
materials

Article

Investigation the Corrosion Inhibition Effect of
Itraconazole on Copper in H2SO4 at Different
Temperatures: Combining Experimental and
Theoretical Studies

Zhili Gong 1,2,*, Shini Peng 1, Xiaomei Huang 1 and Lanzhou Gao 1

1 School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400044,
China; snpeng_cqu@163.com (S.P.); xmhuang_cqu@163.com (X.H.); lzgao_cqu@163.com (L.G.)

2 School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
* Correspondence: zlgong_cqu@163.com

Received: 12 September 2018; Accepted: 25 October 2018; Published: 26 October 2018
����������
�������

Abstract: The anti-corrosion inhibition effect of itraconazole on copper (Cu) in 0.5 M H2SO4 is
observed with variety of experimental methods, including electrochemical measurement, surface
morphology analysis, and theoretical calculations. These experimental results all confirm that
itraconazole exhibits excellent anti-corrosion performance in the certain temperatures range
(298 K–313 K) for copper in sulfuric acid solution. In addition, corresponding adsorption isothermal
models were used to fit the adsorption behavior of itraconazole on the copper surface. The results
show that the Langmuir adsorption model agrees best with the experimental results. The adsorption
of itraconazole on the copper surface belongs to chemical and physical adsorption.

Keywords: Cu; itraconazole; acid corrosion inhibitor; morphology analysis; theoretical calculation;
Langmuir adsorption model

1. Introduction

The problems of metal materials corrosion and anti-corrosion are closely involve the development
of modern science, technology and human life [1]. Metal materials are susceptible to corrosion by
corrosive media during use, which affects their service life [2,3]. The phenomenon that metal properties
generally degraded and destroyed over time called “corrosion” or “aging”. Metal corrosion not only
causes certain economic losses, but also worsens the working environment. Therefore, the study of
corrosion protection of metals has become a hot issue for anti-corrosion workers [4]. Among them,
the addition of corrosion inhibitor is one of the most economical, convenient and practical means to
inhibit metal corrosion [5–7].

Copper and its alloys are the earliest and most widely used non-ferrous metals in human
applications, and the output ranks third in the world [8]. Due to its excellent thermal conductivity,
mechanical properties and anti-fouling properties, it also has good strength, elasticity and wear
resistance, so it plays an important role in various industrial fields [9,10]. In the power industry,
the condensers of most power plants, the heat exchange devices of low-pressure heating and oil
coolers, and the air-core conductors of water-cooled generators are all copper alloy materials. In the
marine military industry, some copper alloy materials also used in the water pipeline systems of
military warships such as aircraft carriers. However, due to the serious corrosion problem exposed
during the use of copper materials, in the air, due to oxidation, the surface of copper and its alloys will
form a relatively dense oxide film, the main components of which are CuO and Cu(OH)2. Therefore,
the thermal conductivity and electrical conductivity of the copper alloy are seriously affected, which

Materials 2018, 11, 2107; doi:10.3390/ma11112107 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
http://www.mdpi.com/1996-1944/11/11/2107?type=check_update&version=1
http://dx.doi.org/10.3390/ma11112107
http://www.mdpi.com/journal/materials


Materials 2018, 11, 2107 2 of 17

brings great harm to the product equipment, so the application of the copper product is greatly
restricted. Fortunately, pickling can effectively remove the oxide film on the copper surface to obtain
a bright copper surface. The commonly used pickling solution is sulfuric acid.

