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Abstract

During the winter of 2006 we measured nifH gene abundances, dinitrogen (N2) fixation rates and carbon fixation rates in the
eastern tropical and sub-tropical North Atlantic Ocean. The dominant diazotrophic phylotypes were filamentous
cyanobacteria, which may include Trichodesmium and Katagnymene, with up to 106 L21 nifH gene copies, unicellular group
A cyanobacteria with up to 105 L21 nifH gene copies and gamma A proteobacteria with up to 104 L21 nifH gene copies. N2

fixation rates were low and ranged between 0.032–1.28 nmol N L21 d21 with a mean of 0.3060.29 nmol N L21 d21 (1s,
n = 65). CO2-fixation rates, representing primary production, appeared to be nitrogen limited as suggested by low dissolved
inorganic nitrogen to phosphate ratios (DIN:DIP) of about 263.2 in surface waters. Nevertheless, N2 fixation rates
contributed only 0.5560.87% (range 0.03–5.24%) of the N required for primary production. Boosted regression trees
analysis (BRT) showed that the distribution of the gamma A proteobacteria and filamentous cyanobacteria nifH genes was
mainly predicted by the distribution of Prochlorococcus, Synechococcus, picoeukaryotes and heterotrophic bacteria. In
addition, BRT indicated that multiple a-biotic environmental variables including nutrients DIN, dissolved organic nitrogen
(DON) and DIP, trace metals like dissolved aluminum (DAl), as a proxy of dust inputs, dissolved iron (DFe) and Fe-binding
ligands as well as oxygen and temperature influenced N2 fixation rates and the distribution of the dominant diazotrophic
phylotypes. Our results suggest that lower predicted oxygen concentrations and higher temperatures due to climate
warming may increase N2 fixation rates. However, the balance between a decreased supply of DIP and DFe from deep
waters as a result of more pronounced stratification and an enhanced supply of these nutrients with a predicted increase in
deposition of Saharan dust may ultimately determine the consequences of climate warming for N2 fixation in the North
Atlantic.
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Introduction

Nitrogen is a key nutrient, limiting primary production

throughout much of the world’s upper oceans [1]. In tropical and

sub-tropical oligotrophic oceanic environments, biological fixation

of dinitrogen (N2) provides an important source of new nitrogen for

primary production and carbon export [2]. Nevertheless, our

knowledge of the diversity, abundance and distribution of

diazotrophs (N2 fixing micro-organisms) is limited and the factors

that control N2 fixation in the marine environment are still poorly

understood [3].

Until recently, the majority of N2 fixation studies in the Atlantic

Ocean have focused solely on Trichodesmium [4]. However, with the

increasing application of molecular genetic analyses, more

information is becoming available on the diversity, abundance

and distribution of diazotrophs [5,6]. It is now clear that a broad

suite of diazotrophs inhabit the oceans including diatom endosym-

bionts, Crocosphaera and other uncultured small unicellular diazo-

trophs, e.g. group A and C cyanobacteria, gamma A proteobac-

teria, and cluster III nifH phylotypes [5,7,8,9]. Furthermore, large

scale patterns in the distribution of diazotrophs are recognized [10].

In the western part of the North Atlantic Ocean Trichodesmium

biomass and N2 fixation rates are reported to be high [4,10],

whereas in the eastern part of the North Atlantic N2-fixing

unicellular cyanobacteria are reported to be responsible for a

significant part of the N2 fixation [3,11,12].

Several environmental factors have been reported to control N2

fixation by Trichodesmium. Laboratory experiments and field

observations suggest that N2 fixation by Trichodesmium is limited

to water temperatures between 20uC–32uC [13]. However, co-

variation of low oxygen, low nutrients and high light, due to a

more strongly stratified water column, could underlie the influence

of temperature on N2 fixation [14]. N2 fixation in natural

populations dominated by Trichodesmium can be controlled by

phosphorus or iron availability [15,16,17] or both [18]. Addition-

ally, enhanced concentrations of the nutrients nitrate (NO3
-),
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ammonium and organic nitrogen sources including urea and

glutamate may inhibit N2 fixation of Trichodesmium [19,20,21].

By contrast the environmental factors that control the

abundance and activity of unicellular diazotrophs are unknown.

Langlois et al. (2008) reported that most diazotrophic phylotypes

in the North Atlantic Ocean are almost completely restricted to

regions with NO3
- concentrations ,0.5 mM and are limited to

warmer seawater temperatures (20–30uC). The majority of the

diazotrophic community in general and the uncultured group A

unicellular cyanobacteria in particular, have been observed in

regions with seawater temperatures of about 22uC. The uncul-

tured c-proteobacterium A group (gamma A) and filamentous

group (Trichodesmium spp.) have been observed in conditions with

mean temperatures of ca. 24 and 25uC, respectively [3]. However,

N2 fixation by marine unicellular diazotrophs at seawater

temperatures as low as 15–19uC has been reported [22,23].

The tropical and sub-tropical North Atlantic Ocean, in the

vicinity of the Cape Verde islands, is a region receiving enhanced

Saharan dust inputs [24] and some of the highest N2 fixation rates

and diazotroph abundances have been reported here

[3,4,10,11,25,26]. To investigate which environmental variables

determine the distribution of the dominant diazotrophs and N2

fixation rates in this area we measured nifH gene abundance, N2

fixation and CO2 fixation rates, and an extensive set of

environmental variables including nanomolar concentrations of

phosphate (PO4
3-) and NO3

- + NO2
- (hereafter termed NO3

-),

dissolved Fe (DFe) and dissolved Al (DAl) as a proxy of dust inputs,

and a diverse set of biological variables. We used boosted

regression trees analysis (BRT) to investigate the relative

contribution of the environmental variables in explaining the

distribution of diazotrophs and the rates of N2 fixation.

