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Abstract: This paper presents results of research on the preparation of biochar-modified rigid
polyurethane foams that could be successfully used as thermal insulation materials. The biochar
was introduced into polyurethane systems in an amount of up to 20 wt.%. As a result, foam cells
became elongated in the direction of foam growth and their cross-sectional areas decreased. The
filler-containing systems exhibited a reduction in their apparent densities of up to 20% compared
to the unfilled system while maintaining a thermal conductivity of 25 mW/m·K. Biochar in rigid
polyurethane foams improved their dimensional and thermal stability.
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1. Introduction

In recent years, published studies have often concerned the sustainable development
of polymeric materials. One approach of such works is to replace the mineral or petrochem-
ical fillers with renewable ones. The advantage of bio-fillers is their low density, and the
composites obtained with such additives can have better properties than those with mineral
fillers [1]. The use of biomass as a filler is one way of solving environmental problems.
Recently, plant-based fillers have been gaining popularity, and can be successfully used in
the production of polyurethane composites [2]. Interestingly, the combustion of biofuels
does not contribute to the greenhouse effect. This is due to the neutral conversion of
carbon dioxide, which is conditioned by the renewal of lignocellulose biomass. In addition,
biomass plays an important role in the circular economy [3,4].

Biochar (biocarbon, BioC) is a carbon material obtained by pyrolysis of biomass,
which comes from inexpensive and sustainable sources. This material can be used as a
carbon modifier and absorbing agent to remove metals from contaminated soil [5]. In
addition, biochar is used as a raw material for the production of activated carbon [4].
Pyrolysis is a process of thermal decomposition that can take place in the temperature
range from 300 to 800 ◦C and with total or partial lack of oxygen. As a result of this
process, solid biochar, bio-oil and fuel gas are obtained. The biochar is characterized by
a porous structure with a large specific area. Thanks to this structure, for example, it
increases the adsorption capacity of biochar to retain moisture and nutrients in the soil.
This method is an alternative in the use of agricultural and industrial waste [6]. There
are studies in the literature on the use of biochar as a filler in different types of polymers.
The use of biochar in poly(lactid acid) resulted in reduced abrasion and flammability of
composites [7] or increased thermal stability during injection molding [8]. On the other
hand, the use of biochar as a replacement for carbon fibers increased the tensile strength
and impact strength of polycarbonate (PC) composites [9]. Another paper describes the
use of biochar as part of polymer blends polycarbonate/acrylonitrile-butadiene-styrene
(PC/ABS) [10]. Biochar added to PC causes a decrease in the glass transition temperature
and degradation process of this polymer. However, when combined with PC/ABS, both the
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problem of excessive hydrolytic degradation and lowering of glass transition temperature
in PC/biochar systems were effectively eliminated. These studies indicate that biocarbon
can successfully replace other mineral fillers.

Up to now, the use of the biochar-based fillers has been mostly focused on the ther-
moplastic polymers applications, while there are only a few examples of the BioC use in a
reactive system, like epoxy [11–14] or unsaturated polyesters [15,16]. In most cases, BioC
was used as a sustainable type of filler, usually leading to a slight improvement in the stiff-
ness of composites. So far, examples of applications of BioC in polyurethane-based systems
have been described very rarely. In the research conducted by Meng et al., BioC-modified
porous polyurethanes were used as the filter components in a bioretention system [17].

Rigid polyurethane foams (RPUF) are obtained during the reaction of compounds
with hydroxyl groups and compounds containing isocyanate groups. They have a porous
chemical structure and can be successfully used as insulation materials. Such insulators are
characterized by a low thermal conductivity coefficient and good mechanical properties
and water resistance [18]. The cell structure and thermal insulation properties depend on
the foaming process of the foam material. Not only the process conditions are responsible
for the foaming process, but also a properly selected catalytic system or the reactivity of the
ingredients used [19]. Adding filler to a polyurethane system can cause filler agglomerates
to form and cause structural damage to the rigid polyurethane foams. In addition, the
introduction of a filler increases the viscosity of the polyol premix, disturbing the foaming
process [20].