The addition of corrosion inhibitors to the acid wash solution not only availably inhibits the
removal of the oxide film on the surface of copper, but also reduces the corrosion of the copper itself
by the acid, which is of great significance [4]. Unfortunately, many corrosion inhibitor materials have
excellent corrosion inhibition capabilities, but they are extremely limited in their application due
to their serious environmental and human hazards [11]. Therefore, in recent years, many corrosion
protection workers have begun to research and develop new corrosion inhibitors that are highly
effective, low-toxic, and even non-toxic [12]. Tan et al. [13] and co-authors studied the inhibitory effect
of the asthma drug montelukast sodium on copper in H2SO4. Itraconazole can be orally and used as
the corrosion inhibitor due to low concentrations. Therefore, the harm to the human body and the
environment is very small. We drew on Tan’s work and studied the corrosion inhibition performance
of the antifungal drug itraconazole on pure copper in sulfuric acid. As is well known, corrosion
inhibitor molecules usually contain heteroatoms such as nitrogen, oxygen, sulfur, etc., and there are
solitary electron pairs in these heteroatoms [14–18], which can form coordination bonds with the empty
orbitals of the metals of transition to form a dense protective film, thereby the corrosive medium is
isolated effectively from the metal surface for protection. Itraconazole contains a large number of
heteroatoms and conjugated rings, so it can be used as a potential inhibitor.

2. Experimental Section

2.1. Materials Preparation

Itraconazole was purchased from Hasen Pharmaceutical Co., Ltd., Shanghai, China. Its molecular
formula is presented in Figure 1.
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Figure 1. Chemical structure of the itraconazole.

The corrosion solution of 0.5 M sulfuric acid was prepared using high purity concentrated sulfuric
acid and ultrapure water. Then, itraconazole were dissolved in the 0.5 M H2SO4 to prepare the test
solution of 0.04, 0.2, 1, and 5 mM, respectively.

The pure copper electrode is fabricated using the following process. First, the copper block was
cut into a square with a side length of 1 cm using a linear cutter. Next, rough grinding on 180-mesh
metallographic sandpaper. Finally, the other five sides of the copper electrode were sealed in a PVC
(Polyvinylchlorid) tube with epoxy, leaving only one side exposed to the corrosive medium.

2.2. Surface Investigation by Scanning Electron Microscope, Atomic Force Microscope

Prior to testing the SEM, the researched pure copper block was cut into three cubes with a side
length of 0.3 cm. Sanding on 400–7000 mesh sandpaper in turn until the testing surface is flat.
Two copper cubes were separately immersed in 0.5 M H2SO4 in the absence and presence of 5 mM
itraconazole for 24 h. The scanning electron microscope made in Japan (JEOL Ltd., Tokyo, Japan) and
its model number is JEOL-JSM-7800F.



Materials 2018, 11, 2107 3 of 17

Prior to testing the AFM, the pure copper block was cut into three cubes with a side length of
0.2 cm. The copper samples were treated in the same manner as the SEM described above. This atomic
force microscope made in the USA (Asylum Research, Santa Barbara, CA, USA) and its model number
is MFP-3D-BIO.

2.3. Electrochemical Experiments

All electrochemical experiments were carried out in the three-electrode system. The entire
three-electrode system was placed in a 150 mL beaker. The testing solution guaranteed to be 100 mL at
each experiment, ensuring complete immersion of the three-electrode system. In this three-electrode
system, the working electrode is the pure copper electrode. Prior to each test, the copper electrode was
sanded on 180–2000 mesh sandpaper until the surface to be tested was flat and bright. The counter
electrode was a square platinum plate electrode (1 cm2). The reference electrode is a saturated calomel
electrode connected using a glass of Luggin capillary.

All electrochemical tests were performed on the chi760E electrochemical workstation (Shanghai
Chenhua Co., Ltd., Shanghai, China). The electrochemical experiments consist of three parts. In the
first step, the open circuit potential of this system was tested and the test time was 3000 s to ensure
that the potential fluctuation range was within 3 millivolts during the last 300 s. The stable value
of the open circuit potential (EOCP) was recorded. The second step was to conduct electrochemical
impedance spectroscopy. The corresponding parameter settings are as follows: Init E is the EOCP, high
frequency is 100,000 Hz, and low frequency is 0.01Hz, the value of the amplitude is 0.005 V and the
quiet time is 2 s. Finally, the potentiodynamic polarization curve test was performed. The polarization
range was EOCP − 250 mV to EOCP + 250 mV with a scanning rate of 1 mV/s. All experiments of the
same conditions were performed three times to obtain good reproducible results.