Materials and Methods

Sampling
This study was conducted during a cruise in the vicinity of the

Cape Verde islands (26 January to 26 February 2006) on board the

research vessel FS Poseidon (cruise P332) (Fig. 1). Surface seawater

was pumped into a trace metal clean laboratory container using a

Teflon diaphragm pump (Almatec A-15, Germany) connected by

an acid-washed braided PVC tubing to a towed fish positioned at

ca. 3 m depth alongside the ship. Unfiltered seawater was

collected for N2 fixation measurements in an acid-cleaned 25 L

low density polyethylene carboy (Nalgene). Simultaneously,

material was collected by vacuum filtration (0.2 bar) of 1.5–2 L

onto 0.22 mm Durapore (Millipore) filters for analysis of nifH

genes. Within 10 minutes after sampling, these filters were stored

at 280uC until extraction in the laboratory. Samples for analysis

of DFe and DAl, Fe-binding ligands, and nanomolar PO4
3- and

NO3
- were collected from the towed fish and filtered in-line using a

filter capsule (Sartorius, Sartobran 300) with a 0.2 mm filtration

cut-off. Samples for total dissolved phosphate (TDP), total

Figure 1. The cruise track of the P332 cruise in January-February 2006.
doi:10.1371/journal.pone.0028989.g001
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dissolved nitrogen (TDN) and ammonium (NH4
+) were sampled

from the surface water bottles of the CTD rosette frame. Oxygen

concentrations were measured using a Seabird sensor on the CTD

frame. Photosynthetic variables were measured using active

fluorescence measurements performed by fast repetition rate

fluorometry (FRRF) using a Chelsea Instruments FASTtracka

FRRF (Chelsea Technologies Group, UK) mounted on the CTD

frame. Samples for Chlorophyll a (Chl a, 0.7 mm GF/F filtered

and stored at 280uC), dissolved silicate (SiO4
4-) and flow

cytometry were taken from the non-toxic underway surface

seawater supply (sampling depth ca. 4 m). Underway temperature

and salinity were determined using a thermosalinograph (Meer-

estechnik Elektronic, Germany).

N2 and C fixation rates
Rates of N2 fixation (15N uptake) and CO2 fixation (13C uptake)

were measured using the stable isotopes of N (15N2) and C

(H13CO3
-) [27]. All collection and incubation steps were carried

out using trace-metal clean techniques. N2- and CO2 fixation rates

were determined in an unfiltered, non-concentrated homogeneous

surface seawater sample collected in a 25 L carboy, and

subsequently incubated in quadruplicate in gas tight 4 L

polycarbonate bottles (Nalgene) equipped with Teflon lined butyl

septum caps. Any air bubbles were removed from the bottles

following the filling process. Trace quantities of 15N2 (99 atom %,

Cambridge Isotope Laboratories) were added (4 mL, 9% of

ambient N2) using a gas-tight syringe (Chromatographie-Zubhör,

Germany). The H13CO3
- solution (99 atom %, Brand company)

was added to a final concentration of 25 mM or 1.2% of ambient

TCO2 as H13CO3
- [16]. Incubations were performed on deck and

the temperature was controled with circulation of surface

seawater. At night, incubators were covered with a black plastic

sheet to protect the incubations against the influence of the ship’s

lights and during daytime the light was attenuated to 20% surface

irradiance using blue filters (Lagoon blue #172, Lee Filters, UK).

Underway seawater samples were typically collected in the

morning and evening but on occasions in the afternoon. Samples

were typically incubated for a minimum of 24 h and a maximum

of 31.8 h.

All incubations were terminated by on-board filtration under

gentle vacuum through a pre-combusted GF/F filter (Whatman,

UK). Filters were frozen (220uC) and stored for further analysis.

At the home laboratory the filters were dried at 60uC, acid-fumed

with concentrated HCl to remove carbonates, and then stored

over desiccant until analysis. Each filter was packed into a tin

capsule and pelletized for elemental and isotopic analysis.

Carbon and nitrogen total mass and isotope ratios were

measured at the Stable Isotope Laboratory at Stanford University,

Stanford, CA (USA) using a continuous-flow mass spectrometer

(Finnegan Delta Plus XL, Germany), coupled to an elemental

analyzer (Costech ECS 4010, USA). Acetanilide was used as a

mass calibration standard. Isotope values were calibrated using

international carbon (IAEA-CH-6) and nitrogen (IAEA-NO-3)

reference materials with assigned d 13C and d 15N values of

210.4% and +4.7%. Blank corrections were made following [28].

Analytical precision (1 standard deviation) was60.2% for d15N

and60.1% for d13C. Carbon and nitrogen isotope ratios are

reported in % relative to Vienna–PeeDee belemnite for d13C and

atmospheric N2 for d15N. The N2- and CO2 fixation rates were

calculated by isotope mass balance [27]. The solubility of N2 in

seawater was calculated according to Hamme and Emerson [29].

Removal of outliers (1.5 times below or above the first and third

quartile, respectively) resulted in 65 N2 fixation rates and

combined with missing values in 54 carbon fixation rates at 18

stations.

Reported averages are accompanied by ‘‘n’’, where ‘‘n’’ is either

the number of individual incubation bottles (bottles) in which the

variable was measured for each replicate bottle or the number of

experiments (experiments) where the same value for an environ-

mental variable was given to all replicates of one experiment.

Nutrients, trace metals and environmental data
Values for DFe and the organic complexation of Fe were taken

from Rijkenberg et al. [30]. Dissolved Al (,0.2 mm) was

determined using the fluorometric lumogallion method with a

spectrofluorometer (model Aminco, American Instruments Co.)

