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Abstract
The assessment of genome function requires a mapping between genome-derived entities and biochemical reac-
tions, and the biomedical literature represents a rich source of information about reactions between biological
components. However, the increasingly rapid growth in the volume of literature provides both a challenge and an
opportunity for researchers to isolate information about reactions of interest in a timely and efficient manner.
In response, recent text mining research in the biology domain has been largely focused on the identification and
extraction of ‘events’, i.e. categorised, structured representations of relationships between biochemical entities,
from the literature. Functional genomics analyses necessarily encompass events as so defined. Automatic event ex-
traction systems facilitate the development of sophisticated semantic search applications, allowing researchers to
formulate structured queries over extracted events, so as to specify the exact types of reactions to be retrieved.
This article provides an overview of recent research into event extraction.We cover annotated corpora on which
systems are trained, systems that achieve state-of-the-art performance and details of the community shared tasks
that have been instrumental in increasing the quality, coverage and scalability of recent systems. Finally, several
concrete applications of event extraction are covered, together with emerging directions of research.
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BACKGROUND:THE LITERATURE
DELUGE ANDTEXTMINING
It is not news that science produces an enormous

literature [1]—presently 23 million citations in

MEDLINE� alone—and that computational means

such as text mining (TM) are needed to extract

meaningful knowledge from it. The biological litera-

ture in particular is largely focused on describing

relationships between entities (e.g. genes, proteins

and complexes), including how such entities

interact and affect each other. Thus, biological TM

research has focused extensively on the automatic

recognition, categorisation [2] and normalisation of

variant forms [3, 4] and mapping of these entities to

unique identifiers in curated databases, e.g. UniProt

[5]. This can facilitate entity-based searching

of documents, which can be far more effective

than simple keyword-based searches {see e.g.

KLEIO (http://www.nactem.ac.uk/Kleio/) [6] and

GeneView (http://bc3.informatik.hu-berlin.de) [7]}
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As with systems biology [8], functional genomics

is a prime candidate for TM (e.g. [9–12]). This is

because one can automate the process of discovering

relationships that hold between entities. A simple

method of discovering ‘possible’ relationships is to

find instances of sentences or abstracts in which

groups or pairs of entities co-occur [13, 14]. This

has been applied to the discovery of potentially

unknown associations between different biomedical

concepts [15]. However, such simple approaches,

which do not consider the structure of the text,

may generate incorrect hypotheses regarding

relationships between entities. For example, only

30% of pairs of protein entities that occur in the

same sentence actually represent an interaction

[16]. More complex levels of textual processing,

facilitated by the increasing availability of robust

language processing tools tailored to biological text,

such as deep syntactic parsers (e.g. [17]), can increase

accuracy by limiting extracted relationships to those

in which syntactic or semantic links hold between

the entities.

Relationships between entities are widely referred

to as ‘events’ [18, 19], and their automatic recogni-

tion has become a major focus and rapidly maturing

area of biomedical TM research. Increasingly ambi-

tious community challenges [20–22] have been a

major factor in the increasing sophistication of

event extraction systems, both in terms of the com-

plexity of the information extracted and the coverage

of different biological subdomains. Moving beyond

the simple identification of pairs of interacting

proteins in restricted domains [23, 24], state-of-the

art systems (e.g. [25, 26]) can recognise and categor-

ise various types of events (positive/negative

regulation, binding, etc.) and a range of different

participants relating to the reaction, e.g. the cause,

entities undergoing change, locations/sites and

experimental conditions. Furthermore, emerging

research is investigating how various textual

and discourse contexts of events result in different

‘interpretations’, i.e. hypotheses, proven experimen-

tal observations, tentative analytical conclusions,

well-known facts, etc. Although the exact nature

of the discourse context can vary according to

author characteristics (e.g. English biomedical

scientific papers written by native speakers

often show a higher incidence of uncertainty

than those written by non-native speakers [27]),

extraction systems that are able to recognise and

capture various degrees and types of contextual

details to produce semantically enriched events

provide opportunities to develop more sophisticated

applications.

Event extraction systems can be used to develop

applications (e.g. [28, 29]) that offer various benefits

to the researchers, e.g. in facilitating more focused

and relevant searches for information, in helping to

locate literature-based evidence for reactions

described in a pathway model or in detecting poten-

tial contradictions or inconsistencies in information

reported in different articles. The purpose of this

briefing, summarised as a Mind Map in Figure 1, is

therefore to bring to readers’ attention how event-

based TM approaches are providing considerable

assistance to biological scientists struggling to cope

with the literature deluge, and in particular, how

they may be applied to the problems of functional

genomics.

INTRODUCTION TO EVENTS
Textual events
A textual event may be described as an action,

relation, process or state expressed in the text [30].