2.4. Theoretical Calculation

The molecular properties of itraconazole were calculated using Material Studio software 8.0 with
the DMol3 module. The relevant calculation parameters were set as follows: the calculation task is
geometry optimization, quality was fine, functional was B3LYP, and Spin unrestricted and use formal
spin as the initial parameters were set. The molecular structure of itraconazole was optimized, and its
Highest Occupied Molecular (HOMO) and Lowest Unoccupied Molecular (LUMO) molecular orbitals
and dipole moment were calculated.

The adsorption of the itraconazole molecule on the Cu (111) side was simulated using the Forcite
module in the Material Studio software. The entire calculation process was as follows: First, cut the
Cu (111) face, then set a 5 × 5 × 5 super cell and a vacuum layer. After fixing the positions of all the
copper atoms, the vacuum layer was filled with an itraconazole molecule and 500 water molecules.
After the filling was completed, the structure of the entire system was optimized, and then the entire
system as subjected to molecular dynamics simulation. The parameters are set as follows: COMPASS
(Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies) is used as the
force field, the time step is 1 fs, and the total simulation time is 500 s.

3. Results and Discussion

3.1. Blank Solution Electrochemical Analysis at Different Temperatures

The potentiodynamic polarization curves of copper in 0.5 M sulfuric acid show in Figure 2a at
different temperatures. It can be clearly seen from the Figure 2a that the corrosion current density
increases with the temperature increases, and the corrosion voltage moves toward the anode. Figure 2b
shows the impedance spectrum of the copper in 0.5 M H2SO4. From Figure 2b, it can be seen that
the radius of the capacitive arc decreases with increasing temperature. This indicates that the charge
transfer resistance (Rct) decreases as the temperature increases, so it can be proved that the increase
in temperature exacerbates the corrosion of copper. In addition, it can be found that the Warburg
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impedance appearing at low frequency increases significantly with increasing temperature. Typically,
the Warburg impedance is due to the diffusion of corrosion products from the electrode surface
into the bulk solution or the dissolved oxygen in the solution diffuses to the surface of the research
electrode [4,13,19]. Obviously, when the temperature of the corrosion solution rises, the movement
speed of the dissolved oxygen in the solution is increased, and it is easy to get rid of the attraction of
the solvent molecules. Therefore, dissolved oxygen is not the factor that affects the Warburg impedance
values to increase. However, the kinetic energy of the corrosive medium in the solution increases
significantly after the temperature rises, which accelerates the corrosion of the copper electrode.
Leading more copper ions diffuse into the bulk solution. Therefore, the Warburg impedance values
increase with increasing temperature [20].
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3.2. Polarization Curves

In order to study the corrosion inhibition process, the plots of potentiodynamic polarization
curves to copper in the 0.5 mol/L H2SO4 without itraconazole at different temperatures are shown in
Figure 3. Some important parameters, including corrosion current density (Icorr), corrosion potential
(Ecorr), etc., can be obtained by Tafel extrapolation. These polarization parameters are presented in
Table 1, where the corrosion inhibition efficiency (η) is obtained by the corresponding corrosion current
density, as shown in Equation (1) [21–24]:

η(%) =
Icorr,0 − Icorr

Icorr,0
× 100 (1)

where Icorr,0 and Icorr correspond to the corrosion current density in the blank solution and the presence
of itraconazole, respectively.

It can be seen from Figure 3a that as the concentrations of itraconazole increases, the corrosion
current density moves to the lower direction. Corrosion current density is 18.2 µA·cm–2 in the absence
of itraconazole. The corrosion current density drops sharply to 0.78 µA·cm–2 when the concentration
of itraconazole reaches 5 mM. Furthermore, it can be clearly seen from Figure 3 that as the polarization
potential increases, the slope of the polarization curves in the anode region increase significantly at the
high concentration of itraconazole. This phenomenon indicates that the corrosion inhibitor molecules
have desorbed on the surface of the copper electrode [4]. In addition, it can be clearly found that,
in Figure 3a, the magnitude of the decrease in the cathodic polarization curve is significantly larger
than that of the anode after the addition of the itraconazole molecules. It is indicated that the addition
of itraconazole molecules effectively inhibits the reduction of dissolved oxygen near the surface of
the electrode. Observing the trend of the change in corrosion potentials, it can be found that as the
concentration of itraconazole increases, the corrosion potentials move in the negative direction. By
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observing Table 1, the value of moving to the negative electrode at different temperatures is slightly
less than 85 mV, In addition, it can be seen from Figure 3 that the tendency of the cathode branch
corrosion current density to decrease is significantly faster than that of the anode branch. Which
indicates that the inhibition of the cathode is significantly larger than that of the anode. Therefore,
it can be judged that itraconazole is a mixed-type corrosion inhibitor which mainly inhibit the cathode
reaction [25].
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The mechanism of copper corrosion in acid solution is as follows. The reaction mechanism of the
anode and cathode a as follows [13,26–28]:

