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Abstract

Different pathologies of the hip are characterized by the abnormal shape of the bony structures 

of the joint, namely the femur and the acetabulum. Three-dimensional (3D) models of the hip 

can be used for diagnosis, biomechanical simulation, and planning of surgical treatments. These 

models can be generated by building 3D surfaces of the joint’s structures segmented on magnetic 

resonance (MR) images. Deep learning can avoid time-consuming manual segmentations, but its 

performance depends on the amount and quality of the available training data. Data augmentation 

and transfer learning are two approaches used when there is only a limited number of datasets. 

In particular, data augmentation can be used to artificially increase the size and diversity of the 

training datasets, whereas transfer learning can be used to build the desired model on top of a 

model previously trained with similar data. This study investigates the effect of data augmentation 

and transfer learning on the performance of deep learning for the automatic segmentation of 

the femur and acetabulum on 3D MR images of patients diagnosed with femoroacetabular 

impingement. Transfer learning was applied starting from a model trained for the segmentation 

of the bony structures of the shoulder joint, which bears some resemblance to the hip joint. Our 

results suggest that data augmentation is more effective than transfer learning, yielding a Dice 
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similarity coefficient compared to ground-truth manual segmentations of 0.84 and 0.89 for the 

acetabulum and femur, respectively, whereas the Dice coefficient was 0.78 and 0.88 for the model 

based on transfer learning. The Accuracy for the two anatomical regions was 0.95 and 0.97 when 

using data augmentation, and 0.87 and 0.96 when using transfer learning. Data augmentation 

can improve the performance of deep learning models by increasing the diversity of the training 

dataset and making the models more robust to noise and variations in image quality. The proposed 

segmentation model could be combined with radiomic analysis for the automatic evaluation of hip 

pathologies.
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1. Introduction

Various pathologies of the hip joint can be characterized by the shape of its bony structures, 

which affects the joint’s biomechanics. For example, femoroacetabular impingement (FAI) 

is a condition that occurs when the femoral head-neck junction and the acetabular rim do 

not match, causing motion-related or position-related hip pain [1,2]. Patients with FAI have 

limited range of motion (ROM) and often suffer from a painful osseous abutment between 

the femoral head-neck junction and the acetabular rim [2,3]. Contact between these two 

bony structures eventually leads to substantial labral and chondral damage as is seen in 

femoroacetabular impingement syndrome (FAIS) [2–5].

The diagnosis of FAIS is made based on a combination of clinical symptoms, physical 

examination findings, and imaging studies. A detailed assessment of each of these 

components is important to differentiate FAI from other intra- and extra-articular hip 

disorders.

High-resolution Computed Tomography (CT) imaging with 3D reconstructions has been 

utilized to accurately evaluate the bony structures of the hip joint (femur and acetabulum) 

to plan surgical treatments aimed at restoring joint biomechanics [6–10]. CT allows 

for a straightforward threshold-based segmentation of the bones that can enable 3D 

biomechanical simulations to quantitatively assess the patient’s ROM [3,8,11]. However, 

CT results in potentially harmful ionizing radiation in the pelvis [12]. Magnetic resonance 

imaging (MRI) can be used as an alternative to CT to avoid radiation, but segmenting bones 

in MRI is challenging. Recent work showed that accurate 3D models of bony structures can 

be reconstructed from a gradient-echo-based two-point Dixon MRI pulse sequence [10,13].

1.1. Summary of previous work

Deep learning (DL) convolutional neural networks (CNN) showed great reliability for the 

automated segmentation of the bones of the shoulder joint and the proximal femur from 

GRE MR images [14] or the water-only images of Dixon MRI acquisitions [15]. A study 

by Zeng et al. [3] used CNNs to create rapid and accurate 3D models of the hip joint 
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from MRI [3]. However, such work had a limited amount of data (31 hips), which made 

validation challenging and forced the authors to use Cross-Validation (CV) to evaluate the 

performance of their model, rather than splitting the data into training and validation sets. 

While CV reduces the risk of overfitting [16,17], it can be computationally expensive, and 

the interpretation of the results can be difficult [17]. A CT dataset with 30 hip exams is 

available from the MuscleSkeletal Research Laboratories (University of Utah) (10 Normal 

hips, 10 Retroverted Hips Image Data, and 10 Dysplastic Hips). However, at the time 

of writing, there are no publicly available MRI datasets with MR images and labeled 

segmentations of the femur and acetabulum, which can be used for training a DL model.

