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Conventionally, pathway-based analysis assumes that genes in a pathway equally contribute to a biological function, thus assigning
uniform weight to genes. However, this assumption has been proved incorrect, and applying uniform weight in the pathway
analysis may not be an appropriate approach for the tasks like molecular classification of diseases, as genes in a functional group
may have different predicting power. Hence, we propose to use different weights to genes in pathway-based analysis and devise
four weighting schemes. We applied them in two existing pathway analysis methods using both real and simulated gene expression
data for pathways. Among all schemes, random weighting scheme, which generates random weights and selects optimal weights
minimizing an objective function, performs best in terms of P value or error rate reduction. Weighting changes pathway scoring
and brings up some new significant pathways, leading to the detection of disease-related genes that are missed under uniform
weight.

1. Introduction

With the advent of microarray technology in the field of
biomedical research [1–7], numerous statistical methods
[8, 9] were proposed to analyze microarray gene expression
data. But most are single gene based and do not consider the
interacting relationship or dependencies among genes in a
functional group. In single gene-based analysis, most subtly
but coordinated differentially expressed genes are often not
identified as significant and usually dropped by a strict cutoff
threshold feature selection [10, 11]. In contrast, pathway-
based analysis considers a set of biologically related genes
and helps detect subtle changes in gene expression with the
help of a joint effort by genes [3, 4, 12, 13]. Many researchers
discussed the advantages of pathway-based analysis. Sub-
ramanian, for instance, considered an enrichment-based
approach using various Kolmogorove-Smirnov statistics [3];
Curtis gave a good review of computational approaches
proposed for pathway-based analysis [4]; Goeman et al.
proposed the global test based on a generalized linear model
[12]; Pang et al. described the random forest-based pathway
analysis [13]; Harris et al. considered gene grouping based on

gene ontology [14]; Misman et al. provide good reviews on
those in [15].

A biological pathway is a series of actions among
molecules in a cell that leads to a certain product or a
change in a cell. Such a pathway can trigger the assembly
of new molecules, such as fat or protein. Pathways can
also turn genes on and off or spur a cell to move [16].
Biological pathways help researchers learn a lot about
human disease, since identifying genes, proteins, and other
molecules involved in a biological pathway can provide clues
about what goes wrong when a disease strikes. Researchers
may compare certain biological pathways in a healthy
person to the same pathways in a person with a disease to
discover the roots of the disorder. Using pathways extensively
allows a quick overview of expression results in relation
to biological mechanisms, facilitating the understanding of
gene, protein, and metabolite interactions at higher levels.
Over the past decade, researchers have discovered many
important biological pathways through laboratory studies of
cultured cells and various organisms, and they are stored in
public domain biological pathway databases [16]. Biological
pathways have been also curated manually combining three
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content sources: public domain databases, literature, and
experts [17].

Pathway analysis aims to define the meaning of biolog-
ical processes by identifying significant pathways through
statistical evaluations. Pathways are scored in statistical
evaluations based on activity, coregulation, and cascade
effects in pathways as measured by the gene expression levels
from the microarray experimental data. This score will rank
those pathways higher in which more genes are overexpressed
or underexpressed with reference to reference state [18].
Ranking pathways relevant to a particular biological process
or disease is useful, since it allows researchers to focus on
a smaller number of pathways for further study of the bio-
logical process or disease of interest. Most pathway analysis
tools and methods, however, are assuming that all genes in a
pathway are equally contributing to a biological process, and
thus assigning uniform weight. But this assumption has been
proved incorrect [19] because some genes may have higher
relevancies to a particular biological process, and those genes
presumably have higher predicting or classifying power than
the others. One issue in the pathway analysis is the quality
of pathways since biological pathway databases are not
comprehensive, and the biological pathway content varies
greatly in quality and completeness among the tools and
databases [17]. Pathway data taken from public databases
and open literatures may include nonrelevant genes and/or
exclude relevant genes [20]. For instance, in the case of the
famous Mootha’s type II diabetes pathway dataset [21], genes
such as CAP1, MAPP2K6, ARF6, and SGK contained in the
pathway ID 36, c17 U133 probes, are known to be related to
human insulin signaling [15], while other genes are not yet.
Also, SHC contained in the pathway ID 229 is known to be
related to human insulin signaling, while others are not yet.

To address the problem of pathway quality and incom-
pleteness in the pathway analysis tools and approaches,
some researchers tried to minimize the misspecifications
by defining signature genes to represent pathway behaviors,
and/or refining pathways to adapt to specific conditions
by removing unaltered genes from the dataset [19, 22–24].
Others tried to improve the functional interpretation of
gene groups by including additional information associated
with the group [24]. Joining such efforts, we propose to
apply nonuniform weighting scheme, which applies different
weights to the genes in a pathway-based on the relevancies
of genes to a related biological process or disease. The
intuitive ideas behind our proposed ideas are that not all
genes grouped in a pathway are related to a particular
biological process or disease with the same significance,
and thus applying weight to the genes proportional to their
relevancies to a certain biological process or disease may
generate more accurate results for pathway based analysis
such as the molecular classification of diseases.

To investigate the impact of using weighting schemes in
pathway based analysis, we devise four different weighting
schemes and incorporate them into the existing pathway
analysis methods, such as the global test [12] and the
random forests [13, 25–27]. Our schemes essentially apply
larger weights to more differentially expressed genes between
different sample groups (i.e., normal vs. tumor samples),

so those genes impact more on the final results of analysis.
The four weighting schemes we introduce in this paper
are as follows. The first weighting scheme is based on the
absolute value of two sample t statistics denoted as absT.
The second one is based on the Q test statistic of the global
test denoted as Qdiff. The third and the fourth ones are
based on a computational approach, which assigns weights
randomly to genes and selects optimal weights minimizing
an objective function. The third scheme called RWV (random
weight vector) is to assign m weights for m genes, in which all
samples of a gene are assigned the same weight. The fourth
one called RWM (random weight matrix) is to assign a matrix
of weights for a pathway of m(genes)× n(samples), in which
samples of a gene are assigned different weights.

We performed our experiments using the type II diabetes
dataset obtained from Mootha et al. [28] and the canine
dataset from Enerson et al. [29]. We also used simulated
datasets to gain an in-depth understanding of weighting
effects in a controlled way. In our experiments, we apply
each weighting scheme onto the datasets and select top 20
or 33 significant pathways. We evaluate the performance of
our weighting schemes by comparing the P values of the
pathways selected using each scheme with those selected
using uniform weighting. We observe that when our weights
are applied, the scoring of the pathways is changed, and
some pathways originally in lower ranks are elevated to
higher ranks, hence, contributing to improved prediction
rates. According to the previous studies [28, 30–34], several
significant pathways identified by our weighting schemes are
biophysiologically associated with related diseases.

