
Antioxidants 2014, 3, 502-515; doi:10.3390/antiox3030502 

 

antioxidants 
ISSN 2076-3921 

www.mdpi.com/journal/antioxidants 

Article 

Changes of Major Antioxidant Compounds and Radical 

Scavenging Activity of Palm Oil and Rice Bran Oil  

during Deep-Frying 

Azizah Abdul Hamid 
1,
*, Mohd Sabri Pak Dek 

1
, Chin Ping Tan 

2
, Mohd Asraf Mohd Zainudin 

1
 

and Evelyn Koh Wee Fang 
1
 

1
 Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 

UPM Serdang, Selangor 43400, Malaysia; E-Mails: mpakdek@uoguelph.ca (M.S.P.D.); 

asraf_zainudin@yahoo.com (M.A.M.Z); evelyn_kwf@hotmail.com (E.K.W.F.) 
2
 Department of Food Technology, Faculty of Food Science and Technology,  

Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;  

E-Mail: tancp@upm.edu.my 

* Author to whom correspondence should be addressed; E-Mail: azizahah@upm.edu.my;  

Tel.: +603-8946-8374; Fax: +603-8945-3552. 

Received: 18 March 2014; in revised form: 29 April 2014 / Accepted: 15 May 2014 /  

Published: 10 July 2014 

 

Abstract: Changes in antioxidant properties and degradation of bioactives in palm oil (PO) 

and rice bran oil (RBO) during deep-frying were investigated. The alpha (α)-tocopherol, 

gamma (γ)-tocotrienol and γ-oryzanol contents of the deep-fried oils were monitored using 

high performance liquid chromatography, and antioxidant activity was determined using  

2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging activity. Results revealed that the 

antioxidant activity of PO decreased significantly (p < 0.05), while that of RBO was 

preserved after deep-frying of fries. As expected, the concentration of α-tocopherol in PO 

and γ-tocotrienol in both PO and RBO decreased significantly (p < 0.05) with increased 

frying. Results also showed that γ-tocotrienol was found to be more susceptible to 

degradation compared to that of α-tocopherol in both PO and RBO. Interestingly, no 

significant degradation of α-tocopherol was observed in RBO. It is suggested that the 

presence of γ-oryzanol and γ-tocotrienol in RBO may have a protective effect on  

α-tocopherol during deep-frying. 
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1. Introduction 

Vegetable oils are generally known to be healthy, due to being high in unsaturated fatty acid and 

other various phytochemical compounds. Palm oil (PO) is produced from the fruit bunches of the tree 

oil palm (Elaeis guineensis) and has been used for food preparations, as well as other commercial 

applications in many parts of the world. Yellow palm olein is well known for its high concentration of 

lipophilic antioxidants, in particular, tocopherols and tocotrienols, as compared to that of other 

vegetable oils, but lacking in carotenoids, which are removed during the refining process [1].  

In addition, PO contains an equal ratio of unsaturated to saturated fatty acids, making it a versatile oil 

for commercial usage without involving major modification processes [2]. 

Rice bran oil (RBO) has been used as cooking oil in some parts of the world, particularly in Japan 

and India [3]. Rice bran oil has been reported to be an excellent source of antioxidants, such as 

tocopherols, tocotrienols and oryzanols [4]. Generally, RBO consists of up to 1.5% of oryzanol 

depending on the variety of the rice and is well known for its stability as a frying oil [5,6]. The role 

played by both tocols and oryzanol in improving lipid stability and human health is fascinating, 

although the use of rice bran oil is not as popular as that of other vegetables oils [7,8]. Studies have 

shown that tocopherols, tocotrienol, carotenoids and oryzanols exhibited potent antioxidant properties 

in both in vivo and in vitro systems [9,10]. 

Deep-frying is a convenient and rapid process to produce fried foods with intense flavor [11].  

In this process, food is immersed in edible oil at a maintained temperature (150 to 200 °C) for a 

specific period of time [12]. However, in certain conditions, instead of the desirable intensive flavor, 

undesirable off-odor and toxic compounds from lipid peroxidation can also be produced during  

deep-frying, which is normally associated with the type of oil used. The alteration of flavor and oil 

quality during deep-frying can occur via the hydrolysis, oxidation and polymerization of the oil used as 

a result of the long exposure to high temperature [13]. Several in vivo studies revealed the existence of 

the relationship between deep-frying oil quality intake with oxidative stress level. The intake of such 

an altered oil quality could affect both the plasma and mitochondrial membrane [14,15]. 

