced quantity of ADM released to the 
circulation was too small to directly affect the 
blood pressure so it may rather reflect the 
increased activity as an autocrine or a paracrine 
factor. The paracrine mechanism was also 
suggested by Meeran et al. (1997). On the other 
hand, Nishikimi et al. (1997) and Morimoto et al. 
(1997) did not find any changes in plasma ADM 
during two 4-min steps of submaximal exercise 
(workloads: 40 and 80 Watts) in normotensive 
healthy subjects. Similarly, Poveda et al. (1998) 
and Dursun et al. (2012) did not observe any 
changes in plasma levels of ADM in response to a 
treadmill stress test or a cycle exercise test until 
volitional exhaustion in both young and old 
healthy volunteers. Nishikimi et al. (1997) 
suggested that ADM secretion did not respond to 
short-lasting stimuli since it was regulated by 
gene expression. 

The results of the study performed during 
graded bicycle ergometer exercise until 
exhaustion in healthy young men (Krzeminski et 
al., 2003) showed a slight decrease in plasma 
ADM concentration at the end of exercise. This  
 

 
was accompanied by significant increases in 
plasma noradrenaline (NA), adrenaline (A), 
growth hormone and lactate. Plasma ADM at the 
end of exercise correlated negatively with systolic 
blood pressure, mean blood pressure and blood 
lactate. A positive correlation was found between 
the exercise-induced decrements of plasma ADM 
and diastolic blood pressure. The authors 
concluded that the decrease in peripheral 
resistance and metabolic acidosis might be 
involved in the inhibition of ADM secretion 
during exhausting exercise in healthy young men. 
It seems to be very likely that a decrease in 
plasma ADM results from increased bounding of 
the peptide to the receptors on the endothelium 
and vascular smooth muscle cells or other tissues 
(Eguchi et al., 1994b; Ishiyama et al., 1993; Meeran 
et al., 1997; Nandha et al., 1996; Shimekake et al., 
1995). Meeran et al. (1997) suggested that the 
proximity of vascular smooth muscle cells to 
endothelial cells resulted in a much higher 
concentration of ADM around these cells than in 
the plasma. The authors concluded that ADM 
prevented the excessive blood pressure increase 
during exhausting exercise in healthy men. 

The results of the study performed during 
prolonged submaximal dynamic exercise (90 min 
at 70% of maximal oxygen uptake (VO2max)) in 
healthy young men (Krzeminski et al., 2006a) 
revealed a significant increases in plasma ADM 
and interleukin-6 (IL-6) concentrations at the 90th 
min of exercise. The plasma NA, A, atrial 
natriuretic peptide (ANP), lactate as well as 
plasma renin activity (PRA) were elevated already 
at the 30th min of exercise. Positive correlations 
were found between plasma ADM and NA, ANP 
or IL-6. The exercise-induced increases in plasma 
ADM correlated positively with those in plasma 
NA and inversely with changes in diastolic blood 
pressure. Plasma renin activity correlated 
positively with plasma NA and ANP. A 
significant positive correlation between plasma 
NA and PRA indicates the existence of a link 
between the increased activity of the sympathetic 
nervous system and stimulation of the renin-
angiotensin-aldosterone system during prolonged 
exercise in healthy men. A negative correlation 
between the exercise-induced changes in plasma 
ADM and diastolic blood pressure indicates a 
participation of ADM in the regulation of blood 
pressure during prolonged dynamic exercise. The  
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authors suggested that an increase  
in sympathetic nervous activity and cytokine 
induction may be involved in plasma ADM 
release during prolonged submaximal exercise 
and that the increase in plasma ADM and ANP 
secretion may be a compensatory mechanism 
against further elevation of blood pressure. In 
view of reports indicating that the ADM gene 
expression in vascular smooth muscle and adrenal 
cells is stimulated by protein kinase C and/or 
protein kinase A and submitted to feedback from 
cAMP level (DaPrada et al., 1979; Ishimitsu et al., 
1994), it is possible that noradrenaline stimulates 
the expression of mRNA-ADM in vascular 
smooth muscle cells and cardiac myocytes 
through α-1 (activation of protein kinase C) and β 
(activation of protein kinase A and cAMP) 
adrenergic receptors (Isumi et al., 1998). A 
positive correlation between plasma ADM and 
ANP suggests the possibility of direct stimulation 
of ADM secretion in the heart by hemodynamic 
changes. The results of experiments using 
cultured cardiomyocytes imply that mechanical 
stress and cytokines are important stimuli for 
ADM production in the heart (Dawson et al., 2005; 
Middleton et al., 2006). Horio et al. (1999) 
demonstrated that ADM augmented endothelin-
1-stimulated ANP secretion from cardiac 
myocytes at least partly via the cAMP-
independent mechanism. Some studies showed 
that ADM inhibited both ANP gene expression in 
cultured cardiac myocytes and ANP secretion 
from isolated atrium (Kaufman and Deng, 1998; 
Sato et al., 1995, 1997). 