[31]. NO3
- and PO4

3- were measured at nanomolar concentra-

tions using a system comprised of a conventional segmented-flow

autoanalyser connected to two 2-metre liquid waveguide capillary

cells (WPI Inc, USA) and using miniaturized spectrophotometric

systems (Ocean Optics Inc., USA) [32]. NO3
- and PO4

3- were

determined colorimetrically using the sulphanilamide-NEDD and

molybdenum blue methods, respectively, achieving detection

limits of 1.5 nmol L21 NO3
- and 0.8 nmol L21 PO4

3- [32].

Micromolar concentrations of silicate were measured on a Scalar

Sanplus autoanalyser [33]. Ammonium was measured at nano-

molar concentrations based on the reaction of NH4
+ with

orthophtaldialdehyde in the presence of sulphite [34]. Reagents

were added immediately after collection of the samples and

fluorometric analysis (excitation at 370 nm and emission at

420 nm) was conducted on a Turner Design fluorometer

(TD700) after a 24 hours incubation.

Seawater samples for measurement of TDN were filtered using

combusted (450 uC, 4–6 h) glass-fibre filters (Whatman, GF/F).

The filtrate was transferred to a combusted (450 uC, 4–6 h) glass

ampoule and stabilised by acidification to pH 2 using hydrochloric

acid and subsequently flame-sealed. The ampoules were stored at

4uC until analysis. TDN was measured using high-temperature

combustion on a Shimadzu TOC 5000A total carbon analyser

(Shimadzu Corp, Japan) coupled with a Sievers NCD 255 nitrogen

chemiluminescence detector (Sievers Instruments, Inc, US) [35].

DON concentrations were calculated by subtracting the ammo-

nium and NO3
- + NO2

- concentrations from the TDN

concentrations.

Seawater samples for total dissolved phosphorus (TDP) were

filtered using glass-fibre filters (FisherbandH MF 300; nominal pore

size 0.7 mm) and subsequently irradiated using a UV lamp to

oxidise organic phosphorus compounds to PO4
3- which was

subsequently measured by colorimetry using a Skalar Sanplus

autoanalyser according to Kirkwood [33]. Dissolved organic

phosphorus (DOP) was calculated by subtracting phosphate

concentration from the measured TDP.

Chl a was determined on duplicate 500 mL seawater samples

filtered through 25 mm diameter glass-fiber filters (Fisherbrand

MF 300). Filters were frozen at 280uC until onboard analysis by

fluorometry. Samples were extracted in 7 mL of 90% acetone for

24 h at 4uC; Chl a concentrations (.0.7 mm) in the extracts were

measured using a TD-700 Turner Designs fluorometer following

calibration with fresh Chl a standard (Sigma, UK).

Seawater samples of 1.6 mL were fixed with a final concentra-

tion of 1% paraformaldehyde for 24 hours at 4uC and

subsequently frozen at 280uC until processed by flow cytometry

(FACSCalibur, Becton Dickinson, BD Biosciences, Oxford, UK).

Two groups of cyanobacteria, Prochlorococcus spp. and Synechococcus

spp, and a broad group of picoeukaryotes were identified by their

characteristic autofluorescence [36]. The heterotrophic prokary-

otes (Bacteria and Archaea) were counted after staining of the
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whole microbial population with the nucleic acid stain SYBR

Green I and subsequent subtraction of the autofluorescent cells

[36].

qPCR
The nifH abundances of filamentous (Trichodesmium spp.),

unicellular Group A, and Gamma A diazotrophs were determined

using TaqMan primers and probe sets as described in Langlois

et al. (2008). qPCR reactions contained 1x TaqMan master mix

(Applied Biosystems), 40 ng ml21 bovine albumin (BSA),

5 pmol mL21 each forward and reverse primers, 100 nmol L21

TaqMan probe, and 5 ml DNA (average of 4 ng DNA). Plasmid

standards, described in Langlois et al. (2008), were run in

duplicate, as were template controls (NTC). Samples were run

in triplicate. All reactions were run on an ABI Prism 7000

instrument (Applied Biosystems) using the default cycling program

with 45 cycles. Raw data were analyzed using the ABI 7000 system

SDS software (version 1.2.3) with RQ study application. Primer

amplification efficiencies were 97% for filamentous and Group

A and 95% for Gamma A; calculated using the formula E =

1021/slope-1 [37]. No amplification was observed in the NTCs,

thus setting the potential detection limit to 1 copy L21. When the

elution and filtration volumes were accounted for the actual

detection limit was 50 copies L21.

Environmental variables
Environmental variables were either collected at the time of

sampling or taken from the nearest stations or underway sample

points. The environmental variables available for analysis

included: i) oceanographic variables such as oxygen, salinity, the

water-mass as identified by a temperature salinity plot, and the

mixed layer depth [25], ii) as factor the dust event on 3&4 Feb

2006, iii) NO3
-, PO4

3-, SiO4
4-, NH4

+, DON and DOP, iv)

biological variables including the photosynthetic efficiency, Fv/Fm,

and the PSII cross-section (sPSII), flow cytometer counts of

heterotrophic prokaryotes, picoeukaryotes, Prochlorococcus, Synecho-

coccus and the nifH gene abundance of gamma A proteobacteria,

unicellular group A and filamentous cyanobacteria, and the N2

fixation rates, and v) trace metals DAl and DFe, free and total

concentrations of Fe-binding ligands and their conditional stability

constant log K’. Incubation time and the time of 15N2-tracer

addition were also considered in the model to check whether these

influenced the N2 fixation rate response variable.