More specifically, it is a structured, semantic repre-

sentation of a certain piece of information

contained within the text, usually anchored to

particular text fragments. These include the ‘trig-

ger’, usually a verb or a noun that indicates the

occurrence of the event, and ‘participants’, which

may be assigned semantic roles according to their

function. Typically, events and participating entities

are assigned types/classes from taxonomies or

ontologies. A bio-event is a textual event specialised

for the biomedical domain, normally a ‘dynamic’

bio-relation in which at least one of the biological

entities in the relationship is affected, with respect

to its properties or its location, in the reported

context [31].

Figure 2 shows a very simple example of a

bio-event. The trigger (binding) allows the semantic

event type ‘Binding’ to be assigned. A single

participant, p53, is identified as an entity of type

‘Protein’ and has been assigned the semantic

role ‘Theme’, as it undergoes change as part of

the event.

Figure 3 shows a more complex example, invol-

ving two events. First, the protein IL-10 is

identified as the Theme of the simple ‘Expression’

event. The verb ‘upregulates’ is the trigger for the

second, complex event, which has been assigned the
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semantic event type ‘Positive regulation’. This event

has two participants. The protein LMP1 has been

identified as the ‘Cause’ of the positive regulation

event, while the Theme is the previously mentioned

Expression event. Figure 4 shows a longer sentence,

but illustrates how event structures can encode com-

plex semantics and normalise over different means

of linguistic expression (e.g. the two different

Expression events).

Relationship between bio-events and
other types of bio-relations
The above general definition of a bio-event has

been used as the basis for various annotation and

extraction tasks [19, 31–34]. It can also encompass

bio-relations, e.g. protein–protein interactions (PPIs)

[35, 36], genotype–phenotype associations [37, 38],

disease-gene associations [16, 39], drug–drug inter-

actions [40], etc. Such relations can be considered to

be a special type of bio-event with only two partici-

pants. For example, PPI extraction may determine

that an (indirect) interaction holds between A and B

in the sentence S1:

S1: A regulates the phosphorylation of B.

PPI extraction has been used to populate inter-

action databases, such as the Molecular INTeraction

database (MINT) [41], which aims to collect infor-

mation about experimentally verified molecular

interactions (MIs). However, considering the seman-

tics of S1 at a finer-grained level allows two separate

events to be identified, with the triggers regulates

and ‘phosphorylation’. This finer-grained analysis

can be important, e.g. given that correlations

between cellular components can be affected by

both direct and indirect paths [42]. The more

detailed results of bio-event extraction can be used

to provide semantic enrichment of resources such as

the Gene Wiki [10], a collection of more than

10 000 review articles, each describing a human

gene, in which Gene Ontology (GO) [43] and

Disease Ontology [44] terms have already been

Figure 1: A‘mind map’ summarising this Briefing. It should be read clockwise starting at 1 o’clock.

Figure 2: Simple bio-event example. Figure 3: Sentence containing two events.
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recognised automatically. Event extraction can also

support the development and maintenance of more

detailed and complex knowledge bases of biological

processes and pathways (e.g. [45, 46]), which provide

ready access to a wealth of information to support

analyses and answer research questions.

ANNOTATEDDATA
Annotated collections of biomedical texts (known as

corpora), in which domain experts have manually

identified and marked up bio-events, provide direct

and high-quality evidence of how events manifest

themselves in texts. They are used to train event

extraction systems, through the application of ma-

chine learning techniques to the annotated data, as

well as acting as a ‘gold standard’ for evaluation [47].

Annotated corpora-identifying relations between

pairs of concepts include the DDI corpus [48], con-

sisting of 1025 textual documents (from the

DrugBank database [49] and MEDLINE abstracts)

annotated with 5028 drug–drug interactions, classi-

fied into four different types. The Fourth i2b2/VA

shared-task corpus [50] contains 1354 clinical records

(patient reports) in which eight types of relations that

hold between-medical problems, treatments and tests

have been annotated. The GeneReg corpus [51]

identifies 1770 pairwise relations between genes

and regulators in 314 MEDLINE abstracts that deal

with the model organism Escherichia coli.Relations

correspond to three classes in the gene regulation

ontology (GRO) [52].

Regarding more complex event annotation cor-

pora, BioInfer [32] captures events that can have

more than two participants. Its 2662 bio-events,

annotated in 1100 sentences from biomedical ab-

stracts, are quite broad in scope, being assigned to

one of the 60 different classes of the BioInfer rela-

tionship ontology. The GENIA event corpus [31]

also uses a fairly complex ontology of 36 event

types, based largely on a subset of classes from the

GO. As one of the largest bio-event corpora, it con-

sists of 1000 annotated abstracts concerning tran-

scription factors in human blood cells, with 36 858

events. Participants include Location, Time and

Experimental Context, in addition to Theme and

Cause. Negation and speculation information is

also annotated. The Gene Regulation event corpus

[53] is more restricted in terms of domain, size and

event types (240 MEDLINE abstracts relating to the

E. coli and human species, with 3067 bio-events).

However, its unique feature is its rich set of event

arguments—13 different semantic role types are

annotated.