Adrenomedullin and ANP suppress the 
activity of the renin-angiotensin-aldosterone 
system, antagonize the effect of endothelin-1 and 
angiotensin-II and thus prevent an increase in 
peripheral vascular resistance (TPR) as well as 
preserve the renal blood flow. Several studies 
revealed that ADM induced sustained reductions 
in plasma aldosterone levels despite a rise in 
plasma renin activity (Charles et al., 2001, 2003; 
Neri et al., 2002; Rademaker et al., 2002). Both of 
these peptides may contribute to the regulation of 
vascular tone through the cAMP-related 
mechanism and NO-cGMP signaling mechanisms 
(Hayakawa et al., 1999; Rebuffat et al., 2001).   

Thus, it seems likely that the increase in 
plasma ADM and ANP secretion during 
prolonged exercise may be a compensatory  
 

 
mechanism against further elevation of blood 
pressure and plays an important role in 
maintaining cardiac performance.  

Adrenomedullin and static exercise  
There are only few studies focusing on 

changes in plasma ADM concentration induced 
by static exercise in healthy men. The results of a 
study performed during static handgrip exercise 
(6 min at 30% MVC) in healthy young and older 
men (Krzeminski et al., 2002, 2012) showed 
significant increases in plasma ADM and ET-1 
concentration, and in PRA only in the older 
subjects. The increases in plasma NA and A were 
significantly greater in the older than in the 
younger subjects. The exercise-induced increases 
in plasma ADM correlated positively with those 
of NA, PRA, ET-1 and left ventricular ejection 
time (LVET) as well as negatively with changes in 
TPR, stroke volume (SV), the pre-ejection period 
(PEP) and PEP/LVET ratio.  

The authors suggested that a positive 
relationship between the exercise-induced 
changes in plasma ADM and those in plasma ET-1 
and NA might indicate the interaction of these 
hormones in shaping the cardiovascular response 
to static exercise in healthy elderly subjects. It 
seems likely that ADM, ET-1 and angiotensin II 
with their opposite vasoactive properties can 
contribute to the maintenance of vascular tone 
during static exercise in older men.  

The increased plasma catecholamines 
concentration indicates that static exercise causes 
a progressive activation of the sympathetic 
nervous system. Inverse relationships between 
exercise-induced changes in plasma ADM and 
those in TPR may be associated with vasodilator 
action of ADM on arterial vessels (Cockcroft et al., 
1997). It has been shown that ADM increases both 
intracellular cAMP and nitric oxide (NO) in 
vascular endothelial cells and smooth muscle cells 
by activation of adenylyl cyclase and inducible 
endothelial NO synthase (Eguchi et al., 1994a; 
Hattori et al., 1999; Ishizaka et al., 1994; Kohno et 
al., 1995; Zhang and Hintze, 2001). It has been 
demonstrated that cAMP-dependent pathway is 
involved in cytokine-induced NO production by 
vascular smooth muscle cells (Hirokawa et al., 
1994; Ikeda et al., 1996a; Imai et al., 1994; Koide et 
al., 1993). Some have authors found that ADM can 
act by both NO-dependent and potassium ATP  
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(KATP) channel-dependent mechanisms (Sabates et 
al., 1997; Terata et al., 2000). Bolotina et al. (1994) 
demonstrated that NO may directly activate 
calcium-dependent potassium channels in 
vascular smooth muscle cells. Shimekake et al. 
(1995) demonstrated that not only the cAMP-
related mechanism, but also the NO-cGMP 
pathway may be involved in the mechanism of 
ADM-induced vasodilation. Nitric oxide 
stimulates soluble guanylyl cyclase, producing 
increased concentrations of cyclic GMP in 
vascular smooth muscle cells. The cyclic GMP 
activates GMP-dependent kinases that decrease 
intracellular calcium, producing relaxation (Majid 
et al., 1996; Moncada et al., 1991). It has also been 
demonstrated that NO reduces the production of 
vasoconstrictive substances such as endothelin-1 
through a cGMP-dependent mechanism as well as 
inhibits the release of norepinephrine from 
sympathetic nerve terminals (Boulanger and 
Luscher, 1990). 