Although oils, like PO and RBO, contain bioactive compounds that can protect lipids from 

oxidation, the reaction can still occur during deep-frying, which results from the degradation of the 

bioactive compounds, as affected by exposure to high temperature [3,13]. Therefore, it is important to 

evaluate the stability and degradation pattern of bioactive compounds in the oils during food 

preparations, in an effort to get a better picture on effective oil usage before complete depletion of 

bioactive compounds occur. The consumer can then gain the beneficial effects from such oils, 

including the lowering of serum cholesterol and blood pressure, reducing the risk of diabetic 

necropathy and cardio-reperfusion injury [8,16,17]. Chiou et al. [18] reported that during frying, foods 

absorb oil, the composition of which is similar to that remaining in the frying pan. Therefore, it is vital 

to investigate the quality of the oils during and after the frying process. 
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A number of studies have provided information on the quality deterioration of frying oils, but only a 

few studies focused on the stability of bioactive compounds during deep-frying [19–21]. The 

information regarding the antioxidant degradation kinetic and the changes of these bioactive 

compounds during deep-frying is relatively scarce. Hence, this study was conducted to evaluate the 

radical scavenging capacity and prominent bioactive compounds (α-tocopherol, γ-tocotrienol and  

γ-oryzanol) in PO and RBO, as well as to examine their degradation kinetic during the deep-frying of 

French fries. 

2. Experimental Section 

2.1. Materials 

Yellow palm olein oil (Buruh Brand, Shah Alam, Malaysia), rice bran oil (Green Love Brand, 

Amorchai Co., Ltd., Bangkok, Thailand) and French fries (KG Brand, Shah Alam, Malaysia) were 

purchased from a local supermarket in Serdang, Selangor, Malaysia. Alpha-tocopherol, γ-tocotrienol 

and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were purchased from Sigma-Aldrich, Steinheim, Germany. 

The gamma-oryzanol standard was purchased from Wako Pure Chemical Industries Ltd., Beijing, 

China. Hexane, isopropyl alcohol, acetonitrile, butanol, acetic acid and isooctane were purchased from 

Fisher Scientific, U.K. All other reagents and chemicals used were of analytical or HPLC grade. 

2.2. Deep-Frying Model 

A deep-frying model as described by Schroeder et al. [22] was adopted with slight modification. 

Frying oil with an initial volume of 3 L was heated to 180 ± 5 °C in a kitchen fryer (Philux, Model 

DF30AIT, Libertronic Sdn Bhd, Seri Kembangan Selangor). French fries (100 g) were then fried in the 

oil for 2 min, denoted as first batch deep-frying. The fried French fries were then removed, and the 

deep-frying was repeated with a new batch of French fries without any time lag. This procedure was 

repeated until the 60th frying cycle. An aliquot of the oil (30 mL) was sampled after each tenth batch 

of French fries deep-frying to be analyzed and compared with that of fresh oil. 

2.3. Determination of Free Radical Scavenging Capacity 

The antioxidant capacity of fresh PO and RBO and after deep-frying (20th, 40th and 60th frying 

cycles) were determined using the 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging assay as 

described by Lee et al. [23]. Briefly, 0.7 grams of oil samples were dissolved in 10 mL isooctane as a 

stock solution. Dissolved oil (0.25 mL) was then added to 1.75 mL DPPH solution (25 mg·L
−1

 

prepared in isooctane). The mixture was then vortexed and incubated at ambient temperature for  

30 min. The absorbance was measured at 515 nm using a UV-Vis spectrophotometer (EL800, Biotek, 

Winooski, VT, USA). The radical scavenging activity was calculated using the following formula:  
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where Abs control is the absorbance of the control reaction (containing all reagents except the test 

compound) and Abs sample is the absorbance of the test sample. Synthetic antioxidant butylated 

hydroxyanisole (BHA) and α-tocopherol were used as positive controls. 