2. Materials and Methods

2.1. Global Test and Random Forest. We used the global
test [12] and the random forests [13, 25, 26] methods to
investigate the impact of weighting in the pathway-based
analysis and to evaluate the performance of our weighing
schemes. First, we review the two methods briefly to explain
how we incorporate our proposed weighting schemes into
these methods.

2.1.1. Overview of Global Test. The global test method is a
pathway analysis method developed by Goeman et al. [12]. It
tests whether subjects with similar gene expression profiles
have similar class labels, based on a logistic regression.
Suppose that gene expression data containing n samples
for p genes is normalized. Of these p genes, a subgroup
of m (1 ≤ m ≤ p) genes is to be tested. Let X =
(xi j) be an n × m data matrix containing m genes for n
samples of interest, and Yi as the clinical outcome of the ith
sample (n × 1vector). To model how the clinical outcome
Y depends on the gene expression data X, the global test
adopts the generalized linear model framework developed by
McCullagh [35], expressed as follows:

E
(
Yi |

−→
β
)
= h−1

⎛
⎝α +

m∑

j=1

xi jβj

⎞
⎠, (1)
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where βj is the regression coefficient for gene j ( j =
1, . . . ,m), h is a link function (e.g., the logit function), and
α is an intercept. Testing a predictive effect of the gene
expressions on the clinical outcome is equivalent to testing
the hypothesis H0 : β1 = β1 = β2 · · · = βm = 0.
Assume that β1, . . . ,βm are a sample from some common
distribution with zero mean and variance τ2, then a single
unknown parameter τ2 determines the allowed deviation
of the regression coefficients from zero. Thus, the null
hypothesis is H0 : τ2 = 0. The formula ri =

∑
j xi jβj (i =

1, . . . ,n) is the linear predictor, that is, the total effect of all
covariates for the i th sample. As r = (r1, . . . , rn) is a random
vector with E(r) = 0 and cov(R) = τ2XX′, the generalized
linear model is simplified to E(Yi | β) = h−1(α + ri). A test
statistic for testing H0 is defined as

Q = 1
μ2

n∑

i=1

m∑

j=1

Rij
(
Yi − μ

)(
Yj − μ

)
, (2)

where R = (1/m)XX′ is an n × n matrix proportional to
the covariance matrix of the random effects r, μ = h−1(α)
is the expectation of Y under H0, and (Y − μ)(Y − μ)′ is the
covariance matrix of the clinical outcomes of the samples.
The test statistic Q has a higher value if the terms of the
two matrices are correlated more. Essentially, it tests whether
samples with similar gene expressions also have similar
outcomes. The empirical distribution of test statistic Q under
the null hypothesis H0 is calculated across all samples by
randomly taking a large number of permutations (such as
100,000) of the vector Y from the outcomes. The empirical
P value is the frequency such that Q for the permuted Y
is at least as large as the true Q, divided by the number of
permutations. For our microarray datasets cases, Y is 1 for a
disease sample or 0 for a normal sample.

The reason we selected the global test pathway analysis
method for our study of weighting effect in the pathway-
based analysis is that the generation and the assignment of
weights for the genes in a pathway is easy and straightforward
in the global test. Multiplying a desired nonuniform weight
matrix W = (wij) to a gene expression data matrix X = (xi j)
in the global test method does not incur any side effects.

2.2. Overview of Random Forests. The random forests are a
tree-based method developed by Breiman et al. (1984, 2001)
[25–27], which can be used for classifications or regressions
[13]. The method grows multiple classification or regression
trees using a deterministic algorithm, in which each tree
is constructed using a different bootstrap sample from the
original data. It leaves about one-third of the cases out of the
bootstrap (out-of-bag) samples for testing purpose. The out-
of-bag (OOB) samples are not used in constructing the kth

tree but saved to be used as a test set. At the end of the run,
it takes the ith sample to be the class which receives most of
the votes every time case n is the out of bag. The proportion
of times that i is not equal to the true class of n averaged
over all cases is called the estimated out-of-bag (OOB) error
(http://stat-www.berkeley.edu/). Pang et al. [13] are the first
group who proposed to apply the random forests approach
to pathway analysis, and we adopted their approach to study

the weighting effect in the pathway analysis. Our objective is
to find the optimal weight W∗ that minimizes the OOB error
rate using the objective function we modify in the following:

W∗ = argmin
w

[F(wX)], (3)

where F(X) is the original cost function of the random
forests that computes the OOB error rate of a group of data
X, and w is a weight matrix for the group of data X. Our
objective is to find the weight matrix w which minimizes the
estimated OOB classification error for each pathway.

2.3. Proposed Weighting Schemes. We considered four
nonuniform weight schemes, which intend to generate the
weight for each gene in a pathway, based on its degree of
differential expression between the different phenotypes. In
this section, we describe the rationale behind each weighting
scheme, generation, and assignment of nonuniform weights
for genes in a pathway.

2.3.1. absT Based on Two-Sample t-Test Statistic |T|. The
two-sample t-test statistic is widely used to determine if
the means of two populations are equal [35]. To measure
how differentially a gene is expressed between two different
groups (i.e., normal versus disease), we calculate the two-
sample t-test statistic of the gene and take the absolute value
of it and denote it as |T|. The absT scheme determines the
weight of each gene in a pathway using the |T| value of each
gene divided by the sum of all |T| values of all genes in the
pathway. Mathematically, the weight for the jth gene W |T|

( j)

is expressed in the following formula:

W |T|
( j) =

∣∣∣T( j)

∣∣∣
∑m

j=1

∣∣∣T( j)

∣∣∣
. (4)

With this scheme, the most differentially expressed gene will
have the largest |T| value and get the largest weight. The
rationale is based on the hypothesis that more differentially
expressed genes have higher relevancy to the disease or the
phenotype of interest.

2.3.2. Qdiff Based on the Test Statistic Q of the Global
Test. The test statistic Q of the global test is a test to
find whether samples with similar gene expressions also
have similar outcomes. If the covariance structure of the
gene expressions between two sample groups resembles the
covariance structure of their outcomes, the Q statistics is
large. The proposed Qdiff weighting scheme uses the Q
statistic of a pathway to construct the weights for genes in the
pathway. The idea is based on our hypothesis that if excluding
one gene from a pathway results in a large difference in the
original test statistic Q, the excluded gene may have a strong
relevancy to the related disease or phenotype. To determine
the weight for the jth gene in a pathway containing m genes,
the scheme uses the following formula:

W |Qdi f f |
( j) =

∣∣∣Q−Q(− j)

∣∣∣
∑m

j=1

∣∣∣Q −Q(− j)

∣∣∣
. (5)
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Here, Q is the test statistic of the pathway including all m
genes, and Q(− j) is the test statistic of the same pathway
but excluding the jth gene. The weight of the jth gene is
determined by the difference of these two test statistics Q and
Q(− j), divided by the sum of all such differences calculated for
all m genes in the pathway.