While it has been proven that an accurate DL model for the segmentation of the hip joint 

could be developed using only 31 hips from 26 patients [11], transfer learning (TL) could 

further improve the performance of the model in scenarios where data are scarce [16,18].

TL works by transferring knowledge from a model that had been trained on a large dataset 

to improve the training of a new model for which only a small dataset is available. This can 

help the new model to achieve better performance compared to starting the training from 

scratch using only the few available data [16–19]. More formally, given a source knowledge 

domain Ds, a corresponding source task Ts (e.g., a semantic segmentation of an anatomical 

region), a target knowledge domain Dt, and a corresponding target task Tt (a semantic 

segmentation of a different anatomical region), TL aims to improve the learning of the target 

predictive function fT (.) by using the related information from Ds and Ts, where Ds! = Dt 

or Ts! = Tt [20].

This approach is usually implemented by using a NN trained on a large dataset, and then 

utilizing the NN weights as the starting point for a new classification task (typically, only the 

weights from the convolutional layers). Therefore, one limitation of TL is that the network 

architecture and image settings of the two models must be similar [21].

In this context, previous work successfully applied TL to enhance the robustness of a breast 

MR semantic segmentation U-Net in supine breast MRI [22], starting from a model trained 

on prone breast MRI. Their results showed that TL could enabled accurate segmentations 

using data from only 29 patients with supine breast MRI, with a mean Dice Similarity 

Coefficient (DSC) ranging from 0.97 to 0.99 [22].

Another previous study used TL from a CNN previously trained to segment the bones of the 

shoulder joint [14] in order to train a model to segment the acetabulum and the femur using 

only 14 MRI hip datasets (7 patients) [18]. The new model achieved a high segmentation 

accuracy (Dice = 0.92) for the femur, but an unsatisfactory outcome (Dice = 0.67) for the 

acetabulum. This is likely because TL worked on the femur, which resembles the humerus, 

whereas it failed on the acetabulum, which has a different topology than the glenoid.

Another approach to overcome data scarcity in DL training is data augmentation (DA). DA 

falls under the umbrella of regularization methods for machine learning [23]. Regularization 

methods aim to enhance model performance by introducing additional information to the 

underlying machine learning model. This approach effectively captures the generalizable 
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properties of the problem being modeled, akin to introducing a penalty term to the cost 

function, utilizing batch normalization, or employing dropout regularization [23].

DA involves applying specific transformations to existing training data to generate 

new, modified samples while preserving the corresponding labels. These label-preserving 

transformations ensure that the modified samples retain the same semantic meaning as the 

originals [23].

To effectively enhance the diversity of the training data, multiple transformation 

operations can be employed. However, due to limitations in computational resources, cost 

considerations, and the potential for generating spurious data, it is generally recommended 

to select only the most effective augmentations [23]. An example of image DA is geometric 

transformations, which modify the spatial arrangement of pixels in an image without altering 

their individual intensity values. These transformations are employed to augment training 

data in a way that simulates real-world variations in image appearance caused by factors 

such as differing viewpoints, or changes in perspective and scale [24–26].

Geometric transformations can be further categorized into affine and non-affine 

transformations. Given the importance of bone morphology in FAI, in this work, we utilized 

only affine transformations, which retain the shape of the bony structures and require only a 

few parameter adjustments to achieve various augmentation operations.

A recent study [27] showed that DA can be applied to segmentation tasks by creating several 

translations, rotations, and scaling in different combinations and applying one at a time to 

both images and labels before training a machine learning model. The augmented images 

retained the original semantic meaning, improving the model’s ability to generalize to new 

and unseen images [28–30]. In particular, the use of DA to train a semantic segmentation 

network to identify the hip joint from CT images yielded a Dice similarity coefficient 

between 0.93 and 0.96 [27].

Another recent study proposed a novel DA algorithm that artificially expanded the 

training dataset for both cardiac and prostate segmentation tasks through various image 

transformations. This resulted in segmentation models that significantly outperformed 

their counterparts trained on the original datasets alone, achieving higher accuracy and 

generalizability [31].