2.4. Determination of α-Tocopherol and γ-Tocotrienol 

Alpha-tocopherol and γ-tocotrienol were determined according to the American Oil Chemists’ 

Society (AOCS) Ce 8-89 [24] method with slight modifications. Oil was dissolved with 10 mL of 

hexane:isopropyl alcohol (ratio 98:2) and filtered through a 0.45 μm (Whatman) nylon membrane filter 

prior to injecting into a HPLC. An aliquot of sample (20 μL) was analyzed using a normal phase HPLC 

system equipped with chromatography software (Millennium LC-6A, Shimadzu, Kyoto, Japan), a UV 

detector (SPD-6A, Shidmazu, Kyoto, Japan) and pumps. The separation was performed with an ACE 5 

Silica column (250 × 4.6 mm, 5 μm) operated at ambient temperature. The mobile phase consisted of 

hexane:isopropyl alcohol at a ratio of 98:2 (v/v) with a flow rate of 1 mL·min
−1

, and the detector was 

set at 295 nm. The identification of unknown tocopherol and tocotrienol isomers was based upon 

matching their retention time with those of pure standards, while the concentrations calculated using 

the peak area based on standard calibration curves. 

2.5. Determination of γ-Oryzanol in Rice Bran Oil 

The content of γ-oryzanol was determined according to the method of Xu and Godber [25]. An 

aliquot (0.1 g) of oil was dissolved in 10 mL hexane:isopropyl alcohol at a ratio of 98:2 (v/v). The 

dissolved oil sample was then filtered through a 0.45 μM (Whatman) nylon membrane filter prior to 

injecting into a HPLC. The filtered sample (20 μL) was analyzed using an HPLC system (Millennium  

LC-6A, Shimadzu, Tokyo, Japan) chromatography manager, a UV detector (SPD-6A, Shidmazu, 

Tokyo, Japan) and pumps. The separation was carried using a Waters reverse-phase (RP) μBondapak 

C18 column (250 × 4.6 mm, 5 μM; Waters Corp., Milford, MA, USA) at ambient temperature. The 

mobile phase consisted of acetonitrile/butanol/acetic acid/water at a ratio of 94:3:2:1 (v/v/v/v). The 

flow rate was kept at 1 mL·min
−1

 with the isocratic mode, and the detector was set at 330 nm. 

Identification of the γ-oryzanol component in the RBO was done by comparing its retention with that 

of pure standard, and quantification was done based on the standard calibration curve. 

2.6. Determination of Degradation Kinetics Using the Order of Reaction Equation 

According to Taoukis et al. [26], the degradation kinetics of many compounds in foods at constant 

temperature follows the first-order kinetics model, which can be expressed as follows:  

−dC/dt = kC (1) 

Integration of Equation 1 gives:  

lnC = lnCo − kt 
(2) 

lnC/Co = −kt 
(3) 
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where C is the concentration of the compound, Co is the initial concentration of the compound, t is 

time and k is the reaction rate constant. By plotting the logarithm of the concentration of α-tocopherol 

and γ-tocotrienol, respectively, over the initial concentration against a number of frying cycles during 

the degradation process, the degradation rate constant for each compound was calculated from the 

slope of the simple linear regression line. 

2.7. Statistical Analysis 

All frying experiments and analyses were conducted in triplicate. Data was analyzed statistically 

through one-way ANOVA by Duncan’s multiple range tests using the commercially available 

software, the SPSS 16 software program (SPSS Inc., Chicago, IL, USA). A p-value of less than 0.05  

(p < 0.05) was considered to denote statistical significance. 

3. Results and Discussion 

3.1. Antioxidant Capacity of the Oils 

In this study, free radical scavenging activity utilizing the DPPH radical was done in determining 

the antioxidant capacity of the oils, due to its simplicity and wide use in antioxidant research. The free 

radical scavenging capacity of PO and RBO after the 20th, 40th and 60th frying cycle is shown in  

Figure 1. Results showed that there is no significant difference in the antioxidant capacity between the 

fresh and the 20th frying cycle PO. However, a significant (p < 0.05) decrease in the activity was 

observed for the oil from the 40th and 60th frying cycle. On the other hand, there was no significant 

difference in the antioxidant activity exhibited by all the batches of RBO. This indicates that RBO is 

more stable compared to that of PO upon deep-frying. It was also noted that RBO derived from the 

40th and 60th frying cycle exhibited significantly (p < 0.05) higher radical scavenging activity than 

that of PO. 