2.3.3. RWV Based on Random Weight Vectors Generated
by a Computational Approach. The computational RWV
(random weight vector) scheme assigns m random weights to
m genes in a pathway and identifies the optimal m weights
vector minimizing the P value of the pathway. It uses the
following pseudocode algorithm to obtain the optimal m
weights vector for each pathway.

Step 1. Run the global test on the original gene expression of
a pathway and obtain the P-value for the pathway. Initialize
this P-value as minP and the uniform weight vector as optW.

Step 2. for i = 1: COUNT.

Substep 1. Generate a set of m random values in the pre-
defined range (i.e., 0.1 ≤ range ≤ 1.0).

Substep 2. Pick m values randomly from the set of m random
values constructed in Substep 1, allowing replacements.

Substep 3. Multiply each gene expression Xj = [Xj,1,Xj,2,
. . . ,Xj,n] with the corresponding weight wj (1 ≤ j ≤ m).
This process constructs a weighted gene expression matrix
wX for the pathway

wX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1X1

w2X2

...

wmXm

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

Substep 4. Run the global test on the weighted gene expres-
sion matrixwX of the pathway and obtain P-value.

Substep 5. If the P value of the weighted gene expression
matrix wXobtained in Substep 4 is smaller than the current
min P, update the min P with this P value and update the
optimal weight vector optW with the new w = [w1,w2,
. . . ,wm] constructed in Substep 2.

End (for loop). Of course, the larger number of iteration
increases the quality of the solution, but at the cost of higher
computation time. We should also note that this weighting
scheme assigns the weight to each gene across all samples as
absT and Qdiff schemes do.

2.3.4. RWM Based on Random Weight Matrices Generated by
a Computational Approach. In contrast to the three schemes
assigning the same weight across all samples for a gene, RWM
(random weight matrix) scheme assigns different weights
to all samples for a gene. Essentially, RWM scheme uses

the same algorithm of RWV scheme except that it generates
n × m random values instead of m random values, for the
n samples in the pathway of m genes. The n × m random
values in the predefined range are multiplied to the n × m
gene expression data. Among all sets of random weights it
applied, the scheme selects an optimal set of weights that
minimizes the P-value in the global test, or the OOB error
rate in the random forests for the pathway. The weighted
gene expression matrix wX of a pathway is expressed in the
following matrix:

wX =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,1X1,1 w1,2X1,2 ... w1,mX1,m

w2,1X2,1 ... ... w2,mX2,m

... ... ... ...

wn−1,1Xn−1,1 ... ... wn−1,mXn−1,m

wn,1Xn,1 wn,2Xn,2 ... wn,mXn,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Obviously, RWM scheme can find a better solution in
minimizing the P-value or the OOB error than RWV scheme,
but it is computationally more complex.

2.4. Datasets

Real Datasets. The first real dataset we used for our
study is the well-known type II diabetes microarray gene
expression dataset obtained from Mootha et al. [28], con-
sisting of 278 pathways for 13,842 genes, sampled from
26 people with type II diabetes and 17 without. The
pathways were obtained from KEGG pathway database
(http://www.genome.jp/kegg/pathway.html), and the curate
pathways were constructed from known biological experi-
ments performed by Mootha et al. Another real dataset we
used is the canine dataset obtained from Enerson et al. [29],
consisting of 441 pathways for 6,592 genes, sampled from
12 dogs with lesion and 17 without. The canine dataset was
generated from the investigative toxicology studies designed
to identify the molecular pathogenesis of a drug-induced
vascular injury in coronary arteries of dogs, which were
treated with adenosine receptor agonist CI-947. The canine
genes were mapped to human orthologs, and the human
orthologs for dogs were generated by matching the genes
sequence using BLASTx [13, 29]. Note that not all genes
in a pathway have the same significant relevancies to the
related disease. Some genes in a pathway could be related
more significantly to the disease and some genes less or not
at all. The pathway ID 36 in the type II pathway dataset, for
instance, contains several genes such as CAP1, MAPP2K6,
ARF6, and SGK, which are known to be related to the
human insulin signaling, while containing other genes whose
relevancies to the type II diabetes are not known yet [21].

Simulated Datasets. To study the weighting effect with
more control, we created two simulated datasets using
the simulator function available in the boost R package,
which allows a simulated data to retain the same mean
and the same correlation structure of the original pathway
data [13, 36]. As the basis of our simulations, we selected
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two real pathways containing more than 20 genes and
generating high P value in the global test or high OOB
error rate in the random forests under uniform weight, to
manifest the weighting effect more clearly. One pathway
is “MAP00480 Glutathione metabolism,” ID 164 from the
type II diabetes dataset, containing 26 genes, ranked in the
277th with P-value 0.95 in the global test. Another pathway
is “Eicosenoid Metabolism,” ID 441 from the canine dataset,
containing 21 genes, ranked in the 421st with out-of-bag
(OOB) error rate 0.48% in the random forests. For both
cases, we used the multivariate normal distribution to create
the simulated pathway data for sample size of 30, 50, and 100,
with normal and disease group assigned with even number of
samples.

3. Results and Discussion

We applied each proposed weighting scheme on each dataset
in the global test and ranked the pathways in the increasing
order of P values obtained from the global test. From the
ordered list of pathways for each output set, we selected
the top 20 pathways for our analysis. In the random forests
case, we only applied RWM scheme, since the other three
proposed schemes apply the same weight across all samples
for genes, and that does not change the outcome of the out-
of-bag error calculations for the genes by the random forests
algorithm. For the random forest application results, we
selected top 33 pathways instead of 20, in the increasing order
of OOB error rates, to include the multiple pathways tied in
some ranks within the 20th. Ranking pathways is important
in the pathway analysis because it enables researchers to
focus on a small number of pathways, which are estimated
as statistically significant in terms of the relationship to
the disease or phenotype of interest. In this paper, we
focus on the top 20 or 33 selected pathways groups for
each weighting scheme for the performance analysis of
the proposed schemes and the comparison of them to the
performance of uniform weight.

For the greed search for the optimal set of weights
in the applications of RWV and RWM schemes, we used
25,000 iterations, since our experiments on the type II
diabetes dataset in the global test showed no meaningful
decrease in the P values, for the iterations of 20,000 or
greater. The average P-values of the type II diabetes pathways
corresponding to different number of iterations for running
RWM scheme in the global test are displayed in Figure 1.

To help readers refresh the memory of our four proposed
weighting schemes before we discuss the application results
of those in the following sections, we provide a brief summa-
ry of the four schemes in Table 1.