Anodic reaction:
Cus → Cu+

(ads) + 1e− fast

Cu+
(ads) → Cu2+

(sol) + 1e− slow

Cathodic reaction:
1
2

O2 + 2H+ + 2e− → H2O

From the corrosion mechanism of the anode, it can be found that the process of oxidizing the
copper substrate to cuprous ion is very fast. Therefore, many corrosion workers believe that the
inhibition mechanism of the corrosion inhibitor on copper is as follows [29,30]:

Cu+ + inhibitors→ Cu+ : inhibitors

Therefore, the corrosion inhibitor molecule is more easily combined with cuprous ions to form
a coordination bond, which effectively isolates the corrosive medium from the copper substrate,
thereby achieving a good corrosion inhibition effect.
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By observing Figure 3 and Table 1, it can be found that with the increase of temperature,
the inhibition effect of itraconazole on Cu in H2SO4 is slightly reduced. Still, at 313 K, the inhibition
efficiency of itraconazole on Cu in 0.5 mol/L H2SO4 is still as high as about 90%. Therefore, it can be
concluded that itraconazole exhibits excellent corrosion inhibition performance in a certain temperature
range for Cu in H2SO4.

Table 1. Polarization parameters of itraconazole molecule at different temperatures in copper in 0.5 M H2SO4.

T (K) C (mM) Ecorr (mV/SCE) Icorr (µA·cm−2) βc (mV·dec−1) βa (mV·dec−1) η (%)

Blank 62 18.20 121.4 41.4 -
0.04 123 1.91 136.8 61.4 89.5

298 0.2 128 1.36 159.1 62.6 92.5
1 138 1.09 127.6 50.2 94.0
5 142 0.78 112.5 62.4 95.7

Blank 55 21.71 209.5 49.1 -
0.04 124 2.15 154.4 57.8 90.1

303 0.2 128 1.76 156.2 55.7 91.9
1 132 1.26 135.3 66.4 92.2
5 135 1.01 106.8 63.7 95.3

Blank 56 25.31 109.6 47.0 -
0.04 116 2.68 163.3 51.9 89.4

308 0.2 123 2.12 157.2 56.9 91.6
1 128 1.86 157.5 63.6 92.6
5 135 1.23 150.8 66.2 95.1

Blank 44 28.64 113.8 46.9 -
0.04 88 3.65 200.8 70.9 87.3

313 0.2 95 2.98 164.1 72.9 89.6
1 104 2.15 156.9 61.9 92.5
5 113 1.82 151.1 54.1 93.6

3.3. Electrochemical Impedance Spectroscopy Test

Electrochemical impedance spectroscopy (EIS) experiment was executed study the inhibitory
effect of itraconazole on copper at different temperatures and the kinetics of the corrosion reaction
process. The Nyquist plots of the copper in 0.5 mol/L H2SO4 without and with different concentrations
of itraconazole are shown in Figure 4.

As shown in Figure 4, the plots of Nyquist in the blank solution at different temperatures consists
of a straight line at the low frequency area (Warburg impedance) and a capacitive reactance arc at
the high frequency area (typically related to the electric double layer capacitance and charge transfer
resistance). The low frequency line means that the copper is corroded in 0.5 M H2SO4. That is,
the corrosion products of the Cu surface diffuse into the bulk solution. Therefore, the slope of the
line in the low frequency area increases with the temperature increases, which means that the copper
corrosion is more serious.