The three BioNLP Shared Task (ST) competi-

tions [19, 20, 54–56] have evaluated various event-

based information extraction tasks, based around

common sets of training and test data. They have

contributed 11 event-annotated corpora, varying

according to text type (full papers or abstracts),

bio-medical subdomain and/or target application

area. The STs have encouraged the development

of increasingly practical and wide coverage event ex-

traction systems (see next section). The multi-level

event extraction corpus [57] also aims at improving

coverage of event extraction systems, through its an-

notation of information pertaining to multiple levels

of biological organisation, from the molecular to the

whole organism.

STs ANDEXTRACTION SYSTEMS
STs bring together different research teams to focus

on timely issues by providing standard datasets and a

common evaluation framework [58]. They have

played a significant role in advancing the state of

the art in various types of biomedical TM systems

[59, 60], including information retrieval (TREC

Genomics track [61]) and named entity recognition

{JNLPBA [62] and several BioCreAtIvE challenges

since 2003 (http://www.biocreative.org/)}.

Relation-based tasks
Challenges focusing on relations between pairs of

entities have included the language learning in

logic (LLL) challenge [22], concerned with identify-

ing ‘genic’ interactions in MEDLINE abstracts.

Machine learning-based methods representing

training examples as sequences and the use of

extended lists of words denoting interactions were

Figure 4: More complex sentence containing multiple events.
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found to be advantageous in this context. The drug–

drug interaction (DDI) challenges task [63, 64]

focused on the detection and/or four-way character-

isation of interactions between pairs of drugs in texts

from DrugBank [49] and MEDLINE abstracts.

Support vector machines (SVMs) [65, 66] were

used by many participating teams, with non-linear

kernel-based methods demonstrating clear advan-

tages over linear SVMs. In the fourth i2b2/VA

Shared-Task [50], which was based around the

aforementioned corpus involving relations between

problems, treatments and tests, systems using SVMs

were once again found to be the most successful.

The highest F-scores achieved in the above chal-

lenges ranged from �42–74%, with quality affected

by factors such as text type (academic abstracts versus

less formal text), training data size (from 271 training

examples for LLL to �5000 for i2b2/VA) and task

complexity (e.g. whether relations had to be classi-

fied). (F-measure (yielding an F-score) is standardly

used to report performance of TM systems. It con-

siders both precision (number of correct results

divided by overall number of results) and recall

(number of correct results divided by the number

of results known to be correct), when applied to a

test sample and results compared with a gold standard

annotation of that sample. Commonly, the balanced

F1-score (harmonic mean) is reported.)

The BioCreative challenges [60, 67, 68] have

addressed a number of biological TM tasks, such as

biomedical named entity recognition and normalisa-

tion, and PPI extraction (BioCreative II [67] and II.5

[69]). In contrast to other STs, the gold-standard

interactions were not text-bound, but rather con-

sisted of a normalised list of entity pairs for each

full-text article. A range of methods was used to

extract and normalise these pairs, including

machine-learned sentence classifiers, detection of

interaction-relevant verbs, keywords or word pat-

terns, rules, use of syntactic parser output and the

relative position of relevant sentences within the

full-text article. However, the best results achieved

(29% and 22% F-score for BioCreative II and II.5,

respectively) illustrate the increased complexity

when gold standard text-bound training data are

not available.

BioNLP STs
The three BioNLP STs [19, 20, 34] have focused on

a number of generally more complex event and

relation extraction problems than those introduced

above, including the recognition and classification of

event triggers, multiple participants and information

about event interpretation (e.g. negation and specu-

lation). Different ST tasks have varied in terms of

text type, biological subdomain and event types cov-

ered, thus helping to encourage the development of

increasingly robust, sophisticated and wide coverage

systems. Table 1 provides an overview of the tasks

and results for each task. The 2013 BioNLP ST

mapped each task to an overarching objective: i.e.

to apply different tasks to construct a knowledge base

for systems biology needs [20]. The GENIA event

extraction (GE) task targeted knowledge base con-

struction, pathway curation (PC) aimed at support-

ing development of pathway models, Cancer

Genetics (CG) focused on the molecular mechanism

of cancer, gene regulation network in bacteria

(GRN) was concerned with regulation networks

and corpus annotation with GRO dealt with ontol-

ogy population.

Tasks
Each ST has included a GE (GENIA Event) task,

using the same textual subdomain (i.e. molecular

biology) as the original GENIA event corpus, and

a subset of the original event types. The BioNLP’09

task [85] was largely based around a simplified subset

of the original GENIA event corpus [31], using only

9 of the original 36 event types, to make the event

extraction problem more tractable. Subsequent GE

tasks have added complexity by supplementing

abstracts with full papers (BioNLP’11) [54], or by

using an exclusively full-paper corpus, annotated

with an extended range of event types

(BioNLP’13) [75]. Several other tasks in the

BioNLP’11 and BioNLP’13 STs have used a com-

parable event annotation model to GE, i.e. the tasks

epigenetics and post-translational modifications

(EPI), infectious diseases (ID) [55] (BioNLP’11),

CG [78] and PC [79] (BioNLP’13). Each of these

tasks defined a set of event types relevant to the

corresponding subdomain and/or target task. Some

other tasks used custom (non-GENIA) representa-

tions for events or relations.