3.1. The Global Test Application Results

3.1.1. Reduction of P Values

Type II Diabetes Dataset. The pathway identification num-
bers (PID) of the type II diabetes pathways in all top 20
groups are displayed in Table 2. While the average P-value
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Figure 1: Average P-value of all Type II diabetes pathways versus
number of iterations for RWM in the global test.
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Figure 2: P-value distributions for the top 20 Type II diabetes
pathways selected by each weighting scheme in the global test.

of the 20 pathways under uniform weight is 0.0612, it is
much smaller under the proposed weighting schemes. In
terms of the P value reduction, RWM performed best (with
the average P-value of.0001), followed by absT (.0007), Qdiff
(.0027), and RWV (.0044). The amounts of reduction are
ranged from.0611 for RWM to.0568 for RWV. As another
metric to examine the impact of our weighting schemes, we
counted the total number of pathways having P-value less
than 0.05. Among all 278 pathways in the dataset, RWM
yields the largest number (=264) of pathways with P-values
less than.05, followed by absT (with 142), Qdiff (with 74),
RWV (with 66), and uniform weight (with 8). Those results
reveal that our schemes effectively reduce the P-values of
the pathways compared to the uniform weight. The statistics
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Table 1: A brief summary of the four proposed weighting schemes. The algorithms are expressed for the pathway of m genes and n samples.
absT and Qdiff algorithms calculate the weight for the jth gene in a pathway, and RWV selects an optimal random weight vectorw minimizing
P-value or OOB error rate, and RWM selects an optimal weight matrix w minimizing P-value or OOB error rate.

Name Algorithm Notes

absT W |T|
( j) = |T( j)|/

∑m
j=1 |T( j)|

Based on two-sample t statistics of a gene,
apply the same weight across all samples of a
gene

Qdiff W |Qdi f f |
( j) = |Q −Q(− j)|/

∑m
j=1 |Q −Q(− j)|

Based on the global test statistic Q for a
pathway, apply the same weight across all
samples for a gene

RWV (Random
Weight Vector)

wX =
⎡
⎢⎣

w1X1
w2X2

...
wmXm

⎤
⎥⎦

m number of random weights in predefined
range that minimizes P-value in the global
test, or OOB error rates in the random
forests for a pathway

RWM (Random
Weight Matrix)

wX =

⎡
⎢⎢⎣

w1,1X1,1 w1,2X1,2 ... w1,mX1,m

w2,1X2,1 ... ... w2,mX2,m... ... ... ...
wn−1,1Xn−1,1 ... ... wn−1,mXn−1,m

wn,1Xn,1 wn,2Xn,2 ... wn,mXn,m

⎤
⎥⎥⎦

m× n number of random weights in
predefined range that minimizes P-value in
the global test or error rates in the random
forests for a pathway
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Figure 3: P-value distributions for the canine pathways selected by
each weighting scheme in the global test.

of the P-value distributions for all 20 pathways groups are
shown in the box plots in Figure 2. In terms of the P values,
RWM is the best followed by absT, and uniform weight is the
worst. The dispersion of P values for uniform weight is the
widest among all with largest number of outliers.

Canine Dataset. According to the pathway analysis per-
formed by Pang et al., the canine dataset has a relatively
large number of differentially expressed genes [13]. We were
interested in the performance of the proposed weighting
schemes for such a dataset. The 20 pathways groups for
all weighting schemes are displayed in Table 3. The average
P-value of the 20 pathways for uniform weight is.00015,
but it is also smaller for our weighting schemes. In terms
of the P value reduction, the best performing scheme is

RWM (with average P-value of.00001), followed by absT
(.00002), RWV (.00002), and Qdiff (.00012). The reduction
amounts are ranged from.00014 for RWM to 0.00003 for
Qdiff. Compared to the type II diabetes pathways results, the
reduction amount for the canine pathways are smaller. Such
result is not unexpected, since the canine dataset is known
to have more differentially expressed genes and may leave
smaller room to improve. Among all 441 pathways in the
dataset, RWM has the largest number (=431) of pathways
having P value less than.05, followed by absT (with 405),
RWV (with 388), uniform weight (with 204), and Qdiff
(with 170). Our weighting schemes except Qdiff double
the number of pathways with P values less than.05. It is
rather interesting that Qdiff improves the P values of the 20
pathways over the uniform weight but decreases the number
of total pathways with P values less than.05. The P value for
all 20 pathways groups are shown in the box-plots in Figure 3.
In terms of P-values, RWM and RWV are best followed by
absT, and uniform weight and Qdiff are worst. The P values
for RWM and RWV are similar, but RWM is better in terms
of outliers.

Simulated Datasets. Upon our observation that RWM per-
forms best in terms of P-value reduction, we applied RWM
scheme on our simulated data to study the P value reduction
in a more controlled environment. The P values of all
simulated pathway data under uniform weigh and RWM
scheme are given in Table 4. In the simulation case 1,
the P values of the simulated pathways with 26 genes
for 30, 50, and 100 samples were.2246,.2155, and.2573,
respectively, under uniform weight (in Table 4(a)), but
reduced to.0014,.0007, and.0002, respectively, under RWM
scheme (in Table 4(b)). In the simulation case 2, the P
values of the simulated pathways with 21 genes for 30 and 50
samples were.0289 and.0004 under uniform weight, but.0002
and.0001, respectively under RWM scheme. However, for the
sample size 100 data, the P-value was zero under uniform
weight, and no further improvement was by the RWM.
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Table 2: Top 20 type II diabetes pathways selected in the global test under each weighting scheme (PID stands for pathway identification
number).

Weighting schemes

Uniform absT Qdiff RWV RWM

Ranks PID P-value PID P-value PID P-value PID P-value PID P-value

1 158 .0098 40 .0002 140 .0004 140 .0003 195 .0000

2 264 .0114 140 .0003 57 .0008 92 .0006 172 .0000

3 140 .0218 13 .0003 41 .0015 139 .0009 127 .0001

4 4 .0331 37 .0004 4 .0017 4 .0011 2 .0001

5 228 .0431 57 .0005 264 .0018 264 .0015 76 .0001

6 168 .0474 44 .0006 158 .0018 158 .0015 235 .0001

7 73 .0503 92 .0006 20 .0018 157 .0022 199 .0001

8 139 .0509 278 .0006 157 .0018 20 .0024 198 .0001

9 204 .0555 66 .0007 193 .0018 228 .0028 261 .0001

10 92 .0618 56 .0007 26 .0019 203 .0035 277 .0001

11 162 .0625 51 .0007 92 .0027 26 .0048 158 .0001

12 203 .0746 109 .0007 232 .0035 17 .0049 80 .0001

13 229 .0784 139 .0008 37 .0036 193 .0064 263 .0001

14 201 .0817 104 .0009 58 .0040 73 .0066 19 .0001

15 120 .0823 4 .0010 59 .0040 208 .0069 165 .0001

16 76 .0831 217 .0010 60 .0040 8 .0073 42 .0001

17 128 .0847 110 .0010 61 .0040 79 .0077 144 .0001

18 274 .0937 43 .0010 62 .0040 16 .0078 162 .0001

19 247 .0968 36 .0011 63 .0040 252 .0090 258 .0001

20 22 .1015 228 .0011 139 .0049 173 .0093 1 .0001

Total P-values 1.2244 .0142 .0540 .0875 .0018

Average P-value .0612 .0007 .0027 .0044 .0001

3.1.2. Change of Ranks and New Significant Pathways. Our
weighting schemes reduce P values of most pathways in
each dataset and hence change the ranks of the pathways
determined by the uniform weight. So, some pathways in low
ranks under the uniform weight improve their rankings and
may draw researchers’ attention. We describe a few such cases
in the following.