Boosted regression trees analysis (BRT)
BRT was used to identify which environmental variables could

describe (1) log nifH gene abundances of gamma A proteobacteria,

(2) filamentous and group A cyanobacteria, (3) total nifH gene

abundance (sum of group A proteobacteria, gamma A and

filamentous cyanobacteria), and (4) N2 fixation rates [38,39]. As

the data was continuous and normally distributed, the model was fit

using a Gaussian error distribution and link function [38]. BRT is a

relatively new statistical technique and is based on a combination of

regression trees and boosting. Boosting increases the emphasis on

poorly modelled observations and iteratively fits regression trees to

the data. BRT has advantages over standard techniques in that it

can fit complex non-linear relationships (Elith et al. 2008) and can

deal with missing values. Following the model simplification

procedure of Elith et al. (2008), we identified the variables that

provided the best model performance. Model performance was

assessed using a Pearson’s correlation and deviance measures, i.e.

goodness of fit (Elith et al. 2008). All evaluation statistics were

calculated with 6-fold cross- validation and the BRT models were

run 30 times to ensure stable estimates of model evaluation (Elith et

al. 2008). Replicates of experimental treatments were placed into a

single fold so that the models could be evaluated on independent

treatment data. All BRT models were fitted in R (v2.6.0, www.

Rproject.org) using the ‘gbm’ library [40].

Results and Discussion

Study area
Our study area was situated between 12–30uN and 20–30uW,

with most of the N2- and CO2 fixation experiments performed in

proximity of the Cape Verde islands. The surface waters to the

north and south of the Cape Verde islands consisted of the

westward flowing North Equatorial Current (NEC) and North

Equatorial Counter Current (NECC), respectively [41]. The

surface seawater temperature varied between 18uC in the vicinity

of the Canary Islands and up to 24.8uC at ,12uN, south of the

Cape Verde islands (Fig. 2A). The salinity of the surface seawater

varied between 35.62 and 37.36 southeast and northwest of the

Cape Verde islands, respectively (Fig. 2B).

Nitrogen fixation rates and primary productivity
Winter N2 fixation rates ranged between 0.032–1.28 nmol N

L21 d21 with an overall mean of 0.3060.29 nmol N L21 d21

(n = 65 bottles) (Fig. 3). N2 fixation rates were lowest north and east

Figure 2. The sea surface (A) temperature (6C) and (B) salinity during the P332 cruise.
doi:10.1371/journal.pone.0028989.g002
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of the Cape Verde islands (0.2160.15 nmol N L21 d21, range

0.032–0.70 nmol N L21 d21, n = 55 bottles) and highest to the

south and west of the Cape Verde islands (0.9160.31 nmol N L21

d21, range 0.35–1.28 nmol N L21 d21, n = 10 bottles) (Fig. 3 and

4A). Using acetylene reduction assays, Staal et al. [12] also

observed low winter time N2 fixation rates of 0.15460.091 nmol

N L21 d21 in light controlled (200 mm m22 s21) incubations

southeast of the Cape Verde islands. Autumn N2 fixation rates

between 2.4–151.2 nmol N L21 d21 (non-size fractionated and

non-trace metal clean sampled) [26] have been reported for the

same study region. Unicellular N2 fixation rates of 3.48 nmol N

L21 d21 have been reported in other regions of the tropical and

sub-tropical North Atlantic Ocean [42]. Whereas Voss et al. [11]

reported occasional high rates of N2 fixation of up to 75 nmol N

L21 d21 in surface waters (non-size fractionated and non-trace

metal clean sampled during a high dust deposition event in

autumn) along 10uN in the eastern North Atlantic, though most

values were below 6 nmol N L21 d21. The higher N2 fixation rates

as measured by Voss et al. [11] coincided with enhanced N2

fixation rates and diazotroph abundance along 10uN as reported

by Moore et al. [16] and Staal et al. [12]. N2 fixation rates in the

eastern Atlantic Ocean along ca. 10uN may be higher as a result of

warmer seawater temperatures, lower oxygen concentrations and

a higher supply of Fe and phosphate due to Saharan dust inputs

[16]. However, differences in season and location may complicate

direct comparison of N2 fixation rates.

Primary productivity was measured in the same bottles as N2

fixation and ranged between 0.07–1.59 mmol C L21 d21 with a

mean of 0.5560.34 mmol C L21 d21 (n = 54 bottles) (Fig. 4B).

Little latitudinal variation in rates of primary production was

observed as seen for N2 fixation rates. Converting N2 fixation to

C-uptake rates via Redfield equivalents showed that the

contribution of N2 fixation to primary production was between

0.03–5.24%, with an average of 0.5560.87% (n = 54 bottles). In

our study, the average contribution of N2 fixation to primary

production was substantially lower than the values of 5.8–

12.2% reported by Voss et al. [11]. Metabolic control of N2

fixation by other nitrogen sources during our study was

unlikely. Surface water NO3
- concentrations ranged between

1.5–128 nmol L21 (Fig. 4G; n = 13 experiments) and were well

below the concentrations (.0.5 mmol L21) reported to inhibit

N2 fixation [20,43]. The ammonium concentrations ranged

between 2.3–208 nmol L21 (n = 15 experiments) and DON

between 4.7–7.8 mmol L21 (n = 15 experiments) (Fig. 4H–I).

Fixed nitrogen sources such as urea or ammonium can inhibit

N2 fixation in Trichodesmium [19], although in the laboratory

Trichodesmium has been reported to regulate ammonium

metabolism and N2 fixation within its circadian rhythm [44].

Calculated from primary production and compensated for the

nitrogen provided by N2 fixation, the turnover time of the DIN

pool (DIN = NO3
- + NO2

- + NH4
+) was less than 1 day in 19 out

of 33 incubations. This implies that the DIN pool including N2-

fixed nitrogen did not provide sufficient nitrogen to sustain the

observed primary production. Access to DON or rapid

recycling of nitrogen were likely required for provision of

additional nitrogen sources [45].