Evaluation
GE tasks were evaluated by splitting the problem as

follows:-subtask 1—locating bio-event triggers, as-

signing event types and identifying core participants

(i.e. Theme and Cause); subtask 2—identifying add-

itional participants, including locative information;

subtask 3—identifying negation and speculation.
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As only subtask 1 was obligatory and participation in

subtasks 2 and 3 was much smaller, results for the GE

subtasks reported in Table 1 concern subtask 1. In

contrast, for the EPI, ID, CG and PC tasks, the

standard means of evaluation encompassed full

event extraction in one, including the recognition

of additional arguments, negation and speculation.

Results
The best performing systems extracting GENIA-

style events have achieved accuracy levels between

50 and 57% F-score, depending on task and domain.

This is considered encouraging, given that the qual-

ity of systems has consistently improved in successive

STs (comparing results on the GE abstract dataset in

2009 and 2011), but also because the output quality

can be fairly stably maintained when variations occur

in text type, bio-medical subdomain and event types.

Particularly notable are the PC and CG tasks, be-

cause the results are comparable with those achieved

in earlier GE tasks, despite the considerably increased

complexity of event types and the more demanding

full event extraction criteria. For example, the top

performing system in the CG task achieved a recall of

48.76% and a precision of 64.17%, although the per-

formance of the second best system was more

balanced, i.e. 48.83% recall and 55.82% precision.

Regarding tasks with custom event/relation repre-

sentations, some simpler tasks produced higher

accuracies than the GENIA-based tasks, e.g. the

bacteria interaction (BI) task [56] of BioNLP’11,

which provided entities, triggers and syntactic

parses as gold standard data, and the GRO relation

extraction task of BioNLP’13, which identifies only

pairwise relations [81]. The lower scores achieved in

the bacteria biotope tasks of BioNLP’11 [56] and

BioNLP’13 [84] (45% recall/45% precision and

28% recall/82% precision, respectively) reflect the

complexity of the task, requiring the resolution of

many instances of co-reference (i.e. cases where two

or more expressions in a text refer to the same

entity), and dealing with the occurrence of many

inter-sentential events. Overall, the performance of

event extraction systems depends on the domain,

the nature of the task and the types of entities

involved. For example, it was demonstrated in [57]

that events involving anatomical entities are more

reliably extracted than molecular level events, with

Table 1: BioNLP shared task details

Task Subtask Participants Text
type

GENIA
model

Event
types

Best
system

Approach Accuracy

BioNLP’09 GE [19] 24 A Y 9 TEES [70] SVMþrules pipeline 54.89
BioNLP’11 GE [54] 13 F Y 9 UMASS [71] Joint inference 53.14

A FAUST [72] Stacking: UMASSþ
Stanford pipeline
(MaxEntþMSTParser)

57.46

AþF FAUST [72] Stacking (as above) 56.06
EPI [55] 7 A Y 14 TEES 2.0 [73] SVM pipeline 53.33
ID [55] 7 F Y 10 FAUST [72] Stacking (as above) 57.57
BI [56] 1 A N 10 TEES 2.0 [73] SVM pipeline 77.0
BB [56] 3 W N 2 Bibliome [74] Co-occurrence of arguments

and triggers
45.0

BioNLP’13 GE [75] 10 F Y 13 EVEX [76] SVM pipeline 50.97
TEES 2.1 [26] SVM pipeline 50.74
BioSEM [77] Rule pipeline 50.68

CG [78] 6 A Y 40 TEES 2.1 [26] SVM pipeline 55.41
PC [79] 2 A Y 23 EventMine [80] SVM pipeline 52.84
GRO [81]
(Relation)

2 A N 8 TEES 2.1 [26] SVM pipeline 63.00

GRN [82] 5 A N 12 U. Ljubliana [83] Linear chain CRFþ rules 0.73 (SER)
BB [84] 5 W N 2 TEES 2.1 [26] SVM pipeline 42.00

GE¼GENIA event; EPI¼ epigenetics and post-translational modifications; ID¼ infectious diseases; GI¼gene interaction; BB¼ bacteria biotope;
CG¼ cancer genetics; PC¼pathway curation; GRO¼ gene regulation ontology; GRN¼ gene regulation network. For text type, A¼ abstracts;
F¼ full papers andW¼web pages.The ‘GENIAmodel’ column indicates whether events were based on the GENIA eventmodel.The accuracies of
the reported systems correspond to F-scores, apart from the GRN task, which is reported in terms of slot error rate (SER) (the lower, the better,
in the range 0^1).
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performance levels for the former types of events

reaching 80.91% precision, 72.05% recall and

76.22% F-score, despite the fact that the annotation

corpus contained a larger number of molecular level

events.