1.2. Goal of this work

Previous work showed that both TL and DA can improve the performance of DL models 

for semantic segmentation when data are scarce. However, a direct comparison of these 

two approaches in the context of hip joint segmentation from MRI data has not yet been 

conducted.

Therefore, this work aims to evaluate the impact of TL and DA on the accuracy of a new 

DL model for the automated segmentation of the bony structure of the hip joint from 3D MR 

images.
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2. Material and methods

2.1. Hip datasets

Twenty patients (16F/4 M, 36.1 ± 6.3 y/o) with a diagnosis of unilateral FAI confirmed 

during arthroscopy underwent an MRI of the pelvis before surgery. Eleven patients had a 

follow-up MRI after one year and two of them had a second follow-up scan after another 

year, which yielded a total of 33 MRI datasets. All MRI examinations were performed 

on a 3T scanner (Skyra, Siemens Healthineers, Erlangen, Germany) and included an axial 

dual echo T1-weighted 3D fast low angle shot (FLASH) sequence of the pelvis with Dixon 

fat-water separation, acquired using TR = 10 ms, TEs = 2.4 ms and 3.7 ms, field of view = 

32 cm, acquisition matrix = 320 × 320, and slice thickness = 1 mm. The Institutional Review 

Board approved the study and informed consent was obtained before each scan.

For each MRI dataset, a fellowship-trained musculoskeletal radiologist with 20 years of 

clinical experience delineated regions of interest (ROIs) for the femur and acetabulum on 

the water-only images using an open-source software (ITK-SNAP v3.8.0; www.itksnap.org) 

[32]. The ROIs were drawn using the automatic 3D seed-based segmentation tool available 

in ITK-SNAP and then manually fine-tuned slice-by-slice [21]. The left and right hip ROIs 

were separated by cropping the images in the middle along the left-right direction (x-axis) 

and by taking the central 160 voxels in the antero-posterior direction (y-axis). This resulted 

in two separate ROIs for each MRI dataset, one for the left hip joint and one for the right hip 

joint, yielding a total of 66 hip datasets with associated labeled ROIs. Fig. 1 shows examples 

of the manually drawn ROIs for the femur and acetabulum.

2.2. CNN for bone segmentation

We implemented a 3D CNN based on the U-Net architecture (Fig. 2) proposed by Cantarelli 

et al. [14], which was previously used for the automatic segmentation of the shoulder joint. 

The network is composed of four layers in the contracting/expanding paths with the number 

of features maps doubling in the contracting path and decreasing by a factor of two in 

the expanding one. In every layer, a convolution block is instantiated, each composed of 

a convolution operation and a ReLU. After the convolution block, the MaxPool operator 

is applied with a kernel size set of 2 × 2 × 1. The CNN was trained using the weighted 

cross-entropy (CE) loss function to overcome the imbalanced segmentation class problem 

[14]. This loss function can lead to a more balanced and effective training process by 

weighting the ROIs of interests, which comprise only a small portion of the image. In 

particular, the weights to prioritize the acetabulum and femur were calculated as follow.

The total number of pixels belonging to each ROI (acetabulum, femur, and background) was 

counted across all available training data. The pixel count for each ROI was then divided by 

the total number of pixels in all images. This resulted in a weight of 18.6 for the acetabulum, 

15.83 for the femur, and 0.36 for the background. The weighted CE loss function was 

implemented as:

loss = ∑
i

L
wi * yi * log pi
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where i iterates over all the L = 3 wi ROIs (1 for acetabulum, 2 for femur, 0 for background), 

yi is the weight assigned to i-th ROI is the ground truth value (0 or 1) for the i-th ROI at a 

specific pixel, and pi is the predicted probability of the pixel belonging to the i-th ROI.

The optimization of this loss was conducted using an extension to stochastic gradient 

descent (ADAM) with a learning rate of 1e-4, a maximum number of iterations of 320, and 

an early stopping condition of 1e−8, as described in Ref. [14]. For all cases, the hip MR 

images and ROIs were re-sampled to the working resolution of the network in Ref. [14]. The 

final matrix size of the images and ROIs was 320 × 320 × 32 voxels.