Figure 3. Bubble plot of the average N2 fixation rates (nmol L21 d21) based on 3 to 4 replicates.
doi:10.1371/journal.pone.0028989.g003
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The PO4
3- concentrations of the surface water used in our N2

fixation incubations ranged between 10–92 nmol L21, with a

mean of 44627 nmol L21 (Fig. 4J; n = 13 experiments). Surface

dissolved inorganic phosphate concentrations below 1 nmol L21

were reported in the western North Atlantic Ocean, with DIN:DIP

ratios between 20–30, suggesting that PO4
3- may control primary

production and N2 fixation rates [46]. However, very low

inorganic DIN:DIP ratios with a mean of 263.2 (n = 94, range

0–15) in the vicinity of the Cape Verde islands suggest that

nitrogen, depending on the availability of DON and nitrogen

recycling rates, was the primary limiting nutrient [16,18]. Indeed,

in our N2 fixation incubations the turnover time of the dissolved

inorganic phosphate pool (DIP) based on primary production

varied between 1.2–36 days (n = 40 bottles). Primary production

and N2 fixation in our incubations were unlikely to be controlled

by the availability of PO4
3-. Based on the conversion of primary

production to PO4
3- demands via a C:P Redfield ratio of 106,

PO4
3- concentrations were neither limiting primary production

anywhere else in the vicinity of the Cape Verde islands (mean

39624 nmol L21 PO4
3- (n = 96), range 10–100 nmol L21).

The DFe concentrations in the surface waters were on average

0.2260.05 nmol L21 (n = 18 experiments) and ranged between

0.11 and 0.33 nmol L21. The Fe requirement for primary

production, using a conversion of 60.5 mmol Fe per mol of fixed

C as based on average phytoplankton nutrient requirements [47],

varied between 4.0 1023–0.1 nmol L21 DFe (n = 54 bottles). Thus

the DFe concentrations were 2.3–73 times higher than the

calculated Fe requirements. Conversion of N2 fixation rates using

Redfield stoichiometry into C-uptake according to Voss et al. [11],

assuming 28 mmol Fe per mol of fixed C for phototrophic

diazotrophs as based on Trichodesmium [48], yield Fe requirements

between 6.0 1026–2.4 1024 nmol L21 Fe (n = 65 bottles) which

are ca. 104 times lower than the DFe concentrations. Iron:C ratios

as high as 4506242 mmol Fe per mol C have been reported for

Trichodesmium in Australian waters [15] resulting in Fe require-

ments between 1.0 1024–3.8 1023 nmol Fe (n = 65 bottles) in our

incubations, suggesting that even using high Fe:C ratios there still

is approximately a 600 fold surplus of DFe. These calculations

indicate that diazotrophic activity itself will not induce Fe

limitation. However, the large uncertainties in Fe:C ratios which

vary with region, growth conditions, phytoplankton population

[49], and uncertainties in the biological availability of Fe [50]

make it difficult to assess (micro)nutrient control of diazotrophy. In

fact, along 10uN in the eastern tropical North Atlantic, Voss et al.

[11] determined that Fe concentrations were higher than the

estimated requirement for diazotrophy, while at the same time

Mills et al. (2004) showed that Fe (in combination with P)

stimulated N2 fixation rates in this region. Over 99% of the DFe

Figure 4. The environmental parameters measured during the P332 cruise in the Cape Verde region. The (A) N2 fixation rate, (B) CO2

fixation rate, (C) total nifH gene abundance, (D) filamentous nifH gene abundance, (E) group A nifH gene abundance, (F) gamma A nifH gene
abundance, (G) NO3

- + NO2
-, (H) NH4

+, (I) DON, (J) PO4
3-, (K) DOP, (L) DAl, (M) Prochlorococcus spp. abundance, (N) Synechococcus spp. abundance, (O)

picoeukaryote abundance, (P) heterotrophic prokaryote abundance, (Q) Chl a, (R) sPSII, (S) Fv/Fm, (T) DFe, (U) total Fe-binding ligands, (V) O2, (W)
temperature as a function of latitude.
doi:10.1371/journal.pone.0028989.g004
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fraction in the vicinity of the Cape Verde islands was complexed to

organic Fe-binding ligands [30]. It is still unknown what fraction of

this organically complexed Fe pool is directly or indirectly

available for uptake by phytoplankton and diazotrophs [50,51].

Clearly, calculated quotas and stoichiometric ratios may not apply

as well as we assume and more detail regarding the availability to

diazotrophs of the organically complexed Fe is required.

Environmental variables predicting nifH gene abundance
and N2 fixation rates

BRT analysis was used to investigate which environmental

variables explain the distribution of group A, gamma A,

filamentous and total nifH gene abundances (the sum of group

A, gamma A and filamentous nifH gene abundances) as well as N2

fixation rates. The group A nifH gene abundance was poorly

described by the BRT analysis and is therefore not further

discussed. However, BRT performed well for the gamma A and

filamentous phyloptypes as well as the total nifH gene abundance

and N2 fixation rates with respective cross validated Pearson

correlations of 0.94, 0.53, 0.98 and 0.47 (Table 1) and robust

model performance for a relatively small data set as shown by

small 95% confidence intervals in the mean partial dependence

plots based on bootstrapping of 30 BRT runs (Fig. 5–8).