The radical scavenging assay is one of the common methods that can be used to determine the 

antioxidant capacity of vegetable oils [27]. The results of the study showed that both PO and RBO 

exhibited good antioxidant capacity. However, the antioxidant capacity of PO decreased with  

deep-frying. This is probably attributed to the degradation of bioactive compounds as a result of the 

exposure to high temperature used during deep-frying. Results presented here are in line with that of a 

previous study conducted by Gomez-Alonso et al. [28], where the reduction of antioxidant activity of 

olive oil correlated well with the number of deep-frying cycles. However, similar the destruction of 

some of these bioactive compounds may not be occurring in RBO, as the antioxidant activity in the oil 

was preserved throughout the frying process. 

3.2. Degradation of α-Tocopherol and γ-Tocotrienol during Deep-Frying 

The degradation of α-tocopherol in PO and RBO during deep-frying is shown in Figure 2. As 

expected, results showed that the concentration of α-tocopherol in PO decreased significantly with 

deep-frying. Similar to that of its antioxidant activity, α-tocopherol content decreased from 1.29 mg·g
−1

 to 

0.59 mg·g
−1

 after the 60th frying cycle, depicting a loss of 54%. Surprisingly, α-tocopherol in RBO 

was found to be more stable and remained almost unaffected upon deep-frying up to the 60th frying 
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cycle. The contents of α-tocopherol in fresh RBO and the 60th frying cycle were 0.75 mg·g
−1

 and  

0.73 mg·g
−1

, respectively, a loss of only 2%. This is reflected in the antioxidant activity exhibited by 

the oil. The degradation of α-tocopherol in PO is in agreement with that of previous literature [14,15]. 

Battino et al. [14] found that α-tocopherol in olive oil was degraded up to 28% from the initial value 

after frying for 60 min. 

Figure 1. The percentage of radical-scavenging activity in palm oil and rice bran oil over  

the 60th batch of deep-frying at a concentration of 70 mg/mL. The values given are means 

± standard deviation of a triplicate analysis. The values marked with the same letters are 

not significantly different at p < 0.05 analyzed using the Duncan multiple range test. PO, 

palm oil; RBO, rice bran oil. 

 

Figure 2. The degradation of α-tocopherol in palm oil and rice bran oil during deep-frying. 

The values given are means ± standard deviation of triplicate analysis. The values marked 

with the same letters are not significantly different at p < 0.05 analyzed using the Duncan 

multiple range test. A,B, the values with different capital letters indicate a significant 

difference between the type of oil at p < 0.05. a,b, the values with different small letters 

indicate a significant difference between frying cycle numbers at p < 0.05. 

 

Figure 3 showed the degradation of γ-tocotrienol in deep-fried PO and RBO. There was a similar 

trend on the loss of γ-tocotrienol in both oils during the deep-frying of French fries, where it decreased 

significantly with frying. However, interestingly, γ-tocotrienol’s content in RBO was always higher 
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than that of PO in all batches of oils. The fresh PO and the 60th frying cycle PO consisted of  

0.79 mg·g
−1

 and 0.28 mg·g
−1

 tocotrienol, respectively depicting a loss of 65%. Whereas, the content of 

γ-tocotrienol in fresh RBO and the 60th frying cycles of RBO were 1.34 mg·g
−1

 and 0.77 mg·g
−1

, 

respectively, showing a lower loss of 42%. 

Figure 3. The degradation of γ-tocotrienol in palm oil and rice bran oil during deep-frying. 

The values given are means ± standard deviation of a triplicate analysis. The values 

marked with the same letters are not significantly different at p < 0.05 analyzed using the 

Duncan multiple range test. A,B, the values with different capital letters indicate a 

significant difference between the type of oil at p < 0.05. a,b, the values with different 

small letters indicate a significant difference between frying cycle numbers at p < 0.05. 