Approaches
Pipeline-based machine-learning approaches have

performed consistently well on many different

tasks. Such systems generally implement separate

modules to perform the following: (a) identify

event triggers, (b) detect separate arguments of

these triggers and (c) construct complex event struc-

tures from the trigger-argument pairs. As seen else-

where with some relation-based extraction tasks,

SVMs appear to be the most effective learning tech-

nique across most BioNLP ST tasks. However, other

approaches have demonstrated competitive perform-

ance for certain tasks, e.g. a rule-based approach

(BioSEM [77]), and a joint model with minimal

domain adaptation (UMass system [71]). The latter

was particularly effective when combined with in-

formation from Stanford’s parser-based model [86] in

the stacking-based FAUST system [72]. For the

non-GENIA event based extraction tasks, custom

solutions can work well (e.g. [74]).

Systems
EventMine [87] is pipeline-based event extraction

system that has been applied to several biomedical

event extraction tasks. Its machine learning ap-

proach, based on SVMs, facilitates ease of portability

to new tasks, through training on different corpora.

The robustness of the system has also been illustrated

through its application to the entire PubMed abstract

collection, the results of which are used to facilitate

semantic event-based searching in the MEDIE search

system [28] (see the section ‘Applications of Bio-

Event Extraction’ for further details). It achieved

first and second place in the PC and CG tasks of

the BioNLP’13 ST, respectively, with the highest

recall for both tasks [80]. EventMine achieved the

best results on BioNLP’09 ST data (although it did

not participate in the challenge), and obtained sig-

nificantly better results for complex events (i.e. those

that include other events as participants) than those

systems originally participating in the challenge.

A subsequent version of EventMine incorporated a

new co-reference detection system (important, given

the high occurrence of co-references in full papers

[54]) and domain adaptation techniques [25], which

allow features from multiple annotated corpora to be

incorporated into the trained model. The updated

system achieved further improved results on the

BioNLP’09 ST data, and was also able to outperform

all original participants in the BioNLP’11 GE and ID

tasks (with F-scores 58.0 and 57.6%, respectively),

both of which involved the extraction of events

from full papers. A further improvement to

EventMine allows the creation of a single event

extraction system with broad semantic coverage,

through training on multiple corpora with partial

semantic annotation overlap [88]. A final enhance-

ment to EventMine, making it unique in comparison

to related systems, allows extracted events to be

enriched with extended information about their

interpretation according to textual and discourse

context [89] (see the section ‘Interpretation of

Bio-Events’).

The Turku event extraction system (TEES) [70]

has participated in the majority of tasks of each of the

three STs, and achieved the best performance in the

GE tasks of BioNLP’09 and BioNLP’13, the EPI and

BI tasks of BioNLP’11 and the CG, GRO relation

and the BB tasks of BioNLP-13. Increased general-

isability of TEES has been achieved through

evolution from a partial rule based to a completely

SVM-based pipeline [73], and incorporation of

automated annotation scheme learning from training

corpora, to allow adaptation to new tasks without

human effort [90]. The system has been used to

extract more than 19 million events from 18 million

PubMed abstracts [91] and also to create the EVEX

database [91–94], containing more than 40 million

events from both abstracts and full papers.

Information in EVEX was used to re-rank output

from TEES in the BioNLP’13 GE subtask, resulting

in a modest improvement in performance over the

use of TEES alone [76].

FAUST [72] is distinct from TEES and

EventMine in its usage of a stacking technique

(a type of ensemble learning technique, i.e. a way

of combining models rather than using a single

model). Two previously competing models, from

the University of Massachusetts and Stanford

University, respectively, were configured such

that the UMass model used the output (modulo

re-ranking) of the parser-based model of Stanford

as additional features. The combination of the differ-

ing features used in the two models resulted in

FAUST achieving the best performance in three of

the four tasks in which it participated in the

BioNLP’11 ST. An interesting additional result was
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that novel events proposed by the stacking technique

(i.e. where neither individual-base model had recog-

nised such events) had very low precision, and that

removal of such events from the output improved

performance.

INTERPRETATIONOF BIO-EVENTS
Most current event extraction systems are trained on

BioNLP ST corpora, which contain only limited

annotations relating to event interpretation, e.g.

negation and speculation. The binary distinction

between speculated and non-speculated events

made in these corpora is over-simplistic, as specula-

tion can occur, or be expressed, in multiple degrees.

In addition, further interpretative information

about events can be distinguished. For example,

an event may be presented as the subject of an

investigation, a known fact, experimental observa-

tion or the outcome of analysing experimental

results. Furthermore, events may represent know-

ledge cited from a previously published paper, or

constitute part of the new knowledge contribution

in the paper under consideration. Indeed, the nature

of evidence underpinning scientific claims or belief is

an important part of the GO annotations [43] and of

modern means of annotating systems biology models

[95–97].

Depending on the nature and criticality of the

task being undertaken, some or all of the above

distinctions may be important when searching for

instances of events. Tasks such as building and

updating models of biological pathways and curation

of biological databases [98] require the identification

of new and reliable experimental knowledge.