The abundances of Prochlorococcus (Fig. 4m), Synechococcus (Fig. 4n)

and picoeukaryotes (Fig. 4O) contributed strongly to the

explanation of the distribution of the total nifH gene and gamma

A nifH gene abundances (Fig. 5 and 6, Table 1). Prochlorococcus and

picoeukaryotes were also important in explaining filamentous nifH

Table 1. Mean predictive performance of the BRT models and contributions of explanatory variables to the prediction of the N2

fixation rates, the total concentration of nifH genes, the concentration of nifH genes of filamentous cyanobacteria and Gamma A, a
gamma-proteobacterium.

dependent vasriable model characteristics explanatory variables Contribution%

total nifH genes learning rate 0.05 Prochlorococcus 41.361.2

tree complexity 3 Synechococcus 24.561.4

trees fitted 21736200 picoeukaryotes 19.861.2

total dev. 5.334 DAl 9.461.1

mean cv res. dev. 2.7660.12 total Fe-binding ligands 3.160.7

cv corr. 0.9860.01 DFe 1.860.3

Dˆ 2 0.48

Gamma A nifH genes learning rate 0.01 Synechococcus 23.860.7

tree complexity 3 Prochlorococcus 22.860.6

trees fitted 36976547 DON 17.360.8

total dev. 8.221 picoeukaryotes 15.560.8

mean cv res. dev. 3.5960.08 Heterotr. bacteria 14.661.0

cv corr. 0.9460.01 Group A nif genes 6.260.8

Dˆ 2 0.56

Filamentous nifH genes learning rate 0.01 CO2 fixation rate 29.063.4

tree complexity 3 DAl 17.662.3

trees fitted 41856354 Prochlorococcus 15.060.9

total dev. 15.446 picoeukaryotes 13.861.1

mean cv res. dev. 7.0860.2 temp. 8.160.6

cv corr. 0.5360.01 Fv/Fm 7.460.6

Dˆ 2 0.54 NH4
+ 4.960.6

Gamma A nif genes 4.360.6

N2 fixation rates learning rate 0.05 CO2 fixation rate 21.062.4

tree complexity 3 NO3
- + NO2

- 13.461.5

trees fitted 18206632 PSII cross-section 11.861.0

total dev. 0.081 phosphate 10.560.6

mean cv res. dev. 0.05360.003 DON 9.760.7

cv corr. 0.4760.02 oxygen 9.060.6

Dˆ 2 0.36 DFe 7.760.6

picoeukaryotes 6.760.5

Chl a 5.960.6

temp. 4.360.6

The learning rate, tree complexity and number of trees fitted (trees fitted), as well as the total deviance for a saturated model (total dev.), are given for each model.
Model performance measures, estimated using 30 model runs and 6-fold cross validation, included mean residual deviance and its standard error, the mean proportion
of the total deviance explained (D2) and the mean Pearson correlation (cv corr.) and its standard error.
doi:10.1371/journal.pone.0028989.t001
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gene abundance (Fig. 7). In all cases nifH genes were more

abundant with higher abundance of Prochlorococcus and lower

abundance of Synechococcus and picoeukaryotes. High nifH gene

abundance coinciding with the non-N2 fixing Prochlorococcus

abundance suggests co-occupation of the same environment.

Prochlorococcus spp. have a very wide oceanic distribution and, like

the majority of the oceanic N2-fixing organisms, thrive at

enhanced temperatures with maximum abundances at 26–29uC
[52]. Prochlorococcus as well as N2-fixing organisms are most

abundant in, but not restricted to, oligotrophic waters while

Synechococcus may have high abundances in nutrient-rich tropical

environments [3,52,53].

The abundance of group A nifH genes (Fig. 4E) contributed 6%

to the prediction of gamma A nifH gene abundance (Fig. 6), and

gamma A nifH gene abundance contributed 4% to the prediction

of filamentous nifH gene abundance (Fig. 7). As expected the

positive relationship in both cases indicates that the different

phyloptypes live side by side in the marine environment. However,

nifH gene distributions of the group A, gamma A and filamentous

diazotrophic phylotypes did not explain the N2 fixation rates

(Fig. 8) indicating that the presence of nifH genes does not

necessarily indicate an active metabolic pathway leading to N2

fixation. We further observed that heterotrophic prokaryote cell

abundances (Fig. 4P) contributed 15% to the prediction of gamma

A nifH gene abundance (Fig. 6).

Dissolved Al (Fig. 4L), a proxy for dust input, and consequently

a proxy for the input of aeolian Fe and PO4
3- contributed 9% to

the explanation of total nifH gene abundance and 18% to

filamentous nifH gene abundance with higher nifH gene abun-

dances at higher DAl concentrations (Fig. 5 and 7) [30,54]. Our

budget calculations (see above) suggest that DFe and PO4
3- did not

limit primary production or N2 fixation. However, as DAl

represents the cumulative effects of dust inputs rather than

signifying individual short-term dust events, the general distribu-

tion of N2 fixing organisms may be determined by general patterns

of dust inputs as also shown by Langlois et al. (2008).

Contributions of DFe and total Fe-binding ligand concentrations

(Fig. 4U), important to keep aeolian Fe in solution [30], were

relatively small in explaining total nifH gene abundance and did

not explain gamma A and filamentous nifH gene abundance. The

lower DFe concentrations found at higher total nifH gene

abundance may be the result of biological uptake. Photosynthesis

as well as N2 fixation requires Fe, with N2 fixation requiring about

5–10 times more Fe than NO3
- utilization [55]. BRT showed that

both higher N2 fixation rates and higher filamentous nifH gene

abundance coincided with a higher CO2 fixation rate altogether

Figure 5. Mean partial dependence plots for the environmental variables describing the total nifH gene abundance. The partial
dependence plots with 95% confidence intervals (light grey, based on bootstrapping of 30 BRT runs and indicating robustness of model
performance) for the 6 environmental variables best at explaining the variation in total nifH gene abundance (the sum of Group A, gamma A and
filamentous nifH genes). The 6 environmental variables are A) Prochlorococcus, B) Synechococcus, C) picoeukaryotes, D) DAl, E) total Fe ligands and F)
DFe. The y-axis is centered to have zero mean over the log distribution of the fitted total nifH gene abundance. A common scale is used for the x-axis.
Rug plots at inside top of plots show the distribution of sites across that variable, in deciles.
doi:10.1371/journal.pone.0028989.g005
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resulting in relative high demands for Fe with consequently lower

DFe concentrations at higher total nifH gene abundances (Fig. 7

and 8).