 

During the deep-frying of fries, the decrease in the concentration of tocopherols and tocotrienols in 

PO might have occurred due to their protective role against oxidation and degradation upon exposure 

to high temperature. A similar observation has been reported by Hoffmann [29], where at a high 

temperature, tocopherols and tocotrienols tend to protect the oil by oxidizing themselves to quinones 

and dimers. The present result also indicated that α-tocopherol and γ-tocotrienol in PO degraded at a 

faster rate than that of RBO. Generally, PO consisted of an equal amount of saturated fatty acid to 

unsaturated fatty acid, whereas RBO contained a higher amount of unsaturated fatty acid, usually up to 

74%. A higher proportion of unsaturated fatty acids in RBO, relative to PO, could be correlated to the 

greater number of double bonds in the former oil [21,22]. Therefore, it can be suggested that during the 

deep-frying of RBO, these unsaturation might have competed with tocopherols and tocotrienols as 

substrates for oxidation, resulting in a slower degradation of these antioxidants. In addition, a higher 

degree of unsaturation, as a basis of more competitiveness of the fatty acids towards oxidation, may 

explain the high degradation rate of α-tocopherol and γ-tocotrienol in PO as compared with that of 

RBO [30]. This is in agreement with that reported by Hoffmann [29], who showed that during the 

propagation phase of oxidation, the fatty acid peroxy free radicals may react preferentially with the 

phenolic hydrogen molecule of tocopherol. Seppanen et al. [31] reported that the antioxidant activities 
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reactive lipid free radicals, thus retarding the normal steps of autocatalytic lipid peroxidation. 
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Tocopherols can effectively scavenge peroxy radicals and yield relatively stable products, which 

interrupt the propagation stage of the oxidative chain reaction, thereby preventing the destruction of 

lipid molecules [32,33]. 

It is interesting to note that the concentration of α-tocopherol in RBO was maintained during  

the deep-frying of the fries exhibiting only a low percent loss (Figure 2). In contrast, the content of  

γ-tocotrienol in RBO decreased considerably with increased frying. In RBO, γ-tocotrienol is expected 

to possess higher antioxidant activity than that of α-tocopherol. This was also applied to PO, which 

exerts the same trend [22]. Therefore, it can be suggested that γ-tocotrienol was firstly oxidized in 

order to protect other weak antioxidants. This is in agreement with that reported by Rossi et al. [30], 

where among vitamin E homologs, γ-tocotrienol was found to be the least stable and easily oxidized 

during deep-frying, which might be attributed mainly to its protective role and self-degradation in 

preserving other homologues, such as tocopherols. Apart from that, the initial content of γ-tocotrienol 

in fresh RBO was significantly higher than that in PO, although the concentration of both decreased 

with an increase in the number of frying cycles. Therefore, with a higher concentration, the protective 

effect of γ-tocotrienol in preserving α-tocopherol was evident. 

3.3. Degradation of γ-Oryzanol in Rice Bran Oil during Deep-Frying 

Figure 4 showed the degradation of γ-oryzanol in RBO over the 60th frying cycles. The 

concentration of γ-oryzanol in RBO was seen to decrease significantly (p < 0.05) in accordance to the 

number of frying batches. Fresh oil, containing 3.0 mg·g 
−1

 γ-oryzanol, was reduced to 2.8 mg·g
−1

 at 

the 20th cycles, 2.6 mg·g
−1

 after 40 cycles and 2.4 mg·g
−1

 after 60 batches. The remaining γ-oryzanol 

content in RBO after the 60th frying cycles was estimated to be 80% of the original amount in the 

fresh oil. 

RBO naturally contains α-tocopherol, γ-tocotrienol and γ-oryzanol, making it a suitable model to 

study the synergistic interaction between these bioactive compounds in protecting lipids from 

oxidation. The ability of a compound to inhibit the oxidation process is via several mechanisms. 

Gamma-oryzanol is one of the most potent antioxidant compounds reported. It is interesting to note 

that besides acting as an antioxidant to prevent oil from oxidation, γ-oryzanol is also associated with 

decreasing cholesterol in plasma, platelet aggregation and cholesterol absorption [34–36]. In addition, 

γ-oryzanol has also been used to treat nerve imbalance and disorders of menopause in women [37]. 