2.3. Data augmentation

To increase the sample size, DA was applied by generating rototranslated couples of images 

and ROIs that were sampled at different resolutions. In particular, the 66 labeled and 

segmented femur and acetabulum ROIs were augmented by a factor of 60, which brought 

the total number of hip datasets from 66 to 3960.

Each augmentation involved extracting three Euler angles and three translation values, 

which were then used to create a roto-translation matrix as described in Refs. [25,26]. This 

rotation matrix was applied to both the image and the label, effectively transforming them 

according to the specified parameters.

In particular, the augmented datasets were obtained by creating randomly uniform 3D 

roto-translations between −5 and 5° in the first two Euler’s angles (left-right and anterior-

posterior) and between −15 and 15° in the third Euler’s angle (inferior-superior), with 

random translations ranging between 5 and −5 mm applied to the full resolution images and 

ROIs. To maintain the anatomical shape of the hips as realistic as possible, no scaling was 

applied to the datasets [21].

To preserve the integrity of the labels, we used different interpolation methods for the image 

and label data. The image data was resampled using a b-spline interpolator, which produces 

smoother and continuous results. For the label data, we employed a nearest-neighbor 

approach to maintain the discrete label values without introducing any interpolation artifacts.

Of the 3960 available hips, 1560 augmented datasets, created from 13 patients, were 

randomly selected as the hold-out testing datasets for model evaluation. The remaining 

2400 augmented datasets were used for model training. This split ensured that the testing 

dataset was representative of the training dataset and that the model was not overfitting the 

training data. The testing dataset was used to evaluate the performance of the trained model 

on unseen data. We ensured that the testing set was truly independent of the training set by 

avoiding augmented data from the same patient in both the training and the testing set.

2.4. Transfer learning

In addition to training the above-described CNN directly on the hip datasets, we evaluated 

whether we could improve performance by using TL from the model previously trained 

with the same CNN for the segmentation of the shoulder joint [14]. We were able to use 

the pre-trained CNN in a straightforward manner because the number of regions to be 
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identified was identical in the two tasks (humerus and glenoid for the shoulder vs. femur and 

acetabulum for the hip). In addition, the shoulder MRI data used for training the model in 

Ref. [14] were acquired with the same pulse sequence and similar parameters. Specifically, 

they also used an axial dual-echo T1-weighted 3D fast low-angle shot (FLASH) sequence 

with Dixon fat-water separation, with TR = 10 ms, TEs = 2.4 ms, and 3.7 ms, field of view = 

200 mm, acquisition matrix = 192 × 192, and slice thickness = 1 mm.

2.5. Model training comparison

To evaluate the effect of TL and DA on the final prediction accuracy of the models, we 

separately trained the network four times, using different training approaches:

• NTLNDA: No transfer learning, no DA, using only the available 66 hip datasets.

• NTLYDA: No transfer learning, using the 3960 augmented datasets.

• YTLNDA: Using transfer learning, with only the available 66 hip datasets.

• YTLYDA: Using transfer learning, with the 3960 augmented datasets.

The initial weights of the two networks without TL were set randomly. For TL, we 

initialized the weights of our new model with the weights of the previous model obtained 

from its checkpoints. After training, the four models were compared against the ground 

truth segmentations using features extracted from the confusion matrix. Each metric was 

compared to the other groups using a non-parametric test (Friedman test), with a null 

hypothesis of no differences in performance with a p-value of 0.01. The calculations were 

performed using the MATLAB statistical toolbox (The MathWorks Inc., Natick, MA). The 

segmentation results for the four models were also compared using the surface distance map 

Root Means Squared Difference (RMSD) [14].

The RMSD provides an average measure of how well the segmentation surface (S) generated 

by the network matches the ground truth surface (G), extracted from the ground truth 

manual segmentation. This metric was implemented as described in Deniz et al. [15], using 

the shortest Euclidean distance of an arbitrary voxel v to surface S defined as d(v, S) = mins 

S||v −s||2

D = 1
NS + NG

∑xs ∈ S d xs, G + ∑xG ∈ G d xG, S

where xs and xg are two arbitrary voxel in S and G, Ns and Ng represent the number of 

voxels in the segmentation and ground truth surface, respectively.