The CO2 fixation rate was the main contributor in explaining

filamentous nifH gene abundance (29%) as well as N2 fixation rates

(21%) (Fig. 7 and 8). Considering that the N2 fixation rate

contributed up to 5% of the N required for new production, the

high contribution of the CO2 fixation rates in predicting the

distribution of filamentous nifH gene abundance and N2 fixation

rates may be a consequence of fixed N release into the marine

environment. Alternatively, environmental circumstances that

promote high CO2 fixation rates also promote the presence of

filamentous diazotrophs resulting in higher N2 fixation rates in our

incubations. Also temperature contributed to the filamentous nifH

gene abundance as well as N2 fixation rates, with higher

abundance and rates in waters with temperatures above 22–

23uC (,8 and 4% contribution respectively). The similarity in the

model response as shown by the partial dependence plots of CO2

fixation rate and temperature for the filamentous nifH gene

abundance and N2 fixation rates suggests that the filamentous

phylotypes may have been responsible for the main part of the N2

fixation rates. The low contribution of temperature to explaining

N2 fixation is perhaps surprising as it has been shown that N2

fixation by Trichodesmium occurs at temperatures between 20uC
and 34uC, with an optimum of 27uC [13,14]. The surface water

temperatures encountered during the cruise varied between 18

and 25uC, hence below the reported optimum values. The BRT

model results suggest a step-up in N2 fixation between 22 and

23uC coinciding with the optimum temperature for the presence of

group A and filamentous cyanobacteria (Langlois et al. 2008).

Lower oxygen solubility in combination with faster metabolic

processes such as respiration, facilitating oxygen scavenging, may

underlie this high temperature preference [3,14,56,57]. This idea

concurs with our finding that N2 fixation rates varied negatively

with oxygen concentrations.

N2 fixation was higher at lower dissolved oxygen concentrations

(9% contribution) (Fig. 4V and 8). This is likely due to the oxygen

sensitive nature of the nitrogenase enzyme, resulting in a decrease

in nitrogenase activity with increasing oxygen concentrations

[14,58,59]. While Trichodesmium and most unicellular microorgan-

isms grow and fix N2 under fully aerobic conditions, the BRT

analysis predicts that lower environmental concentrations of

oxygen may be advantageous for N2 fixation.

The photophysiological variables as Fv/Fm (7%, Fig. 4S) and

sPSII (12%, Fig. 4R) both contributed to the prediction of

filamentous nifH gene abundance and N2 fixation, respectively.

Figure 6. Mean partial dependence plots for the environmental variables describing the gamma A nifH gene abundance. Mean
partial dependence plots with 95% confidence intervals (light grey, based on bootstrapping of 30 BRT runs and indicating robustness of model
performance) for the 6 environmental variables best at explaining the variation in gamma A nifH gene abundance. The 6 environmental variables are
A) Prochlorococcus, B) Synechococcus, C) heterotrophic prokaryotes, D) picoeukaryotes, E) DON and F) group A nifH genes. The y-axis is centered to
have zero mean over the log distribution of the fitted gamma A nifH gene abundance. A common scale is used for the x-axis. Rug plots at inside top
of plots show the distribution of sites across that variable, in deciles.
doi:10.1371/journal.pone.0028989.g006
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Fv/Fm, the photochemical efficiency, and sPSII, the photosystem II

effective absorption cross section, both give information about

effects of physiological stress on the photosystem and changes in

community structure [60]. The magnitude in variability of Fv/Fm

and sPSII due to changes in phytoplankton community structure

often exceeds that induced by nutrient limitation [60]. As

discussed above, the most likely limiting nutrient in the vicinity

of the Cape Verdes was nitrogen. Nitrogen limitation may cause

physiological stress on the photosystem in the overall community

and strengthen the competitiveness of N2-fixing organisms

resulting in the observed negative relationships between the

photophysiological variables and filamentous nifH gene abundance

and N2 fixation rates (Fig. 7 and 8). Alternatively, the change of

filamentous nifH gene abundance and N2 fixation with these

photophysiological variables may represent a change in commu-

nity structure. Chl a concentrations, contributing 6% to predicting

Figure 7. Mean partial dependence plots for the environmental variables describing the filamentous nifH gene abundance. Mean
partial dependence plots with 95% confidence intervals (light grey, based on bootstrapping of 30 BRT runs and indicating robustness of model
performance) for the 8 environmental variables which explain the variation in filamentous nifH gene abundance best. The 8 environmental variables
are A) C-fix rate, B) DAl, C) Prochloroccocus, D) picoeukaryotes, E) Fv/Fm, F) NH4

+, G) temperature and H) gamma A nifH genes. The y-axis is centered to
have zero mean over the log distribution of the fitted filamentous nifH gene abundance. A common scale is used for the x-axis. Rug plots at inside
top of plots show the distribution of sites across that variable, in deciles.
doi:10.1371/journal.pone.0028989.g007
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N2 fixation rates (Fig. 4Q), were low at high N2 fixation rates and

may also have been the result of changes in community structure

[61] (Fig. 8).

The distribution of diazotrophs as well as the N2 fixation

pathway is regulated by the presence of nitrogen containing

compounds [3,43]. DON (Fig. 4I) contributed 17% to the

prediction of gamma A nifH gene abundance, NH4
+ (Fig. 4H)

contributed 5% to the prediction of filamentous nifH gene

abundance, while NO3
- (Fig. 4G), and DON contributed 13%

and 10%, respectively, to the prediction of N2 fixation rates (Fig. 6–8).