As the concentration of itraconazole increases, the straight line at the low frequency area
disappears, which proves that the corrosion product of the copper surface diffuses into the bulk
solution effectively suppressed. In addition, the apparent increase in the radius of the capacitive
reactance is attributed to an increase in the charge transfer resistance of the surface of the copper
electrode. These indicate that itraconazole forms a dense resistant film on the surface of Cu to effectively
inhibit copper corrosion. Besides, the capacitive reactance arc emerges imperfect semicircles, which are
related to the heterogeneity of the copper surface [31]. When the temperature of the corrosion system
increases, we can find that the corrosion inhibition performance of itraconazole is reduced, which is
consistent with the experimental results of potentiodynamic polarization.
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Figure 5 presents Bode plots of copper present and lacking itraconazole molecules at various
temperatures in 0.5 mol/L H2SO4. As the concentration of itraconazole increases, the impedance
modulus increases almost two orders of magnitude in the low frequency region at different
temperatures comparison to the blank solution. Moreover, the curves of the phase angle value
become significantly larger and wider. In Figure 5, it can be clearly seen that two distinct peaks appear
in the phase angle, whose represent the presence of two time constants in the presence of itraconazole.
This indicates that the itraconazole molecules have two relaxation processes in the adsorption process
on the copper surface. One relaxation process is the surface electric double layer capacitance of the
copper electrode, and the other relaxation process is the itraconazole molecule adsorption on the copper
surface [32]. This similar Bode plots change trend is observed at diverse temperatures in Figure 5.
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The two equivalent circuits were used to fit the equivalent electrochemical impedance data,
as shown in Figure 6. The errors between in experimental data and fitting results are measured by
chi-square values (χ2). The chi-square values after fitting in this study are all equal to or less than
10−3. The fitted electrochemical parameter values are listed in Table 2. Rs represents the solution
resistance and Rf is the film resistance. Rct indicates that the charge transfer resistance is attributed
to the corrosion reaction at the copper-solution interface. W is the Warburg impedance, CPEf is
the constant phase angle element which consists of adsorbed inhibitor film capacitance Cf and the
deviation parameter n1. CPEdl which consists of an electric double layer capacitor Cdl and the deviation
parameter n2. The Equation (2) of the CPE impedance is as follows [33–35]:

ZCPE =
1

Y0(jω)n (2)

where Y0 represents the admittance electrochemical system, j represents the imaginary root, ω stands
for the angular frequency, n is the deviation parameter. The values of Cf and Cdl are calculated with
Equation (3) by ω, n and Y0 as following [4]:

C = Y0(ω)n−1 = Y0(2π fZim-Max )
n−1 (3)

where fZim-Max is the frequency corresponding to the maximum imaginary impedance.
In addition, according to the Helmholtz model, According to the Helmholtz model, the Equations

of Cdl and Cf are as follows [36,37]:

Cdl =
ε0ε

d
S (4)

C f =
F2S
4RT

(5)

where d represents the distance between itraconazole and metal surface. S is the copper area exposed
in the H2SO4 solution, ε0 is the permittivity of vacuum, ε is the local dielectric constant. F stands for
the Faraday’s constant. According to Equations (4) and (5), it can be found that the decrease in the Cdl
and Cf values are ascribed the itraconazole molecules replace the H2O molecules on the copper surface.

The most important indicator the inhibition efficiency is calculated according to Equation (6)
as follows:

η(%) =
Rct − Rct,0

Rct
× 100 (6)

wherein Rct and Rct,0 are the charge transfer resistance in the presence and absence of itraconazole in
H2SO4. Obviously, as the temperature and the concentration of itraconazole increase, the corrosion
inhibition efficiency increases. This conforms highly to the potentiodynamic polarization test results.
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Table 2. Fitting EIS parameters of the Cu in 0.5 mol/L H2SO4 at different temperatures with and
without different concentrations of itraconazole.