The results in this study indicated that γ-oryzanol in RBO was degraded with the number of frying 

cycles, and its degradation is parallel to that of γ-tocotrienol. However, the α-tocopherol content in 

RBO did not decrease significantly (p < 0.05) until the 60th frying cycles (Figure 2). Thus, it can be 

assumed that, in RBO, γ-oryzanol and γ-tocotrienol synergistically protect α-tocopherol from 

degradation during deep-frying. The presence of γ-oryzanol in RBO may confer a protective effect for 

α-tocopherol, thus slowing down its degradation compared to that in PO. This observation was in 

agreement with that of Kochhar [38], who reported that γ-oryzanol has substantial synergistic effects 

with tocopherols. Similarly, the higher amount of γ-oryzanol, due to the addition of RBO to soybean 

oil, was related to the synergistic antioxidant effects in preserving tocopherol degradation during the 

frying of dough [39]. 
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Figure 4. The degradation of γ-oryzanol in RBO during deep-frying. The values given are 

means ± standard deviation of a triplicate analysis. The values marked with the same letters 

are not significantly different at p < 0.05 analyzed using the Duncan multiple range test. 
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as a natural antioxidant to improve the stability of several fried foods. Hence, it is suggested that 
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3.4. Degradation Kinetic of α-Tocopherol and γ-Tocotrienol during Deep-Frying 

The first order kinetic plots of the degradation of α-tocopherol and γ-tocotrienol in PO and RBO 

during deep-frying of French fries are presented in Figures 5 and 6, respectively. The kinetic constant 

of degradation (k) of α-tocopherol and γ-tocotrienol and the determination of the coefficient (R
2
) for 

PO and RBO during deep-frying is shown in Table 1. 

The results showed that the first-order kinetics model can be applied to approximately describe the 

degradation reaction of α-tocopherol in PO, but not in RBO. It is reported that the degradation kinetics 

of many compounds in foods at constant temperature will follow the first-order kinetics model [26]. 

This is in good agreement with the findings of Sabliov et al. [42], where heat during frying caused the 

degradation of free α-tocopherol followed first order kinetics and holding oils at 180 ± 5 °C showed 

the greatest degradation rate. 
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Figure 5. First order kinetic plots of the degradation of α-tocopherol in palm oil and rice 

bran oil during deep-frying. 

 

Figure 6. First order kinetic plots of the degradation of γ-tocotrienol in palm oil and rice 

bran oil during deep-frying. 

 

Table 1. Kinetic constant (k) of degradation of α-tocopherol and γ-tocotrienol and the 

coefficient of determination (r
2
) of palm oil and rice bran oil during deep-frying. 

Variable k (min
−1

) Coefficient of Determination, (r
2
) 

α-tocopherol in palm oil 0.004 0.961 

α-tocopherol in rice bran oil 0.000 0.041 

γ-tocotrienol in palm oil 0.006 0.972 

γ-tocotrienol in rice bran oil 0.003 0.880 
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constants of the degradation of α-tocopherol in PO and RBO were found to be 0.009 min
−1

 and 0 min
−1

, 

respectively and their correlation coefficients (r
2
) were found to be 0.961 and 0.041, respectively. 

Similarly, γ-tocotrienol in PO and RBO obeyed the first-order kinetics with the reaction rate 

constants of degradation being 0.0061 min
−1

 and 0.0031 min
−1

, respectively, and their correlation 

coefficients were found to be 0.972 and 0.88, respectively. The results are in line with that of previous 

studies that showed that tocopherols and tocotrienols decrease as a function of time and temperature, 

following first-order kinetics [43]. Results from the present study showed that γ-tocotrienol in PO  

(k = 0.0061 min
−1

) degraded faster than that of α-tocopherol in PO (k = 0.0049 min
−1

). In addition, it 

was reported that the antioxidant property of γ-tocotrienol is better than that of α-tocopherol [22]. 

Similarly, the antioxidant capacity of γ-tocotrienol under heating conditions in stripped oils is better 

than that of α-tocopherol [44]. Therefore, it could be suggested that the faster degradation of  

γ-tocotrienol could be due to its greater antioxidant activity. 

4. Conclusions 

Based on the present study, it is concluded that PO and RBO are good sources of natural 

antioxidants that include tocols and oryzanols. These compounds exhibited degradation at a faster rate 

in PO compared to that of RBO, with the degradation kinetics obeying the first-order kinetics. It was 

also noted that α-tocopherol does not degrade to a significant extent in RBO by virtue of the presence 

of γ-oryzanol, indicating the synergy between the bioactive compounds in maintaining the nutritional 

value of the oil. 
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