Adding a filler to the polyurethane system can change the process. The growing
concern for the environment raises the interest in polyurethane foams based on renewable
sources. Every year, the polyurethane market grows, and thus generates more waste.
Obtaining the foam in an ecological version, i.e., from renewable sources, may pose a lower
threat to the environment [21,22]. A major challenge is to obtain rigid foams with good
mechanical strength and, at the same time, low thermal conductivity. The addition of a
filler component to the polyurethane system could improve the properties of foams. It is
most advantageous to use fillers derived from natural sources because they are inexpensive.
There are studies in which both powders and fibers are used as fillers. These include
agricultural wastes (bagasse) [23], lignin [24–27], cellulose [28–31], carrot nanofibers [32],
eucalyptus fibers [18]. Rafael de Avila Delucis et al. [33] used six different forest fillers in
different amounts (1, 5 and 10 wt.%) in rigid polyurethane foams. They observed that at
filler contents of more than 5%, a large number of filler agglomerates are formed outside the
cell wall of the polymer, which deteriorates the compressive properties of foams. However,
the use of forest fillers resulted in a homogeneous cell structure of polyurethane foams.
Lady Jaharah Y. Jabber et al. [34] obtained rigid polyurethane foams with cellulose fibers (1,
3 and 5 wt.%) extracted from pineapple. They observed that the introduction of the filler
decreased the mechanical strength of the foams. The decrease in the compressive strength
was caused by the decrease of the apparent density of the polyurethane foams. Moreover,
the addition of cellulose fibers can reduce the stiffness and thus cause the cells of the foam
to break.

This article presents research on the modification of rigid polyurethane foams with
biochar (BioC). Systems containing 3, 6, 9 and 20 wt.% BioC were prepared and examined
in terms of cell structure, apparent density and thermal conductivity. Additionally, the
mechanical and thermal properties of the systems were analyzed.

2. Materials and Methods
2.1. Materials

Polyether polyol—Rokopol RF-551—having a hydroxyl value of ca. 420 mgKOH/g
and a water content of 0.10 wt.% was supplied by PCC Rokita S.A. Polycat 218 produced
by Evonik Industries AG was used as a catalyst. This is a reactive amine catalyst providing
strong urea-reaction (blowing) catalysis. Niax silicone L-6915 supplied by Momentive
Performance Materials Inc. was used as a stabilizer of the foam structure. The carbon
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dioxide generated during the reaction between water and isocyanate played a role of
blowing agent. Polymeric methylene diphenyldiisocyanate was supplied by Minova
Ekochem S.A.

The biochar (BioC) filler used during this study was purchased from the company
Fluid SA. For this particular type of BioC, the pyrolysis process was conducted at 650 ◦C,
while the material itself was prepared on the basis of wood chips. The mean particle size
in the untreated BioC was around 200 µm. Before the introduction to the polyol, the BioC
filler was ball-milled for 24 h. The milling procedure reduces the average particle size.
The size analysis, performed with the use of a laser particle sizer (Fritsch Analysette 22),
indicates that the mean particle size is 1.5 µm, while 80% of the particles are within the
size range from 0.18 to 3.5 µm. The chart presented in the Figure 1A collates the particle
size distribution plots and cumulative size distribution plots. The appearance of the BioC
particles after ball milling is presented in Figure 1B.
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Figure 1. (A) Size distribution histograms and (B) SEM microphotograph of biochar (BioC) particles.

In order to verify the basic thermal properties of the BioC filler, the ball milled filler was
subjected to preliminary TGA analysis, the results in the form of TG and DTG thermograms
are presented in the Figure 2. Due to the fact that biochar is a biomass subjected to a thermal
treatment process at about 650 ◦C, therefore thermal stability of BioC is a significant
advantage of this type of material, compared to classic type of natural fillers like sawdust.
It is important to note that the residual mass at the temperature of 800 ◦C reaches 87%
of the original sample charge, which proves the high elemental carbon content. The loss
of sample mass is divided into several stages, among which it is difficult to select one
dominant. According to the research conducted so far, the decrease in the mass of biochar
is related to the loss of moisture and the decomposition of organic groups [35,36].

2.2. Preparation of Rigid Polyurethane Foams

A reference rigid polyurethane foam and products modified with BioC were prepared
by a single-step method. The polyol premix consisting of a polyol, catalyst, surfactant,
blowing agent and biochar was mixed for 60 s. Next, the polyol premix and isocyanate
were mixed for 6 s and poured into a mold. The amount of biochar was 3, 6, 9, and 20% of
to the total mass of the polyol and isocyanate. Free rise foaming took place in a vertical
direction. The isocyanate index was 110. The materials were conditioned for 24 h at room
temperature before being cut and tested. The formulations of the polyurethane systems are
shown in Table 1.
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Table 1. Formulations of polyurethane systems.