T (K) C (mM) Rs (Ω·cm2) Rf (Ω·cm2) Rct (kΩ·cm2) Cf (µF·cm−2) n1 Cdl (µF·cm−2) n2 W (×10−2 Ω·cm2·s1/2) η (%)

Blank 1.31 0.9 0.55 60.4 0.49 68.9 1 1.19 -
0.04 0.89 150.1 10.14 49.8 0.97 32.7 0.73 - 94.6

298 0.2 0.76 170.6 13.90 40.2 1 31.5 0.72 - 96.0
1 1.21 232.3 15.40 35.7 0.96 29.7 0.76 - 96.4
5 1.35 329.4 18.94 28.9 0.98 27.8 0.74 - 97.1

Blank 1.24 8.3 0.37 65.2 0.41 71.5 0.59 4.10 -
0.04 1.76 71.94 7.01 51.3 0.95 34.5 0.59 - 94.7

303 0.2 2.12 112.5 9.42 46.5 1 31.9 0.74 - 96.1
1 3.15 140.2 11.13 38.9 0.97 28.8 0.75 - 96.7
5 2.49 231.2 13.62 27.8 0.99 26.5 0.76 - 97.3

Blank 1.39 13.2 0.31 68.9 0.54 74.2 0.65 8.02 -
0.04 1.61 96.13 4.37 59.7 0.97 36.5 0.71 - 92.9

308 0.2 1.87 153.4 6.47 51.2 0.94 33.1 0.70 - 95.2
1 1.65 161.1 7.95 43.7 1 27.9 0.75 - 96.1
5 1.76 180.8 9.16 31.3 0.98 24.3 0.76 - 96.6

Blank 1.27 25.2 0.23 72.2 0.49 77.6 0.55 10.37 -
0.04 2.07 31.72 3.05 60.3 1 34.5 0.68 - 92.4

313 0.2 1.89 80.28 4.82 56.8 0.98 29.6 0.67 - 95.2
1 2.45 120.1 5.83 48.7 0.96 26.5 0.75 - 95.7
5 1.88 174.6 6.92 34.2 1 22.8 0.76 - 96.7

3.4. SEM Surface Investigate

Figure 7 shows the feature of the copper surfaces at different conditions. Figure 7a is the feature
of the copper surface after grinding. Figure 7b shows the surface feature at 298 K after soaking for 24 h
in 0.5 M H2SO4 with 5 mM itraconazole. Figure 7c shows the feature of copper surface immersed in
0.5 M H2SO4 at the temperature of 298 K for 24 h without any corrosion inhibitor. It can be found that
the bare copper had obvious nicks and lines after polishing as shown in Figure 7a, due to the copper
left behind after grinding the SiC sandpaper. Figure 7c clearly shows the pores left by the corrosion of
copper in 0.5 M H2SO4. These corrosion holes are very uniform, but the copper surface is severely
corroded. Figure 7b shows the tight protective film barrier formed by the studied itraconazole on the
copper surface. In addition, after immersing in sulfuric acid for 24 h on the copper surface, it is still
flat and uniform. No obvious corrosion holes are found, and some nicks left after polishing can still be
seen. Therefore, by comparing the SEM maps of Figure 7b,c, it indicates that the addition of 5 mM
itraconazole in the 0.5 M sulfuric acid solution can effectively inhibit copper corrosion.
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Figure 7. Surface feature of copper in the different condition: (a) the surface of the copper after the
sanding, (b) the copper after the addition of the inhibitor molecule is immersed in 298 K at 0.5 mol/L
H2SO4 for 24 h, and (c) copper surface after soaking for 24 h in 0.5 mol/L H2SO4 in 298 K.
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3.5. AFM Surface Analysis