Meanwhile, checking for inconsistencies or contra-

dictions in the literature could be detected by exam-

ining events with identical participants but different

interpretations.

Various efforts have assigned interpretative infor-

mation at the sentence or clause level in academic

articles (e.g. [99–102]). However, as a particular sen-

tence may contain multiple events, each with their

own interpretation, a new model has been proposed

to identify distinct aspects of discourse interpretation

(or ‘meta-knowledge’ dimensions) at the event level

[103]. The model contains five dimensions, each of

which has a fixed set of values. The dimensions are:

‘Knowledge Type (KT)’ (general type of informa-

tion expressed by the event), ‘Manner’ (rate or in-

tensity level of the described reaction), ‘Certainty

Level (CL)’ expressed towards the event, the

‘Source (Src)’ of the information expressed by the

event (new information in the paper under consid-

eration, or information previously reported

elsewhere and ‘Polarity’ (i.e. whether the event is

negated).

As an example of how the model applies to an

event within a specific discourse context, consider

the sentence shown in Figure 5. There is a single

event of type Regulation (triggered by the verb ‘ac-

tivate’), which has two participants. The Cause of the

event is ‘narL gene product’ and the Theme is ‘ni-

trate reductase operon’. The textual context of the

event provides several important pieces of informa-

tion about its interpretation, each of which conveyed

by the presence of a specific cue word.

(i) The presence of the citation [5] indicates that

the event does not report novel information but

rather concerns details from a previous publica-

tion. Thus, the citation acts as a cue to denote

that the value of the ‘Src’ dimension should be

set to ‘Other’.

(ii) The word ‘suggested’ denotes that within the

previous publication, the event was not stated

as definite, but rather was outcome of an ana-

lysis. This is a cue for a ‘KT’ value of ‘Analysis’.

(iii) The confidence in the validity of the analysis is

rather tentative, as denoted by the word ‘may’.

Thus, the ‘CL’ value is ‘L1’ (the lowest of the

three possible levels).

(iv) The word ‘partially’ shows that the level/inten-

sity of the proposed interaction is lower than

would be expected by default. According to

the model, the value of ‘Manner’ dimension is

set as ‘Low’.

The meta-knowledge model has been applied

manually to enrich the GENIA event corpus [104].

Event level meta-knowledge has been shown to

complement more coarse-grained annotation

schemes [105] and some significant differences

between the distributions of meta-knowledge in

full papers and abstracts have been revealed [106].

Experiments have demonstrated the feasibility

of predicting values for Manner and ‘Polarity’

dimensions automatically [107, 108], while the

enhanced EventMine can fully automatically extract

events with such meta-knowledge information at-

tached [89].
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APPLICATIONSOF BIO-EVENT
EXTRACTION
Automatic extraction of bio-events has a broad range

of applications [58], including support for the cre-

ation and annotation of pathways [109, 110], auto-

matic population/enrichment of databases [111] and

semantic search systems.

Semantic search systems
Semantic search systems allow much more precise

and focused retrieval and extraction than do the trad-

itional keyword-based systems [112]. Earlier systems

aimed to increase the number of hits retrieved by

a user’s query, through automatic query expansion

with synonyms or variants of query terms. Automatic

identification of other terms and/or interaction-indi-

cating verbs in the same sentence or abstract can

allow identification of potential events or associations

involving search terms. iHOP (http://www.ihop-

net.org) [23, 113] highlights additional terms and

verbs in sentences retrieved by searching for

a gene (see Figure 6), whereas FACTAþ (http://

www.nactem.ac.uk/facta/) [15] calculates and visu-

alises strengths of association between a search term

and other important concepts (e.g. genes, diseases

and chemical compounds), by finding abstract-level

co-occurrences over the whole of the MEDLINE

abstract database. FACTAþ queries can be

refined through specification that event(s) of a

particular type should be present in the ab-

stracts retrieved. For example, the query ‘ERK2

GENIA:Positive_regulation’ will retrieve abstracts

containing both the term ‘ERK2’ and an event of

type ‘Positive regulation’.

MEDIE [28] allows more precise, structured

searching, through the application of a deep syn-

tactic analyser tuned to the biomedical domain

[114], combined with an event expression recog-

niser and a named entity recogniser [115].

Structured queries take the form of ‘<subject,

verb, object>’ to specify an event, where ‘subject’

and ‘object’ refer to grammatical relations with the

verb. Such relations often hold between the pri-

mary participants of events, and are the basis of

the well-known Resource Description

Framework (RDF) triple scheme [116]. Query re-

sults are shown in Figure 7. The subject, verb and

object of the relation are highlighted separately in

the relevant snippets of texts within the retrieved

articles.

A recently released enhanced prototype of

MEDIE (http://www.nactem.ac.uk/medie/ev-

search.html) allows search criteria to be specified

based on the GENIA event model, facilitated by

applying EventMine to the PubMed abstract collec-

tion. This allows search criteria to abstract further

from the surface structure of the text.