Component, g PU PU/BioC-3 PU/BioC-6 PU/BioC-9 PU/BioC-20

Rokopol RF-551 100.00
Catalyst 1.50

Surfactant 1.50
Water 3.40
PMDI 169.60

Biochar (BioC) 0 8.09 16.18 24.26 53.92

2.3. Methods

Rheological properties of polyol/BioC premixes were investigated. For this purpose,
an Anton Paar MCR 301 rotational rheometer equipped with a 25 mm diameter parallel
plates system was used. For all measurements, the gap distance of 0.2 mm was constant. In
order to evaluate the viscosity of the mixtures, tests were conducted using the constant shear
mode, where shear rate was set to 10 s−1. In industrial production, the substrates necessary
to produce a foam are heated to facilitate the process. Therefore, in our experiment the
viscosity measurements were carried out at three temperatures: 30, 50 and 80 ◦C.

The foaming process was analyzed using a FOAMAT device (Format-Messtechnik
GmbH). The temperature, pressure and dielectric polarization were measured. The changes
of temperature during the foaming process were observed using a thermocouple. The
dielectric polarization was measured using a Curing Monitor Device (CMD), which gives
an insight into electrochemical processes occurring during foam formation. Pressure
changes during the foaming process were measured by load of the rising foam on the table
(CMD sensor).

The apparent density was measured as the ratio of the mass and volume of the samples
according to ISO 845.

The thermal conductivity of the polyurethane foams was determined using a Laser
Comp heat flow meter constructed according to ISO 8301. An average temperature between
two plates was 10 ◦C. The dimensions of the foams were 200 × 200 × 50 mm3. The closed
cell content in the foams was measured by the pycnometer method according to the ISO
4590 standard.
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The morphology of the foams was analyzed using an optical microscope (PZO
Warszawa), and a scanning electron microscope (Hitachi S-4700). The anisotropy index
was calculated as the ratio of the cell heights and widths.

The compressive strength at 10% deformation was analyzed in accordance with
ISO 826. The compressive strength of the foams was measured using a Zwick Z005 TH
Allround-Line instrument in two directions, parallel and perpendicular to the rise direction
of the foams.

Dimensional stability was determined according to ISO 2796-1986. The measurement
consisted in measuring the changes in the linear dimensions of the samples exposed to
a temperature of 70 ◦C and humidity of 90% for 24 h in an air atmosphere. For testing,
100 × 100 × 25 mm3 rigid polyurethane foam samples were measured before and after
storage at the specified temperature.

A thermogravimetric test was conducted in order to determine the decomposition
area of the foams. The apparatus used was a Netzsch TG F1 209 Libra. For this purpose,
the 10 µm samples were cut out of a foam block and placed inside open ceramic crucibles.
Measurements were conducted at temperatures from 30 to 800 ◦C under a nitrogen purge
flow. The heating rate was set to 10 ◦C/min. The same parameters were used for the
analysis of pure BioC filler.

The viscoelastic properties of the foams were determined using the dynamic me-
chanical thermal analysis technique (DMTA). We used an Anton Paar MCR301 apparatus
equipped with torsion mode clamps. Specimens were cut out of foam blocks. The dimen-
sions of a single sample were 10 × 10 × 40 mm. The measurements were conducted in
an air atmosphere in the temperature range from 25 to 250 ◦C, the heating rate was set
to 2 ◦C/min, the deformation amplitude and frequency were 0.1% and 1 Hz, respectively.
The DMTA results include the storage modulus, loss modulus and tan δ plots.

3. Results
3.1. Rheological Properties

The results of the constant shear measurement are presented in Figure 3. The dynamic
viscosity values were plotted in the graph. The results for individual measurement tem-
peratures were highlighted with separate colors. The horizontal axis corresponds to the
BioC content in the final product, while the actual content in the premix is higher, as shown
in Table 1.
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As expected, the increasing content of BioC particles visibly increased the viscosity
of the polyol premix. The results for the measurement temperature of 30 ◦C indicated
a systematic increase in viscosity, from 1.5 Pa·s for the polyol sample to 2.8 Pa·s for the
polyol/BioC-9 dispersion. For the highest filler content (polyol/BioC-20), the viscosity
reached 9.8 Pa·s. Such an increase in viscosity can cause potential problems when using
static mixers during the industrial polyurethane processing. However, taking into account
the results obtained at elevated temperatures (50 and 80 ◦C), the reduction of viscosity was
significant. For example, the viscosity of the polyol/BioC-20 sample at 50 ◦C was almost
equal to that of the pure polyol sample at room temperature. Meanwhile, for the samples
tested at 80 ◦C, the viscosity did not exceed 0.5 Pa·s. Therefore, it can be assumed that
technological problems related to the increase in viscosity should not be an obstacle.