In the presence of micro-molar concentrations of NO3
-, a

biochemical down regulation of the N2 fixation pathway occurs

[19,20,43]. However, at relatively low concentrations (300–

400 nmol L21 NO3
-), N2 fixation in Trichodesmium spp. has been

reported to recover [20]. Overall, the NO3
- pool in our

experiments was ,130 nmol L21 (and total DIN ,350 nmol

L21), below NO3
- concentrations at which N2 fixation rates would

be inhibited. Although an increase in N2 fixation rates with

increasing NO3
- up to 30 nmol L21, as suggested by the BRT

analysis (Fig. 8), may appear surprising, we know that NO3
-

concentrations were low in our experiments and may have been

quickly exhausted. It is known that Trichodesmium prefers to utilize

NH4
+ and NO3

- over N2 fixation [20,21]. As supported by the

BRT analysis that predicts higher filamentous nifH gene

abundance at higher NH4
+ concentrations, more diazotrophs

such as Trichodesmium may have been present in the seawater from

the incubations with slightly higher NH4
+ and NO3

- concentra-

tions. As a consequence, with diminishing concentrations of NH4
+

and NO3
- the higher abundance of diazotrophs may have resulted

in the fixation of more N2. The positive relationship between

filamentous nifH gene abundance and NH4
+ may also be

explained by the release, and subsequent regeneration, of amino

acids and DON by Trichodesmium during N2 fixation [62,63].

DON contributed 17% to the prediction of gamma A nifH gene

abundance and 10% to the prediction of N2 fixation rates. DON

can be produced as well as utilized by diazotrophs [43,62].

Gamma A nifH gene abundance was higher at lower DON

concentrations consistent with the hypothesis that N depleted

Figure 8. Mean partial dependence plots for the environmental variables describing the N2 fixation rates. Mean partial dependence
plots with 95% confidence intervals (light grey, based on bootstrapping of 30 BRT runs and indicating robustness of model performance) for the 10
environmental variables which explain the variation in N2 fixation rates best. The environmental variables are A) C-fix rate, B) phosphate, C) nitrate +
nitrite, D) sigma-PSII, E) DON, F) oxygen, G) DFe, H) picoeukaryotes, I) Chl a, and J) temperature. The y-axis is centered to have zero mean over the
distribution of fitted N2 fixation rates. A common scale is used for the x-axis. Rug plots at inside top of plots show the distribution of sites across that
variable, in deciles.
doi:10.1371/journal.pone.0028989.g008
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environments promote the growth of N2-fixing organisms. The

positive relationship between N2 fixation rate and DON could be

explained by the exudation of fixed N in the form of, for example,

amino acids [62]. Both explanations are plausible considering that

enhanced gamma A nifH gene abundance does not mean that N2

fixation is active.

PO4
3- (Fig 4J) contributed 11% to explaining N2 fixation rates.

PO4
3- forms an important nutrient that potentially limits N2

fixation [18]. Fitted values predicted that N2 fixation increased at

ca. 40 nmol L21 PO4
3- (Fig. 8). This suggests that N2 fixation may

be released from PO4
3- limitation above a PO4

3- concentration of

ca. 40 nmol L21. Concentrations this low are common in the

central and Western North Atlantic [16,46,64]. With the

exception of the most northern sites our study area generally

had PO4
3- concentrations exceeding this limit (Fig. 4J).

It is clear that no single factor controls the distribution of

diazotrophs and N2 fixation but that these are determined by a

combination of variables. This is especially true for areas and

seasons where no nutrients, trace metals or other environmental

parameters are directly limiting or inhibiting diazotrophy. Not all

environmental variables considered in this study may have been

causal for N2 fixation and the distribution of diazotrophs.

However, from experimental and field studies it is known that a-

biotic environmental variables such as NO3
- + NO2

-, DON, Fe,

PO4
3-, temperature and oxygen directly affect N2 fixation in the

North Atlantic Ocean [16,17,18,21,56,57]. In this study, BRT

analysis showed that these a-biotic environmental variables all

contributed to determining N2 fixation rates and that some of

them also affected the distribution of gamma A, filamentous and

total nifH gene abundances in the eastern tropical and sub-tropical

North Atlantic Ocean.

Potential consequences of climate warming on N2

fixation
Identification of the a-biotic environmental variables that have

the potential to limit or inhibit N2 fixation allows us to assess how a

change in these environmental variables due to climate warming

may affect future N2 fixation rates. The warming of the earth

system will result in enhanced sea surface temperature (SST), with

predicted enhanced deposition of Saharan dust to the surface

oceans [65]. N2 fixation rates in the eastern tropical and sub-

tropical North Atlantic Ocean are likely to be affected by

enhanced SST, reduced oxygen concentrations, reduced nutrient

supply and an increase in light availability due to enhanced water

column stratification. According to our results N2 fixation rates

will increase at lower oxygen concentrations and higher temper-

atures and are thus consistent with previous work. In addition,

N2 fixation may be promoted by an increase in light availability,

an enhanced CO2 concentration and changes in N/P stoi-

chiometry induced by shifts in the phytoplankton community

[66,67,68].

However, in the eastern tropical and subtropical North Atlantic

an increase in N2 fixation may be hampered by PO4
3- limitation

and, although not shown in this study, potentially by Fe limitation,

should the availability of either element decrease. Due to future

enhanced stratification, we may experience a decrease in upward

mixing into the surface waters of deeper waters with excess

phosphate (excPO4
3- = PO4

3- - (NO3
- + NO2

-)/16; excPO4
3- = 14

e 0.02 x Apparent Oxygen Utilization, R2 = 0.71, p,0.001, n = 25) and

high concentrations of Fe, derived from the oxygen minimum

zone situated south and west of the Cape Verde. Increased

atmospheric Fe and PO4
3- inputs from the Sahara, may potentially

off set the reduced deep water supply; the atmospheric inputs are

however more sporadic. As a consequence, the balance between a

reduced supply of nutrients due to stratification and an enhanced

nutrient input with increasing deposition of Saharan dust may

ultimately determine the consequences of climate change for

N2 fixation in the eastern tropical and sub-tropical North

Atlantic.
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