Another event-based system offers a user interface

over the EVEX database [94], allowing search based

on the 40 million bio-molecular events extracted

from 21.9 million PubMed abstracts and 460 000

PubMed Central open access full-text articles.

Selecting a particular gene causes the event types in

which it participates to be identified. In Figure 8, the

events displayed involve the gene ATR. The state-

ment ‘ATR regulates 82 genes or proteins’ denotes

that ATR has been identified as the Cause of regu-

lation events, in which 82 unique genes or proteins

have been identified as the Theme. An example of

an event involving each of these genes/proteins is

displayed. For each gene/protein, links allow the

user to further ‘drill down’ to information of interest,

e.g. to find further examples of the given event type

with a specific Cause and Theme, or to discover

further event types involving a specific pair of

genes/proteins. The events displayed in Figure 8

provide further evidence of how discourse contexts

are important in distinguishing between different

event interpretations (as explained in the section

‘Interpretation of Bio-Events’ above), and thus that

such search systems could benefit from taking this

information into account. For example, in the first

row, which describes an interaction between ATR
and Nor1, the word ‘find’ denotes that the event is

Figure 5: Annotated meta-knowledge example.The core elements of the event (i.e. the trigger for the Regulation
event, and itsTheme and Cause participants) have been enriched through the identification of cues that are relevant
to various dimensions interpretation of the event, according to the meta-knowledge model.

Event-based text mining 221

search 
systems
http://www.ihop-net.org
http://www.ihop-net.org
il
st
http://www.nactem.ac.uk/facta/
http://www.nactem.ac.uk/facta/
,
http://www.nactem.ac.uk/medie/ev-search.html
http://www.nactem.ac.uk/medie/ev-search.html
,
``
''
`
'
in 
the
`
'
`
'
``
''
,
`
'
`
'


stated based on experimental observations, while the

word ‘weakly’ denotes that intensity of the regula-

tion is very low.

EvidenceFinder (http://labs.europepmc.org/evf)

has been developed to allow event-based filtering

of search results and efficient location of information

within >2.6 million articles from PubMed and

PubMed Central contained within the Europe

PubMed Central database. A recently released

update of this interface (http://www.nactem.ac.uk/

EvidenceFinderAnatomyMK/) is tailored to

searching for anatomical entities, and enhances the

functionality of other semantic search interfaces

through the inclusion of extended filtering facilities,

based on meta-knowledge extracted about the event,

according to the model introduced above.

For any given anatomical entity, e.g. ‘ventricles’,

there can be many different types of events that

mention the entity. Given such a search term,

EvidenceFinder helps the user to filter the search

results by generating a list of questions [117] that

illustrate the most frequent types of events in

Figure 7: MEDIE search results. Relevant sentences from retrieved abstracts are shown, with separate colours for
the subject, object and verb. (A colour version of this figure is available online at: http://bfg.oxfordjournals.org)

Figure 6: iHop search interface, showing results retrieved by search for SNF1. Additional entities, MeSH terms,
interactions and words are highlighted. (A colour version of this figure is available online at: http://bfg.oxford
journals.org)
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which the search entity is involved in the Europe

PubMed Central document collection (see the top

right-hand box in Figure 9). In Figure 9, the ques-

tion What affects ventricles? has been selected, and text

snippets containing events that answer this question

are shown on the left-hand side of the screen.

Events are extracted via a number of domain-

specific tools and resources, namely the Enju Parser

adapted to the biomedical domain [114], a named

entity recogniser [118] and information about pat-

terns of verb behaviour in biomedical texts, which is

obtained from a large-scale domain-specific lexical

resource, the BioLexicon [119]. This resource in-

cludes, amongst other information, details about

the grammatical and semantic behaviour of verbs.

The event extraction process used in

EvidenceFinder additionally includes the assignment

of meta-knowledge information to events. For the

first result in the list in Figure 8, the ‘Fact Type’ is

set to ‘Observation’, because the textual context

reveals that the event is stated based on experimental

findings. In contrast, the second result states generally

accepted information (probably as background to

new research being carried out), and hence the

Fact Type is set to the ‘General Fact’. The ‘Meta-

knowledge’ box allows one or more specific values

to be selected to refine the search results according to

the varying event interpretations.

Linking pathways to the literature
Biochemical signalling and metabolic pathways are

becoming increasingly important for biomedical

research, because they represent collective interpret-

ations of facts scattered throughout the literature [96,

Figure 8: Interface to EVEX database, showing results after searching for the gene ATR.
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120–125]. The compilation, curation, annotation

and maintenance of pathway models require substan-

tial human effort, including reading previously pub-

lished papers, monitoring the appearance of new

ones and interpreting their results [126].

Furthermore, because different interpretations of

the same set of facts are possible, not to say wide-

spread (see e.g. [127, 128])), researchers often

want—and intellectually ought—to read the original

papers from which, e.g. a pathway is constructed

[121, 129]. TM tools can be valuable, not only to

support the maintenance of pathway models [130],

but also to provide direct links from pathways to the

supporting evidence in literature [95].