3.2. Foaming Process and Cell Structure of Rigid Polyurethane Foams with BioC

The foaming process is an important step that has an influence on the performance
properties of rigid polyurethane foams. The changes of temperature, dielectric polarization
and pressure of the polyurethane reaction mixtures used in our experiment during the
foaming process are shown in Figure 4.
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The reactivity of the polyurethane system is illustrated by the changes of the dielectric
polarization curve. The systems with higher reactivity are characterized by a faster dielec-
tric polarization reduction. Figure 4a shows the dielectric polarization changes during
the foaming process for the polyurethane systems modified by BioC. The introduction of
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BioC as a filler reduced the reactivity of the systems. Figure 4b shows the temperature
changes in the core of the foams during the foaming process. Despite a slight reduction in
the reactivity of the system, the maximum temperature during the foaming process did
not change significantly. The temperature in the foam core was about 160 ◦C. Additionally,
the influence of the filler on the pressure during the foaming process was investigated
(Figure 4c). It was observed that with an increasing amount of the filler in the polyurethane
system, the pressure inside the foam cells increased. The introduction of the filler into
the polyurethane system resulted in an extension of the characteristic foaming times and
a slight reduction of maximum temperatures during foaming. A similar effect has been
observed in the case of rigid polyurethane foams modified with walnut shells and silanized
walnut shells [37]. In our tests, the longer gelation and growth times may have been due to
the higher viscosity of the reaction mixture with a higher BioC content. The introduction
of the filler into the polyurethane system increased the value of this parameter, further
hindering the mobility of molecules and reactions between hydroxyl and isocyanate groups.
Increased viscosity of the polyol premix increases the gel time and thus slows down the
foaming process [34]. This effect is visible for the system containing 20 wt.% of biochar.
Furthermore, lower reactivity of polyurethane systems and the foaming reaction that is
faster than the gelling reaction may cause opening of cells in rigid polyurethane foams, as
observed by Barczewski et al. [35].

The course of the foaming process influences the formation of the foam cell structure.
Table 2 shows the cell characteristics of the resultant foam materials. The addition of BioC
to the polyurethane systems reduced the apparent densities of the composites. This is
due to the moisture content of the filler used, which was 4.05 wt.%. Moisture in the filler
reacted with isocyanate to generate carbon dioxide. A greater amount of a blowing agent
reduces the apparent densities of materials [38]. In the case of small additions of fillers,
such as carbon fibers and expanded graphite, a decrease in apparent density was also
observed [39,40].

Table 2. Parameters of cellular structure and physical–mechanical properties of foams.

Name of
Sample

Apparent
Density,
kg/m3

Thermal
Conductivity,

mW/m·K

Percentage of
Closed Cells,

%
Anisotropy Index Cross Section Area·10−2 mm2

Parallel Perpendicular Parallel Perpendicular
PU 39.1 ± 0.83 25.6 ± 0.26 89.1 ± 1.4 1.26 ± 0.07 0.92 ± 0.02 1.05 ± 0.13 0.74 ± 0.09

PU/BioC-3 38.3 ± 0.66 25. 7 ± 0.11 86.3 ± 1.1 1.30 ± 0.07 0.91 ± 0.02 0.65 ± 0.02 0.42 ± 0.02
PU/BioC-6 36.3 ± 0.93 25.6 ± 0.10 85.4 ± 1.6 1.37 ± 0.03 0.89 ± 0.04 0.71 ± 0.01 0.40 ± 0.04
PU/BioC-9 34.4 ± 0.62 25.7 ± 0.16 87.6 ± 1.1 1.35 ± 0.02 0.89 ± 0.01 0.73 ± 0.01 0.41 ± 0.07
PU/BioC-20 31.8 ± 0.53 27.0 ± 1.21 87.1 ± 2.0 1.50 ± 0.06 0.92 ± 0.02 0.79 ± 0.24 0.46 ± 0.03