Note that, for all the comparisons during the validation, the segmentations were first 

re-sampled to the resolution of the ground truth segmentations (1 mm isotropic) using a 

nearest-neighbor approach.

3. Results

NTLYDA performed better than the other models in most metrics (Table 1). It had the 

highest accuracy (98.5% and 99.1%), Dice coefficient (84.2% and 89.3%), F1 score (84.2% 
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and 89.3%), Jaccard index (72.8% and 80.9%), sensitivity (94% and 97.2%) and recall 

(94% and 97.2%), for the acetabulum and femur, respectively. For the acetabulum, it also 

yielded the highest precision (78.5%), specificity (98.9%), and lowest false negative and 

false positive rates (21.5% and 1.1%). YTLYDA had the highest specificity (99.2%) and 

precision rate for the femur region (83.4%), as well as the best performance in terms of 

femur false negative and false positive rates, with 16% and 0.8%, respectively. YTLNDA 

had the worst performance in all metrics.

Furthermore, NTLYDA had the lowest metrics standard deviation for both the acetabulum 

and the femur, which indicates that it is the most consistent model in its performance. All 

the features of the confusion matrix had a Friedman test p-value lower than the threshold of 

0.01, making the differences in NTLYDA’s performance compared to the other three models 

statistically significant.

Fig. 3 shows the results of the RMSD analysis. NTLNDA had an error of 2.9 ± (0.27) mm 

on the acetabulum and 3.3 ± (0.37) mm on the femur. The results of the model trained 

with DA (NTLYDA and YTLYDA) were not statistically different, with an RMSD on the 

acetabulum of 2.1 ± (0.37) mm and 2.2 ± (0.44) mm, respectively, and 2.5 ± (0.65) mm and 

2.9 ± (0.75) mm on the femur. The worst performance was found for YTLNDA, with an 

RMSD of 3.1 ± (0.24) mm on the femur and 4.2 ± (0.40) mm on the acetabulum.

The ROC curves in Fig. 4 show that the models that used data augmentation (NTLYDA and 

YTLYDA) performed better than the other models. All the average areas under the curve 

(AUC) were higher than 0.90, except for the model YTLNDA on the acetabulum (0.873 

± (0.033)). The maximum mean AUC was found for NTLYDA, which achieved 0.954 ± 

(0.0064) and 0.973 ± (0.0033) for the acetabulum and the femur, respectively.

NTLYDA also had the minimum distance from the point (0,1) (maximum sensitivity and 

specificity) for both the acetabulum (0.075) and the femur (0.032). The model that was 

furthest from the optimal point for the acetabulum was YTLNDA with a distance of 0.264, 

and the model that was furthest from the optimal point for the femur was NTLNDA with a 

distance of 0.139.

4. Discussion

The results of this study suggest that DA could be more beneficial than TL when limited 

data is available to train a CNN for the automatic segmentation of the bony structures of 

the hip joint. In fact, the model that used only augmented data (NTLYDA) was the most 

consistent and achieved the highest performance, followed by the model that used both 

transfer learning and data augmentation (YTLYDA).

TL from the shoulder segmentation network without using DA (YTLNDA) yielded the 

worst performance. While TL initially appeared promising, fine-tuning a model pre-trained 

for shoulder segmentation ultimately failed to achieve optimal performance for hip joint 

segmentation. This is primarily due to significant anatomical differences in the source 

and target domains of knowledge (shoulder vs hip), as highlighted in Fig. 5. The deep 

acetabulum of the hip joint is considerably different from the shallower glenoid fossa of 
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the shoulder. This stark topological distinction challenged the transfer learning approach, 

causing the network to struggle to adapt its learned features from the shoulder to the unique 

morphology of the acetabulum (Fig. 6). This difficulty is further evidenced by the high rate 

of false negatives (0.643) observed for the acetabulum in the YTLNDA model (Table 1), 

which we reported also in previous work [18].

In contrast, DA proved to be a far more effective strategy for overcoming these anatomical 

disparities. By diversifying the training data with synthetic variations of the hip joint 

images, DA exposed the network to a much broader range of anatomical configurations. 