Atomic force microscopy has been widely applied in the research of corrosion inhibitors, and the
surface topography structure information and surface roughness information are obtained due to
nanometer resolution. In this study, in order to more deeply observe the 3D topography information
of the copper surface, the topography of the copper surface under different conditions was tested.
Figure 8a shows, from left to right, the 3D topography of copper immersed in 0.5 mol/L H2SO4 for
24 h and the 2D topography image on the diagonal. The average roughness of the entire surface
is as high as 97.694 nm. Figure 8b shows, from left to right, the 3D topography of copper after
soaking in 0.5 M sulfuric acid for 24 h in 5 mM itraconazole and the 2D topography image on the
diagonal. Obviously, the average roughness of the entire surface after the addition of itraconazole
acutely dropped to 12.978 nm, and the protective film of itraconazole on the copper surface was also
observed on the entire surface. Figure 8c shows the 2D topography image of the polished copper
surface and the diagonal line from left to right. After sanding, the scratches of the sandpaper leave
a certain scratch. The average roughness is 3.018 nm. By comparing the surface topography image
of copper under different conditions, it can visually demonstrate the excellent corrosion inhibition
performance of itraconazole.
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Figure 8. 3D topography of copper under different conditions; (a) copper sample soaked in 0.5 mol/L
H2SO4 for 24 h without itraconazole and the 2D topography image on the diagonal. (b) The copper
sample was soaked in 0.5 M sulfuric acid for 24 h containing 5 mM itraconazole and the 2D topography
image on the diagonal, and (c) the freshly polished copper surface and the 2D topography image on
the diagonal.
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3.6. Adsorption Isotherm Research

In order to gain a deeper understanding of the adsorption mechanism of the itraconazole
molecules studied on the copper surface, the polarization curve data and various adsorption
isotherms were used to fit, respectively, Langmuir (7) [38–41], Temkin (8) [42], El-Awady (9) [42],
Flory-Huggins (10) [43,44], and Frumkin (11) isotherm equations. Their corresponding formula
expressions are as follows:

Langmuir isotherm equation:
C
θ
=

1
Kads

+ C (7)

Temkin adsorption isotherm:
exp(−2αθ) = KC (8)

Flory-Huggins adsorption isotherm:

ln
θ

C
= x ln(1− θ) + ln(xKads) (9)

El-Awady adsorption isotherm:

ln
θ

1− θ
= y ln C + ln K′ (10)

Frumkin adsorption isotherm:

ln
[

θ

(1− θ)C

]
= ln K + 2αθ (11)

The all the corresponding fitted results are shown in Figures S1–S4, and Figure 9, and the fitted
results show that the regression coefficients (R2) of the other four isothermal equations are smaller
than the Langmuir isotherm equation. Therefore, only the Langmuir isotherm equation has the best
relationship with the experimental data. The regression coefficient (R2) of the Langmuir isotherm
equation exceeds 0.9999 at different temperatures. In the Langmuir isotherm equation, Kads is the
equilibrium adsorption constant, and the standard ∆G0

ads free energy can be calculated with Kads.
The expression is as follow [45,46]:

Kads =
1

55.5
exp(−

∆G0
ads

RT
) (12)

where R stands for the molar gas constant and T stands for the thermodynamic temperature.
The thermodynamic parameters of the itraconazole molecule adsorbed on the copper surface

obtained from the Langmuir adsorption isotherm at different temperatures are also shown in Figure 9.
Corrosion workers generally believe that smaller values of ∆G0

ads and larger Kads indicate that the
inhibitors studied can be densely and stably adsorbed on metal surfaces [47]. It can be seen from
Figure 9 that the value of Kads is higher at different temperatures and the value of ∆G0

ads is relatively
small. Therefore, itraconazole can have a perfect corrosion inhibition ability for copper. In addition,
the values of ∆G0

ads are −38.74 kJ/mol, −38.16 kJ/mol, −39.15 kJ/mol, and −39.92 kJ/mol at 298,
303, 308, and 313 K, respectively. It can be clearly found that is very close to −40 kJ/mol at different
temperatures. Therefore, it can be considered that the itraconazole molecule is mainly chemically
adsorbed on the copper surface with a small amount of physical adsorption [19].
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3.7. Quantum Chemical Calculation Analysis

Quantum chemical calculations are widely applied study the properties of corrosion inhibitor
molecules. An understanding of corrosion inhibitors can be further enhanced by calculating some
important quantitative parameters of the corrosion inhibitor molecules. In this paper, we separately
optimized the molecular structure of itraconazole, and calculated the frontier molecular orbital and
dipole moment by MS software 8.0. Figure 10 shows the optimized structural formula of itraconazole,
the electron cloud distribution of HOMO and LUMO, and calculates the energy of the HOMO and
LUMO molecular orbitals of the itraconazole molecule.