Type II Diabetes Dataset. We observed five pathways with
pathway identification numbers (PIDs) of 13, 43, 51, 66, and
109 under absT scheme are originally ranked in the 107th or
below under uniform weight. Interestingly, these pathways
are reported to be associated with the type II diabetes in some
ways in a couple of papers [37, 38]. The names, ranks, and P
values of those pathways under uniform and absT scheme
are given in Table 5. Such low ranking pathways might have
been ignored by researchers under the uniform weight, while
they would draw researchers’ attention with our weighting
schemes.

Canine Dataset. Six canine pathways with PIDs of 133, 154,
156, 320, 375, and 420 under absT scheme are originally
ranked in the 258th or below under uniform weight. The
associations of these new identified significant pathways to
the cancer-related disease are also reported in several papers

[39, 40, 40]. The names, ranks, and P values of those
pathways under absT scheme are compared to those under
uniform weight in Table 6. We observe similar impacts on
pathway ranks induced by our other weighting schemes.
They are not reported here to conserve space, but available
in the first author’s technical report.

3.1.3. Overlapping Pathways. While those newly identified
significant pathways under would draw researchers’ fresh
attentions, pathways identified as significant repeatedly
under multiple weighting schemes may worth additional
attention by researchers. We observed that several pathways
hold high rankings across different weighting schemes, and
their biological associations to the related diseases are dis-
cussed in numerous reports. We indicated those overlapping
pathways appearing in three or more weighting schemes in
bold faces in Tables 2 and 3. We discuss them in more detail
for the two datasets in the following.

Type II Diabetes Dataset. Overlapping pathways among
the top 20 groups include Alanine and aspartate
metabolism (PID = 4), Glutamate metabolism (PID =
92), MAP00252 Alanine and aspartate metabolism (PID
= 140), MAP00430 Taurine and hypotaurine metabolism
(PID = 158), Oxidation Phosphorylation (PID = 228),
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Table 3: Top 20 canine pathways selected in the global test under each weighting scheme (PID stands for pathway identification number).

Weighting schemes

Uniform absT Qdiff RWV RWM

Ranks PID P-value PID P-value PID P-value PID P-value PID P-value

1 117 .00003 151 .00000 368 .00003 17 .00000 39 .00000

2 39 .00004 391 .00000 39 .00004 391 .00000 40 .00000

3 394 .00004 326 .00001 217 .00006 368 .00001 223 .00001

4 217 .00007 360 .00001 394 .00007 117 .00001 160 .00001

5 304 .00007 73 .00001 73 .00007 151 .00001 295 .00001

6 183 .00008 117 .00002 304 .00007 202 .00001 304 .00001

7 40 .00009 39 .00002 247 .00007 39 .00001 283 .00001

8 440 .00009 156 .00002 40 .00008 175 .00001 217 .00001

9 159 .00011 133 .00002 440 .00008 210 .00002 387 .00001

10 17 .00015 217 .00002 117 .00010 247 .00002 64 .00001

11 151 .00017 94 .00002 183 .00010 394 .00002 421 .00001

12 45 .00017 375 .00002 157 .00010 239 .00002 135 .00002

13 391 .00017 40 .00002 64 .00011 45 .00002 129 .00002

14 368 .00018 261 .00002 159 .00015 100 .00002 374 .00002

15 192 .00018 192 .00002 45 .00018 310 .00002 165 .00002

16 261 .00019 154 .00002 261 .00020 326 .00002 183 .00002

17 87 .00025 157 .00003 151 .00020 304 .00003 265 .00002

18 422 .00028 420 .00003 391 .00020 281 .00003 20 .00002

19 223 .00032 320 .00003 17 .00020 360 .00003 397 .00002

20 354 .00039 422 .00003 192 .00025 336 .00003 17 .00002

Total P-values .00307 .00037 .00236 .00034 .00027

Average P-value .00015 .00002 .00012 .00002 .00001

Table 4: Global test results on simulated datasets under RWM scheme and uniform weight: (a) simulation case 1 uses covariance structure
and mean of Pathway ID 164 from type II diabetes dataset, (b) simulation case 2 uses covariance structure and mean of Pathway ID 441 from
canine dataset.

(a) Simulation Case 1.

No. of samples No. of genes No. of tested
Statistic Q

Expected Q
sd-of-Q P values

Unif RWM Unif RWM Unif RWM

30 26 26 13.51 27.68 10 7.64 3.96 0.2246 0.0014

50 26 26 13.42 27.49 10 6.59 3.61 0.2155 0.0007

100 26 26 12.33 27.44 10 6.60 3.25 0.2573 0.0002

(b) Simulation Case 2.

No. of samples No. of genes No. of tested
Statistic Q

Expected Q
sd-of-Q P values

Unif RWM Unif RWM Unif RWM

30 21 21 34.60 46.51 10 9.46 5.57 0.0289 0.0002

50 21 21 66.41 56.91 10 7.94 5.87 0.0004 0.0001

100 21 21 97.11 70.69 10 8.03 5.42 0.0000 0.0000

and presented in bold faces in Table 2. Among them,
oxidation phosphorylation (PID = 228) and glutamate
metabolism (PID = 92) are well known type II diabetes
pathways[28, 31].Alanine and aspartate metabolism
(with PID = 4), glutamate metabolism (PID = 92),
MAP00430 Taurine and hypotaurine metabolism (PID =
158), MAP00252 Alanine and aspartate metabolism (PID
= 140), and Alanine and aspartate metabolism (PID = 4)

are also reported to be strongly associated with the type II
diabetes in some ways by some researchers [31, 41, 42]. It is
interesting to notice that pathways of PIDs 4 and 140 retain
the high ranks (4th or above) across three different schemes.