It is worth noting that for different types of biochar materials the moisture content
can reach even 10%. Hygroscopic nature of BioC is mainly determined by its microporous
structure, which, in turn, depends on the type of biomass and the method of pyrolysis.
Unfortunately, for most thermoplastics, excessive moisture content leads to the initiation
of the phenomenon of hydrolytic degradation, which translates into deterioration of the
properties of composites. In the polyurethane production process, the presence of water
does not have such a destructive effect, therefore, it is not necessary to eliminate water
from the filler. However, the water content should be evaluated and included in the total
water content in a polyurethane formulation.

The property that determines the use of a rigid polyurethane foam as an insulation
material is its thermal conductivity. The value of thermal conductivity of polyurethane
foams depends on many factors including their apparent density, the shape of cells or
the type of cells (closed and open) [41]. In our experiment, the introduction of BioC
up to 9 wt.% to the rigid polyurethane foams did not change significantly the thermal
conductivity coefficient, the value of which was about 25 mW/m·K. However, the addition
of BioC in the amount of 20 wt.% increased the value of this parameter. This is due to the
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increased viscosity of the polyol premix and its inaccurate mixing with the isocyanate. A
similar effect was observed for rigid polyurethane foams modified with basalt powder [42].
The introduction of the BioC reduced the apparent density of the foam materials and slightly
increased the thermal conductivity. Increasing the thermal conductivity coefficient is a
consequence of reducing the content of closed cells in rigid polyurethane foams (Table 2).
The results show that the obtained foam materials had closed cell contents in the range
of 85–89%.

Tables 2 and 3 show parameters of cellular structure and SEM photographs of the
foams cross-sections (parallel and perpendicular to the foam growth direction). The
anisotropy index is defined as the ratio of cell length to cell width. Cells are assumed to be
spherical, if the value of this parameter is 1. The introduction of the filler led to elongation
of the cells in a parallel direction, as confirmed by values of the anisotropy coefficient
above 1. Cell elongation in the direction of foam growth is related to the initial viscosity
of polyurethane systems. Moreover, the application of fillers to a polyurethane system
may lead to the nucleation process of the cells of a rigid polyurethane foam [43,44]. This
creates more cells while reducing their sizes. In the case of our studies, this effect was
also observed—the introduction of BioC resulted in a decrease in the cross-sectional area
of the foam cells. The reduction took place in directions both perpendicular and parallel
to the foam growth direction. A similar effect has been observed for rigid polyurethane
foams modified with expanded graphite [40]. Rigid polyurethane foams consist of 12-
and 14-sided structures in the shape of pentagonal dodecahedrons [45]. Between three
and more cells there are parts called struts. The filler particles used in our experiment are
mostly located in these spaces, which is confirmed by SEM micrographs shown in Figure 5.

Table 3. SEM microphotographs of foams.
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3.3. Compressive Strength and Dimensional Stability of Rigid Polyurethane Foams with Biochar 
The mechanical strength depends on the apparent density and cell structure of the 

foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 𝜎 = 𝜎 40𝜌 .

 (1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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The mechanical strength depends on the apparent density and cell structure of the 

foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
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Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
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The mechanical strength depends on the apparent density and cell structure of the 

foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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The mechanical strength depends on the apparent density and cell structure of the 

foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
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foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with 
more compact cellular structures, hence more material per unit area and a higher strength 
of the foam material. Figure 6 shows the mechanical strength (𝜎) and normalized com-
pressive strength (σnorm) of the BioC-modified foams. Compression experiments were cal-
culated with respect to a density of 40 kg/m3. The equation used for the normalization of 
strength is as follows [47]: 

𝜎 = 𝜎 40𝜌 .
(1)

Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when 
measured in a parallel direction to the foam growth direction in contrast to a perpendic-
ular direction. The differences are a result of the anisotropic cell structure of the foams, as 
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy 
factor was also reflected in the ratio of the compressive strength at 10% deformation meas-
ured in the parallel and perpendicular directions. With a higher amount of the filler in the 
foams, the apparent density decreased. The lower apparent density resulted in a lower 
mechanical strength of the foams. This is also due to the lower cross-linking density of 
these materials. In the literature, it is reported that materials with a higher apparent den-
sity are characterized by thicker cell walls and spaces between the foam cells. On the other 
hand, an introduction of a filler containing water into a polyurethane system resulted in 
thinner cell walls due to a lower apparent density. Thinner walls and smaller struts lead 
to a reduction in compressive strength [22]. The filler can also produce more cells that are 
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3.3. Compressive Strength and Dimensional Stability of Rigid Polyurethane Foams with Biochar