According to the frontline orbital theory of Japanese chemist Fukui Kenichi: the highest energy
molecular orbital HOMO is related to the electron donating capacity of the molecule [48]. The EHOMO
value of itraconazole is 4.11 eV. This higher value means that the itraconazole molecule has a strong
electron donating nature, and the electrons given are easily combined with cuprous ions to develop
a stable adsorption film on the copper surface, thereby effectively inhibiting copper corrosion.
Conversely, the lowest energy molecular orbital LUMO is related to the electron accepting nature
of the molecule. The energy gap (∆E = ELUMO − EHOMO) is usually discussed as a key parameter
when discussing the molecular properties of corrosion inhibitors. A low ∆E value corresponds to
a higher corrosion inhibition efficiency [19]. Itraconazole has a ∆E value of 2.41 eV, which means that
itraconazole exhibits excellent corrosion inhibition.
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3.8. Molecular Dynamics Simulation

Molecular dynamics simulation (MDS) can calculate the adsorption configuration of inhibitor
molecules on the metal surface, and can determine the adsorption strength of corrosion inhibitor
molecules on the metal surface by the binding energy of adsorption. Figure 11 shows the stable
adsorption configurations of the itraconazole and itraconazole after protonation on the Cu surface.
It can clearly find that itraconazole and itraconazole after protonation adsorbed on Cu surface via
a nearly parallel manner, thus effectively inhibiting the corrosion of the copper substrate by the
corrosive medium. However, by comparing Figure 11a–c, it can be seen that itraconazole is more
parallel adsorbed on the copper surface after protonation in the acid solution. The adsorption binding
energy of itraconazole on the copper surface can be obtained by the following Equations [4,49–51]:

Einteract = Etot − (Esubs + Einh) (13)

Ebinding = −Einteract (14)

Among them, Etot is the energy of the entire simulation system including an itraconazole molecule,
500 water molecules and a copper substrate for research. Esubs is the energy of the copper base and Einh
is the energy of the research molecule. The binding energy values of itraconazole and itraconazole
after protonation are calculated to as high as 1017 kJ/mol and 1067 kJ/mol via Equations (11) and (12),
respectively. High binding energy value indicates that corrosion inhibitor corresponds to good
corrosion inhibition properties. The binding energy value indicates that the protonation of itraconazole
is beneficial to the adsorption of copper surface in the acid solution. Furthermore, it can be clearly
proved that itraconazole has excellent retardation on the copper surface, and the experimental results
are highly consistent.
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4. Conclusions

(1) Electrochemical experiments show that itraconazole is a mixed corrosion inhibitor for Cu in
H2SO4. The corrosion inhibition efficiency can still be maintained at about 90% within a certain
temperature range.

(2) The SEM and AFM images demonstrate that the itraconazole molecules form a compact film on
the copper surface to effectively inhibit copper corrosion.

(3) Itraconazole molecules adsorb on the Cu surface conforms to the Langmuir adsorption isotherm
model and is dominated by chemisorption.

(4) Theoretical calculations show that itraconazole adsorbs on the surface of Cu via a parallel manner.
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Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/11/11/2107/
s1, Figure S1: The Flory-Huggins adsorption isotherm plots of copper with different concentrations of itraconazole
in 0.5 mol/L H2SO4 at diverse temperatures, Figure S2: The Temkin adsorption isotherm plots of copper with
different concentrations of itraconazole in 0.5 mol/L H2SO4 at diverse temperatures, Figure S3: The El-Awady
adsorption isotherm plots of copper with different concentrations of itraconazole in 0.5 mol/L H2SO4 at diverse
temperatures, Figure S4: The Frumkin adsorption isotherm plots of copper with different concentrations of
itraconazole in 0.5 mol/L H2SO4 at diverse temperatures.
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