Canine Dataset. Androgen and estrogen metabolism (PID =
17), tryptophan metabolism (PID = 39), multistep regulation
of transcription by Pitx (PID = 117), RNA polymerase III
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Table 5: Five new significant type II diabetes pathways selected in
the global test under absT scheme: P values and ranks of them are
compared to those under uniform weight.

Pathway name
P-values Ranks

Uniform absT Uniform absT

(PID = 13)
Apoptosis

.3658 .0003 111 2

(PID = 66) Cell
cycle

.4871 .0007 155 9

(PID = 51)
c3 U133 probes

.3822 .0007 116 9

(PID = 109)
Integrin-mediated
cell adhesion

.3876 .0007 119 9

(PID = 43)
c22 U133 probes

.3599 .0010 107 15

Table 6: Seven new significant canine pathways selected in the
global test under absT scheme: P values and ranks of them are
compared to those under uniform weight.

Pathway name
P-values Ranks

Uniform absT Uniform absT

(PID = 133) Activation
of Csk by
cAMP-dependent
protein kinase inhibits
signaling through the T
cell receptor

.1006 .00002 258 6

(PID = 156) Steps in the
glycosylation of
mammalian N-linked
oligosaccarides

.1308 .00002 278 6

(PID = 375)
PTEN-dependent cell
cycle arrest and
apoptosis

.4451 .00002 371 6

(PID = 154) TPO
signaling pathway

.5504 .00002 389 6

(PID = 420) Trefoil
factors initiate mucosal
healing

.2226 .00003 330 17

(PID = 320) CDK
regulation of DNA
replication

.5563 .00003 390 17

transcription (PID = 151), mitochondrial carnitine palmi-
toyltransferase system (PID = 217), and Rho cell motility sig-
naling pathway (PID = 391) are overlapping among different
weighting schemes. Among them, tryptophan metabolism
(PID = 39) and mitochondrial carnitine palmitoyltransferase
system (PID = 217) hold the 8th or higher ranks, and the
biological significance of the two pathways to lesions or
cancerous lesions are discussed by many researchers [32–34,
43–46, 46]. Biological associations of the other overlapping
pathways to the related disease are also discussed in some
reports [47, 48, 48].

Table 7: Prediction rates of top 20 type II diabetes pathways selected
in the global test under each weighting scheme.

Prediction
methods

Uniform absT Qdiff RWV RWM

LDA 0.57 0.58 0.53 0.55 0.81

SVML 0.61 0.59 0.58 0.61 0.79

SVMP 0.51 0.53 0.51 0.53 0.74

KNN 0.55 0.68 0.53 0.59 0.76

Table 8: Prediction rates of top 20 canine pathways selected in the
global test under each weighting scheme.

Prediction
methods

Uniform absT Qdiff RWV RWM

LDA 0.84 0.82 0.86 0.86 0.86

SVML 0.86 0.86 0.86 0.86 0.86

SVMP 0.71 0.70 0.72 0.72 0.70

KNN 0.84 0.83 0.83 0.84 0.87

3.1.4. Prediction Performances. Prediction rates are another
metric we used to measure the performances of our weight-
ing schemes. Using LDA (linear discriminator analysis),
SVML (support vector machine with a linear kernel),
SVMP (support vector machine with a polynomial kernel),
and KNN (k-nearest neighbors) classification methods, we
measured the prediction performance of all genes in a
pathway and take the average of it for all pathways in those 20
groups and cross validated those classification results using
the LOOCV (leave-one-out cross validation) technique. The
prediction performances of the pathways in all 20 groups are
presented in Tables 7 and 8 for the two datasets.

As we can see in the Tables 7 and 8, however, the pre-
dicting power of those pathways selected under the proposed
weighting scheme (except RWM) shows insignificant dif-
ference between those selected under uniform weight. This
explains that those classifiers we used for the performance
measurement are single gene based and do not consider
gene’s dependencies in the pathway. Since our weighting
schemes, except RWM, apply the same weight across all
groups of samples for each gene, the classifying power of
the genes do not change. Hence, those classifiers cannot be
used to evaluate the improvement of predicting power of
the pathways selected using our weighting schemes. Note
that unlike other schemes, RWM applies different weights
to all samples for a gene, and thus the classifiers measure
the weighting effect on the samples for each gene but not
on the genes in the pathways. We discuss the improvement
of predicting power only for the 20 pathways selected under
RWM scheme.

Table 6 shows the improvement of the predicting power
of the genes in the 20 type II diabetes pathways selected
under RWM scheme. The prediction rate 0.5 measured by
LDA for 20 pathways for uniform weight was increased to
0.81 for RWM, which is 24% improvement. The predic-
tion improvement made by RMW scheme was 18% when
measured by SVML, 23% by SVMK, and 21% by KNN. As
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for the canine dataset results, the improvements were 2%,
0%, −1%, and 3% as measured by LDA, SVML, SVMP,
and KNN, respectively, as shown in Table VIII. The small
improvement for the canine pathways compared to that for
the type II pathways may share the same reason with the
small reductions of the P-values: the canine dataset to have
relatively more differentially expressed genes, and thus may
leave smaller room to improve.

3.2. Random Forests Results. The proposed absT and Qdiff
weighting schemes are designed to incorporate into the
covariance structure of the random effect R when the test
statistic Q is calculated in the global test for a group of
genes. Hence, the application of such schemes in the random
forests method is not appropriate, and indeed the poor
experimental results confirmed it. RWV application in the
random forests is not appropriate either, since it assigns
the same weight across all samples for a gene like absT
and Qdiff schemes. Thus, we only discuss the application
results of RWM scheme in the random forests method case,
and compare them with those of uniform weight. We also
compare those to the RWM application results in the global
test method.

3.2.1. Reduction of out-of-Bag (OOB) Error Rate. The out-
of-bag (OOB) error rate is the percentage of time that
the random forests classification or regression is incorrect
for the OOB data. To obtain an unbiased estimate of the
classification or regression error in the random forests, OOB
data run down the tree, and the overall error rate is computed
when a specified number of trees are added to the forest.
We used 50,000 trees to estimate the classification error, the
same number used in the similar experiments performed by
Pang et al. for their pathway analysis using the random forests
method [13, 25–27].

Type II Diabetes Dataset. Table 9 displays the PIDs and the
OOB error rates of top 33 type II diabetes pathways in the
random forests under uniform weight and RWM scheme.
While the average OOB error rate under uniform weight is
35%, it is only 18% under RWM scheme. The OOB error
rate is reduced into almost a half by the application of RWM
scheme in the random forests.

Canine Dataset. The average error rate 8% under uniform
weight is reduced to 6% under RWM scheme, which is only
a half of the reduction made for the type II diabetes data
under RFM. Table 10 shows the PIDs and the OOB error rates
of the 33 canine pathways under uniform weight and RWM
scheme. Again, a larger number of differentially expressed
genes in the canine dataset may leave only a small room for
weighting to improve the application result.