The mechanical strength depends on the apparent density and cell structure of the
foams, i.e., the size and uniformity of the cells [46]. A higher density is associated with more
compact cellular structures, hence more material per unit area and a higher strength of the
foam material. Figure 6 shows the mechanical strength (σ) and normalized compressive
strength (σnorm) of the BioC-modified foams. Compression experiments were calculated
with respect to a density of 40 kg/m3. The equation used for the normalization of strength
is as follows [47]:

σnorm = σ

(
40
ρ

)2.1
(1)
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Increasing the amount of the filler in the polyurethane systems reduced the compres-
sive strength at 10% deformation. A higher strength was obtained for the foams when
measured in a parallel direction to the foam growth direction in contrast to a perpendicular
direction. The differences are a result of the anisotropic cell structure of the foams, as
confirmed by the data in Tables 2 and 3. The trend in the increase of the cells anisotropy
factor was also reflected in the ratio of the compressive strength at 10% deformation mea-
sured in the parallel and perpendicular directions. With a higher amount of the filler in
the foams, the apparent density decreased. The lower apparent density resulted in a lower
mechanical strength of the foams. This is also due to the lower cross-linking density of
these materials. In the literature, it is reported that materials with a higher apparent density
are characterized by thicker cell walls and spaces between the foam cells. On the other
hand, an introduction of a filler containing water into a polyurethane system resulted
in thinner cell walls due to a lower apparent density. Thinner walls and smaller struts
lead to a reduction in compressive strength [22]. The filler can also produce more cells
that are smaller and irregularly shaped. A disturbance of the cellular structure of a rigid
polyurethane foam can also be a cause of a compressive strength reduction.

The changes in the linear dimensions of the reference and modified foams are pre-
sented in Table 4.

The introduction of the BioC filler to the polyurethane systems did not cause significant
changes in the linear dimensional stability of the materials. The changes in the linear
dimensions of the rigid polyurethane foams were less than 1%. Nevertheless, introducing
the filler into the systems resulted in changes in the linear dimensions that are smaller
than those in the PU reference system. The application of BioC resulted in linearly more
stable materials.
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Table 4. Dimensional stability of polyurethane foams.

Name of Sample
Dimensional Stability, %

Length Width Thickness

PU 0.88 ± 0.25 0.59 ± 0.17 −0.16 ± 0.51
PU/BioC-3 0.69 ± 0.58 0.42 ± 0.20 0.12 ± 0.38
PU/BioC-6 0.59 ± 0.08 0.46 ± 0.11 0.05 ± 0.30
PU/BioC-9 0.61 ± 0.11 0.68 ± 0.08 −0.04 ± 0.31

PU/BioC-20 0.57 ± 0.14 0.51 ± 0.12 −0.26 ± 0.31

The results of the TGA analysis are presented in the form of TG and DTG plots (see
Figure 7). Some of the results, such as DTG peak temperatures, degradation parameters and
residual mass, are also collected in Table 5. The addition of BioC particles did not influence
significantly the polyurethane decomposition process. The onset of the degradation, usually
marked as a 5% weight loss (W 5%), was almost the same for most of the samples. The
difference between the pure PU sample (283.4 ◦C) and PU/BioC-20 (287.6 ◦C) was only
slight. It is worth noting that the thermal stability of the BioC filler is very high, previous
research revealed that for similar types of carbonized biomass the weight loss at 800 ◦C
reaches around 15% [9]. Therefore, such a low loss of the filler mass in our tests cannot affect
the kinetics of the TGA curves for the composites containing a maximum of 20% of the
BioC filler. For the rest of the degradation factors (W 25% and W 50%) the addition of the
BioC filler increased the differences for individual samples. For example, the temperature
of 50% weight loss for PU/BioC-20 was 40 ◦C higher than in the case of pure PU, 363.2
and 404.1, respectively. This kind of behavior might suggest an improvement in thermal
stability after the addition of BioC, however, a decrease in the kinetics of weight loss is more
likely to be associated with the increasing char formation in the PU/BioC compositions.
The residual mass for the unmodified PU foam reached around 20%, while for the BioC-
modified compositions the weight of residual char was increased, for the PU/BioC-20
sample it reached around 32%. The trend of changes is therefore dependent on the BioC
content, however, the increase in the final weight is not closely related to the weight content
of the filler.
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When considering the overall dynamics of the decomposition process, it is clear that
the degradation takes place in two steps, which is more visible in the DTG chart comparison.
The first stage related to the degradation of the rigid segments of the polyurethane structure
reached the highest intensity at around 340 ◦C, which is confirmed by the presence of the
DTG peak maximum. For the rest of the samples, the DTG peak is only slightly shifted
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towards higher temperatures. Interestingly, for all of the materials, the second stage of
the degradation appears above 400 ◦C. The DTG peak maximum for this process was
detected at around 470 ◦C for all of the tested samples. This second stage of degradation is
associated with the decomposition of the organic residues.