Inverse relationships between static 
handgrip-induced changes in plasma ADM and 
those in PEP, PEP/LVET ratio, peak velocity and 
mean acceleration of the blood flow in the 
ascending aorta, and mean velocity of 
circumferential fiber shortening might be at least 
partly associated with inotropic action of ADM on 
the heart (Krzeminski et al., 2009, 2012; 
Krzeminski and Pawlowska-Jenerowicz, 2012). It 
should be noted that the PEP/LVET ratio has been 
proposed as a sensitive inverse index of left 
ventricular myocardial performance (Lewis et al., 
1977; Martin et al., 1971; Weissler et al., 1969, 1972, 
1980). A significant correlation was found 
between the PEP/LVET ratio and the left 
ventricular ejection fraction determined 
angiographically in patients with cardiovascular 
diseases (Ahmet et al., 1972; Garrad et al., 1970; 
Lewis et al., 1980; Stack et al., 1981; Weissler et al., 
1980).                  

Similarly, the peak velocity and mean 
acceleration of the ascending aortic blood flow 
correlate well with the ratio of rise in pressure 
during isovolumetric contraction to the 
isovolumetric contraction time (peak dP/dt). The 
peak dP/dt ratio is sensitive to changes in 
myocardial contractility, insensitive to changes in 
the afterload and only mildly affected by changes 
in the preload (Rhodes et al., 1993). An inverse 
relationship between changes in left ventricular  
 

 
dp/dt and PEP was found in healthy man (Martin 
et al., 1971). 

Adrenomedullin has been reported to 
activate the adenylate cyclase-cAMP system in 
isolated cardiac myocytes, which is one of the 
major pathways for the regulation of myocardial 
contractility (Sato et al., 1997; Stangl et al., 2000; 
Szokodi et al., 1996). Some authors have reported 
that ADM increases cardiac contractility via a 
specific adrenomedullin, calcium-dependent 
mechanism. The authors have suggested that 
ADM-induced inotropic positive action that may 
involve Ca2+ release from intracellular ryanodine- 
and thapsigargin-sensitive Ca2+ stores, enhances 
Ca2+ influx from sarcoplasmic reticulum through 
L-type Ca2+ channels as well as activation of 
protein kinase C and protein kinase A (Bell and 
McDermott, 1994; Huang et al., 1999; Ihara et al., 
2000; McLatchie et al., 1998; Szokodi et al. 1998). 
Bäumer et al. (2002) reported that ADM can 
indirectly increase cardiac contractility by 
improving myocardial perfusion.  

Thus, it seems likely that ADM acts to 
increase left ventricular function during static 
exercise by both a decrease in systemic vascular 
resistance (afterload) and an increase in 
myocardial contractility. 

Conclusions 
There is little data available on the effect 

of different types of exercise on plasma 
adrenomedullin concentration in healthy man. 
Moreover, the results of studies on the effect of 
dynamic exercise on plasma ADM are 
contradictory. However, they provide evidence 
that the sympathetic nervous system and cytokine 
induction may be involved in ADM release 
during prolonged endurance exercise. Increased 
secretion of ADM and ANP during this type of 
exercise may be a compensatory mechanism 
attenuating elevation of blood pressure and 
preventing deterioration of cardiac function such 
as cardiac fatigue. The inverse relationship 
between plasma ADM and mean blood pressure 
observed during maximal exercise supports the 
concept that ADM might blunt the exercise-
induced systemic blood pressure increase. 

There is little data showing increases in 
plasma ADM during static exercise and the 
investigations were related to older healthy man. 
Positive correlations between exercise-induced  
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increases in plasma ADM and those in plasma 
noradrenaline and endothelin-1 indicate the 
interaction of these hormones in shaping the 
cardiovascular response to static exercise. 
Relationships between static exercise-induced 
changes in plasma ADM and those in 
cardiovascular indices might be at least partly  
associated with inotropic action of ADM on the 
heart. 

Interactions of ADM with vasoactive 
peptides, catecholamines and cardiovascular 
indices demonstrate the potential involvement of 
this peptide in the regulation of blood pressure 
and myocardial contractility during both dynamic  

 
 

 
and static exercise. It seems likely that ADM 
contributes not only to cardiovascular adaptation 
to exercise, but also to the prevention of acute and 
long-term cardiovascular complications in 
endurance athletes. Determination of plasma 
ADM levels might be considered as a useful and 
non-invasive tool for evaluation of hemodynamics 
and cardiac function. Thus, plasma ADM levels 
could potentially be used as a biomarker or early 
indicator of cardiovascular dysfunction  
in endurance athletes and powerlifters or 
weightlifters. 
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