Simulation Datasets. In the simulation case 1, the error rates
of the simulated pathways with 26 genes for 30, 50, and 100
samples are 0.27, 0.48, and 0.30, respectively, under uniform
weight and reduced significantly to 0.13, 0.36, and 0.22,
respectively, under RWM scheme. In the simulation case 2,

the error rates of the simulated pathways with 21 genes for
30 and 50 samples are 0.50 and 0.30, respectively, under
uniform weight and reduced to 0.30 and 0.20 under RWM,
respectively. For the sample size of 100, the error rates were
same 0.24 for both uniform and RWM schemes. The OOB
error rates of simulated pathways under uniform and RWM
scheme are given in Table 11. The substantial reduction of
the error rates under RWM scheme over uniform weight
in the two simulation cases supports our hypothesis that
applying different weights to genes in the pathway analysis
may enhance the quality of the analysis.

3.2.2. Change of Ranks and New Significant Pathways. Four-
teen type II diabetes and five canine pathways out of each
33 group selected under RWM scheme are originally ranked
in the 100th or below under uniform weight. We list each
five most significantly changed type II diabetes and canine
pathways in Tables 12 and 13, respectively, to compare their
original ranks under uniform weight to the new ranks under
RWM scheme

3.2.3. Overlapping Pathways. Three pathways with PIDs of 1,
4, and 140 from the type II diabetes dataset overlap between
uniform weight and RWM scheme. Nine canine pathways
with PIDs of 17, 39, 117, 151, 274, 354, 368, 378, and 395 for
the canine dataset overlap. Further, several pathways overlap
between the global test and the random forests application
results both under RWM scheme. Four type II diabetes
pathways with PIDs of 144, 176, 197, and 245 and five
canine pathways with PIDs of 17, 39, 40, 117, and 274 are
such pathways. Interestingly, the four canine pathways under
RWM scheme overlapping between the global test and the
random forests also overlap between uniform weight and
RWM scheme in the random forests. We believe that such
pathways overlapping across different weighting schemes
applied in the same pathway analysis method, and across
different pathway analysis methods for the same weighting
scheme, may have even stronger relevancies to the related
phenotypes.

3.2.4. Prediction Performances. The prediction rates of each
33 pathways group for each real dataset are given in Table 14.
According to the four classifiers we used to measure the
prediction rates of the selected pathways, RWM scheme
improved the prediction rate of the type II pathways from
52% to 63% (LDA), 48% to 64% (SVML), 49% to 54%
(SVMP), and 52% to 59% (KNN). But for the canine
pathways, it worsened the prediction rates. Presumably,
weights applied to the genes of good predicting power in the
significant canine pathways may add noises to the expression
data of those genes and degrade the predicting power.

3.3. Biological Support. To investigate further the significance
of the proposed weighting scheme in terms of biological
meaning, we searched the functional annotations of the
genes in the selected pathways using weights. We particularly
sought the biological support for absT scheme, since our
overall performance analysis on our four proposed schemes
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Table 9: Top 33 type II diabetes pathways selected in the random forests under uniform weight and RWM scheme.

Index
Uniform weight RWM scheme

Rank PID No. of genes OOB (%) Rank PID No. of genes OOB (%)

1 1 79 33 0.26 1 140 22 0.11

2 2 4 18 0.29 2 113 26 0.14

3 2 140 22 0.29 2 192 1 0.14

4 4 36 116 0.31 4 106 5 0.17

5 4 124 4 0.31 5 117 26 0.17

6 4 230 121 0.31 4 144 7 0.17

7 7 5 6 0.34 4 163 8 0.17

8 7 16 49 0.34 4 164 26 0.17

9 7 32 157 0.34 4 176 3 0.17

10 7 46 36 0.34 4 197 11 0.17

11 7 51 185 0.34 4 235 3 0.17

12 7 109 91 0.34 4 244 46 0.17

13 7 141 4 0.34 4 245 11 0.17

14 7 229 133 0.34 4 250 12 0.17

15 7 267 4 0.34 4 251 1 0.17

16 16 1 2 0.37 4 254 25 0.17

17 16 6 3 0.37 4 274 16 0.17

18 16 11 15 0.37 4 275 9 0.17

19 16 13 92 0.37 19 1 2 0.20

20 16 37 235 0.37 19 4 18 0.20

21 16 40 240 0.37 19 5 6 0.20

22 16 49 188 0.37 19 11 15 0.20

23 16 59 194 0.37 19 24 14 0.20

24 16 76 3 0.37 19 42 2 0.20

25 16 144 7 0.37 19 52 122 0.20

26 16 162 2 0.37 19 69 20 0.20

27 16 173 11 0.37 19 74 1 0.20

28 16 194 13 0.37 19 78 6 0.20

29 16 201 19 0.37 19 80 5 0.20

30 16 207 3 0.37 19 85 8 0.20

31 16 209 21 0.37 19 86 39 0.20

32 16 227 13 0.37 19 98 71 0.20

33 16 228 43 0.37 19 99 13 0.20

Total 2050 11.29 578 5.86

Average 64 0.35 18 0.18

finds the absT is the most useful and efficient requiring
no complex computation like RWM scheme. Using DAVID
functional annotation tool [49], we extracted 952 Homo
Sapiens genes from 2,150 genes contained the 20 pathways
selected under absT scheme. DAVID tool identified eleven
enriched genes associated with type II diabetes with P-
value.01 (by the gene-disease association search with GEN-
TIC ASSOCIATION DB DISEASE option). We list those
eleven genes in Table 15.

Interestingly enough, the DAVID tools failed to identify
any enriched genes for the type II diabetes in the top 20
pathways selected under uniform weight.

4. Conclusions

In this paper, we proposed to apply different weighting
schemes in pathway-based analysis, based on our intuitive
thought that genes more differentially expressed between two
different groups of samples (normal versus tumor samples)
will contribute more significantly to the related biological
function or disease. We devised four weighting schemes absT,
Qdiff, RWV, and RWM that assign different weights to genes
in the pathways. The former two schemes assign weights to
genes based on their relevancy to the related disease, and the
latter two schemes select the weights minimizing P-values
or error rates among all sets of weights randomly assigned.
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Table 10: Top 33 canine pathways selected in the random forests under uniform weight and RWM scheme.