Table 5. Results of TG and DTG plots analysis.

Name of Sample W 5%
(◦C)

W 25%
(◦C)

W 50%
(◦C)

Residual Mass at
800 ◦C (%)

DTG Peak
Temp. (◦C)

DTG Max.
Rate (%/min)

PU 283.4 331.6 363.2 20.3 342.3 8.9
PU/BioC-3 287.7 337.0 375.8 22.0 346.9 7.8
PU/BioC-6 287.0 339.5 385.6 22.8 346.7 7.8
PU/BioC-9 288.9 338.6 388.2 26.6 346.4 7.7

PU/BioC-20 287.6 339.8 404.1 31.8 344.1 6.9

The results of the viscoelastic properties evaluation are presented in the form of DMTA
plots. The thermograms presented in Figure 8 present the storage modulus, loss modulus
and tan δ values. When looking at the storage modulus plots, it is clear that the addition of
the BioC particles led to a visible decrease of the polyurethane foam stiffness. The decrease
in storage modulus values was visible in the whole range of the DMTA measurement,
while it is also clear that the increasing content of the BioC particles led to lower stiffness.
The results of the storage modulus evaluation strongly correspond with the results of
the compression tests. The use of stiff filler particles did not have any strong effect on
the potential strengthening of the material structures. In the case of the foams, the pore
formation process and the resulting lower apparent density had a decisive influence on the
mechanical properties.
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Beside the general differences in the materials stiffness revealed by the storage modu-
lus analysis, it is also possible to compare the damping factor of the materials. Usually, for
materials with an addition of spherical particles the damping properties are worse, which
is related to the decrease in the value of the tan δ peak. This relationship is also expected in
the case of polyurethane foams, as has been confirmed for different types of fillers [43,48].
Interestingly, for the PU/BioC systems prepared in our work, the changes in the damping
properties are not related to the filler content. The observed changes in the position of the
tan δ peak are very small, even for a sample containing 20 wt.% of the filler. Moreover,
these slight changes do not show any visible trend. Summarizing the results of the DMTA
analysis, it must be concluded that for the PU/BioC foam systems the increasing content of
the filler particles led to a stiffness reduction. Unlike other types of microsized fillers, the
reinforcing efficiency of BioC is low. In fact, it is difficult to assess the influence of the filler
type, since most of the mechanical properties are strongly related to the foaming process
and the apparent density correlation.

4. Conclusions

We demonstrated that it is possible to obtain highly effective rigid polyurethane foams
with biochar. The introduction of BioC into a polyurethane system affected its initial
viscosity and as a consequence the foam formation process. Moreover, the presence of
this additional component in the polyurethane system caused a reduction of its reactivity.
The changes in the foaming process had an influence on the foam cell structure resulting
in cells with smaller cross-sectional areas. Despite lower apparent densities of the foam
materials modified with the biochar in an amount of 20 wt.%, their thermal conductivity
coefficients did not worsen. Increasing the proportion of the biochar in the polyurethane
systems reduced their compressive strengths at 10% strain and the stiffness of the materials,
as confirmed by DMTA testing. Biochar in the rigid polyurethane foams improved their
dimensional and thermal stability and can be successfully used as filler for polyurethane
porous composites. Such materials can be used as thermal insulation boards as well as
filling the space between different layers where heat transfer limitation is required.
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