PathText 2 (http://www.nactem.ac.uk/path

text2/demo/) [109] is an integrated search system

that links biological pathways with supporting

knowledge in the literature. It reads formal pathway

models (represented in the Systems Biology Markup

Language (SBML) [131] with CellDesigner [132])

and converts them into queries that are submitted

to three semantic search systems operating over

MEDLINE, i.e. KLEIO [6], which improves and

expands on standard literature querying with seman-

tic categories and facetted search, FACTAþ and

MEDIE (both the original and GENIA event-

based versions). The average hit ratio of each

system (i.e. the fraction of queries generated by

PathText 2 that retrieve a given document) is con-

sidered when ranking the documents. The GENIA

event-based version of MEDIE was found to achieve

the highest hit ratio, demonstrating the superiority

of this search method. Accordingly, documents

retrieved by this method are ranked first by the

system. Figure 10 shows the PathText 2 interface.

An SBML model is selected or uploaded, and a

reaction is chosen. Textual evidence for the queried

reaction in retrieved documents is displayed in the

interface, along with a confidence score.

CONCLUDING REMARKS
In recent years, the sophistication of automated meth-

ods to recognise relationships between entities in bio-

medical texts has increased considerably, moving

from calculation of simple co-occurrence to the de-

tection of pairwise relations between interacting pro-

teins and to the extraction of sophisticated event

structures involving multiple, categorised participants.

Complex event extraction systems can benefit

researchers in a number of ways. Given the rapidly

expanding volume of literature, semantic search sys-

tems allow far more efficient retrieval of relevant

information than traditional keyword-based meth-

ods. Event extraction can also assist with tasks such

as the semi-automatic curation of biomedical data-

bases and ontologies and the linking of biological

pathways with supporting evidence from the

literature.

Community STs and associated event-annotated

corpora have ensured that event extraction has de-

veloped into, and remains, an active research area.

Systems dealing only with abstracts in restricted

subdomains have given way to more flexible and

Figure 9: EvidenceFinder interface for anatomical entities.
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adaptable systems, which, by incorporating tech-

niques such as co-reference resolution or domain

adaptation methods, can operate with comparable

accuracy on different text types and domains with

minimal, or even completely automatic, adaptation.

Recent development of an event-based meta-

knowledge model is opening up new research

directions, including increasing the search possibili-

ties of event-based search systems.

State-of-the-art event extraction technology is

now accurate and robust enough to support the

development of useful applications, as illustrated by

our descriptions of several real-world applications.

Developments in deep neural network learning

(e.g., [133–135]) seem destined to improve this yet

further. Application-oriented usage of event extrac-

tion has further been stimulated by the BioNLP

2013 ST, with the theme of knowledge base construc-
tion. However, further such initiatives are needed,

in order that future efforts to improve event extrac-

tion technology are balanced by efforts to exploit it

more extensively in user-oriented applications, thus

ensuring that the full practical potential of event

extraction technology is realised and appreciated by

the biomedical community.

As the community focuses on improving the

domain independence of annotations and methods,

complex event extraction at large scale will become a

core technology in the world of Big Data and Linked

Open Data. Existing biomedical ontologies, data-

bases and other resources provide the semantics to

drive the TM systems. In turn, the output of the

systems is used to further enrich the resources in a

bootstrapping manner. This synergy between TM

and enriched Linked Open Data is one of the

cornerstones of the informatics infrastructure

needed to support biomedicine. These efforts will

support existing initiatives such as ELIXIR (http://

www.elixir-europe.org) and BioCreaTiVe in facili-

tating the curation of large-scale biological databases

and ontologies, together with the aggregation of

workflows and services. As data floods entail further

publications, the manual curation and update of

numerous databases, using information from the lit-

erature, within a realistic timeframe, is a sine qua

non. However, the integration of high-quality infor-

mation of a complex nature, such as events extracted

automatically from the literature, into bioinformatics

platforms, will allow scientists to process and better

comprehend the amount of data at their disposal.

Figure 10: PathText 2 Interface.
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Sectors such as pharmaceuticals, biotechnology and

biocatalysis rely on high quality, comprehensive,

accurate and timely information, which TM can

provide. Big Data is here, and TM is essential to

allow us to use and make sense of it to support

science.

Key points

� The enormous volume of biology literature demands computa-
tional methods to allow pertinent information to be found and
analysed efficiently.

� TM facilitates the extraction from documents of semantic
information such as entities (proteins, genes, etc.) and events
(binding, regulation, etc.) inwhich the entities participate.

� Recent community STs have encouraged and led to the develop-
ment of increasingly accurate and wide coverage event extrac-
tion systems.

� Event extraction systems are now sufficiently accurate to
support the development of various user-oriented applications,
including sophisticated semantic search, and means for linking
biochemical pathways to evidence in the literature.

� Emerging research into the automatic assignment of interpret-
ative information (meta-knowledge) to events can increase the
power of event-based applications.
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