Index
Uniform weight RWM scheme

Rank PID No. of genes OOB (%) Rank PID No. of genes OOB (%)

1 1 274 4 0.03 1 39 9 0.00

2 1 354 6 0.03 2 17 8 0.03

3 1 378 15 0.03 2 45 40 0.03

4 1 395 14 0.03 2 182 5 0.03

5 5 17 8 0.07 2 220 7 0.03

6 5 73 5 0.07 2 274 4 0.03

7 5 100 18 0.07 2 289 13 0.03

8 5 151 8 0.07 2 354 6 0.03

9 5 239 9 0.07 2 368 19 0.03

10 5 287 15 0.07 2 378 15 0.03

11 5 330 14 0.07 2 395 14 0.03

12 5 339 19 0.07 2 440 59 0.03

13 5 349 68 0.07 13 24 7 0.07

14 5 368 19 0.07 13 40 4 0.07

15 15 39 9 0.10 13 59 14 0.07

16 15 89 22 0.10 13 73 5 0.07

17 15 117 10 0.10 13 100 18 0.07

18 15 129 7 0.10 13 117 10 0.07

19 15 147 11 0.10 13 151 8 0.07

20 15 156 4 0.10 13 154 16 0.07

21 15 171 12 0.10 13 156 4 0.07

22 15 173 46 0.10 13 162 18 0.07

23 15 175 34 0.10 13 202 27 0.07

24 15 202 27 0.10 13 204 10 0.07

25 15 223 4 0.10 13 223 4 0.07

26 15 230 3 0.10 13 229 6 0.07

27 15 280 17 0.10 13 234 8 0.07

28 15 281 32 0.10 13 239 9 0.07

29 15 289 13 0.10 13 264 15 0.07

30 15 326 11 0.10 13 269 7 0.07

31 15 380 25 0.10 13 280 17 0.07

32 15 391 7 0.10 13 326 11 0.07

33 15 436 6 0.10 13 330 14 0.07

Total 522 2.79 431 1.83

Average 16 0.08 13 0.06

Table 11: Random forests results for simulated datasets under uniform weight and RWM scheme: (a) simulation case 1 uses covariance
structure and mean of Pathway ID 164 from type II diabetes dataset, (b) simulation case 2 uses covariance structure and mean of Pathway
ID 441 from canine dataset.

No. of samples
(a) Simulation Case 1 (b) Simulation Case 2

No. of
genes

OOB (%) No. of genes OOB (%)

Uniform RWM Uniform RWM

30 26 0.27 0.13 21 0.50 0.33

50 26 0.48 0.36 21 0.30 0.20

100 26 0.30 0.22 21 0.24 0.24
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Table 12: Type II diabetes pathways whose ranks are significantly changed under RWM in the random forests.

Pathway ID and name
Ranks OOB (%)

Uniform RWM Uniform RWM

PID 113 Limonene and pinene degradation 184 2 0.54 0.14

PID 106 Inositol metabolism 259 4 0.69 0.17

PID 164 MAP00480 Glutathione metabolism(user defined) 242 4 0.63 0.17

PID 176 MAP00550 Peptidoglycan biosynthesis(user defined) 259 4 0.66 0.17

PID 235 Peptidoglycan biosynthesis 259 4 0.66 0.17

Table 13: Canine pathways whose ranks are significantly changed
under RWM in the random forests.

Pathway ID and name
Ranks OOB (%)

Uniform RWM Uniform RWM

PID 24 Alanine and
aspartate metabolism

319 13 0.34 0.07

PID 59 Glycerolipid
metabolism

242 13 0.28 0.07

PID 204 Role of PI3K
subunit p85 in
regulation of actin
organization and cell
migration

281 13 0.31 0.07

PID 229 Induction of
apoptosis through DR3
and DR4/5 death
receptors

157 4 0.21 0.07

PID 269 Ghrelin:
regulation of food
intake and energy
homeostasis

188 4 0.28 0.07

Table 14: Prediction rates of top 33 canine pathways selected in the
random forest under uniform weight and RWM scheme.

Prediction
methods

Type II diabetes dataset Canine dataset

Uniform RWM Uniform RWM

LDA 0.54 0.63 0.87 0.78

SVML 0.53 0.64 0.88 0.84

SVMP 0.46 0.54 0.76 0.72

KNN 0.54 0.59 0.80 0.73

We investigated the weighting impact in the pathway-based
analysis using two real and two simulated pathway datasets.
To our best knowledge, we are the first team to apply weights
to genes in the pathway-based analysis in open literature.

We made a few interesting observations through our
investigations. First, our weighting schemes effectively
reduce P-values of the pathways in the global test and OOB
error rates in the random forests for all datasets used in
our experiments. Second, our schemes increase the number
of pathways with P-values less than 0.05. RWM performs
best among all proposed schemes in terms of P-value and
OOB error rate reduction, but the scheme is computationally
expensive. Third, RWM improves prediction rates of high

Table 15: Eleven genes associated with type II diabetes in the top
20 pathways selected under absT scheme.

Gene symbols Gene names

CD36
cd36 antigen (collagen type i receptor,
thrombospondin receptor)

CAS Caspase 9, apoptosis-related cysteine peptidase

GPX3 Glutathione peroxidase 3 (plasma)

GSTT1 Glutathione s-transferase theta 1

SOD1
Superoxide dismutase 1, soluble (amyotrophic
lateral sclerosis 1 (adult))

TPMT Thiopurine s-methyltransferase

GSTM1 Glutathione s-transferase m1

CYP2E1
Cytochrome p450, family 2, subfamily e,
polypeptide 1

LPL Lipoprotein lipase

TNF Lipoprotein lipase

GYS Tumor necrosis factor (tnf superfamily, member 2)

ranking pathways. Fourth, all the improvements discussed
above are more significant for the type II diabetes dataset
than the canine dataset. It may be due to the fact that genes
with better predicting power or more differentially expressed
leave less room for further improvement. In addition to
the above improvements, our schemes could find potentially
significant pathways which were missed by uniform weight.
As described in Section 3, pathways whose ranks improved
by weighting are associated to the related diseases according
to the reports presented in numerous literatures. Finally, it
is worth noting that absT and Qdiff schemes are, in theory,
inferior to RWM scheme, but are computationally far less
complex than RWM. So, it may be a good idea to apply them
in case one as they cannot afford large computing power or
long computing time.

We have unresolved issues for evaluating the weighting
effect in the prediction performance of our proposed
schemes. The four prediction methods (LDA, SVML, SVMP,
and KNN) are single gene based and cannot be used to
evaluate our schemes absT, Qdiff, and RWV. In the per-
spective of those methods, the same weight assigned across
all samples of a single gene does not make any change in
terms of classifying two different groups of samples for that
single gene. Even for RWM scheme, they only can evaluate
the weighting effect on samples but not on genes, since they
cannot consider the interactive relationship or dependencies
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among genes in a group. It is necessary to develop a new
prediction method that considers the dependencies among
genes for more accurate assessment of weighting effects in the
pathway-based analysis. Developing such prediction method
is left for future research.
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