This enabled the network to learn and generalize significantly better to unseen data, 

particularly those featuring the unique characteristics of the acetabulum. This is reflected 

in the dramatically lower false negative rate (0.21) achieved by the best data augmentation 

model (NTLYDA) compared to YTLNDA (0.64), clearly demonstrating the superiority of 

this regularization method.

We hypothesize that the already substantial size and diversity of the training data achieved 

through DA rendered the addition of TL counterproductive. The excessive regularization 

introduced by combining both approaches may have caused the model to become overly 

sensitive to specific features of the data, hindering its ability to generalize to unseen 

examples, especially those featuring the challenging acetabulum region (e.g. see the 

acetabulum ROI of YTLYDA in Fig. 5). This could explain the lower performance of 

YTLYDA compared to YTLNDA.

The accuracy of the NTLYDA model was consistent with the results of the shoulder 

segmentation model that was used for TL [14], which reported a sensitivity of 94.9% for 

the humerus and 85.6% for the glenoid, compared to 91.2% for the acetabulum and 96.8% 

for the femur of the NTLYDA model. The Dice coefficient of NTLYDA was 0.89% for the 

femur and 0.84% for the acetabulum, while it was 0.95% for the humerus and 0.86% for the 

glenoid in Ref. [14].

A previous study for the automatic segmentation of the hip joint reported a higher Dice 

coefficient of 97% for the femur and 98% for the acetabulum [3]. Such study used a 

custom-reduced field of view (FOV) of the hip MR images to automatically segment only 

the area where the femur articulates with the acetabulum. This approach decreases the risk 

of false positive segmentations and was proven effective in segmenting the junction between 

the two structures for ROM analysis. In our case, we decided to maintain a broader coverage 

of the femur and acetabulum in the images, because this can improve the outcome if the 

segmented bones are used for radiomics analysis [28]. In fact, radiomic features are often 

derived from the spatial distribution of intensity values in an image and this distribution can 

vary significantly if the size of the ROI is reduced [33].

The reported RMSD is a measure of the average distance between the surface of the ground 

truth segmentations and the segmentations produced by the DL models. The models that 

were trained with DA had lower RMSD values for both the acetabulum and the femur with 

a decrease in error of over 25% compared to the model trained only with the available 

patients’ data (NTLNDA). For the femur, the average RMSD value was slightly higher than 
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the acetabulum but both models were able to decrease the error by over 35% using DA. 

This decrease in error can be attributed to several factors. First, by artificially increasing 

the size of the training data, DA might have reduced overfitting, which is typical of DL 

models trained on a small set of data, allowing the model to effectively generalize to new 

data. Second, DA might have helped to improve the robustness of the model. In fact, the 

model trained with the augmented dataset was exposed to a wider variety of cases, which 

could have helped it to learn to identify and segment the anatomical structures for different 

rotations and translations of the hip joint.

Even if the use of DA and TL decreased the RMSD, its value remained slightly higher than 

the RMSD reported in Ref. [14] for the shoulder model, which was trained on data from 

100 patients. This might depend on the fact that, in order to use the same network in Ref. 

[14] for TL, we needed to interpolate our hip MRI data to a resolution of 0.4 × 0.4 × 3.8 

mm. This low resolution along the z-axis prevents capturing some of the anatomical details 

and could have impaired the ability of the model to accurately segment the bony structures 

of the hip joint. At the same time, the 3.8 mm resolution along the z-axis explains why the 

average RMSD is more than 2 mm for all cases. Another limitation of this study was that 

the architecture of the network was fixed to the one used in Ref. [14]. This was necessary 

in order to utilize the checkpoints of the network trained on the shoulder as the initialization 

weights for the hip network in the case of comparison of DA with TL.

Note that zero-shot and foundation models have been recently introduced for object 

detection and segmentation [34,35]. However, the performance of these methods is not 

consistent for different applications, as shown in a recent review article [36]. In particular, 

such work used 12 publicly available datasets covering different organs and including 

various image modalities. The observed performance variations across these datasets and 

tasks suggest that current general-purpose pre-trained models, such as Segment Anything, 

may not possess the necessary stability and accuracy to reliably achieve zero-shot 

segmentation on complex, multi-modal, and multi-target medical data [36]. In this work, 

we instead decided to implement a CNN U-net tailored to our specific segmentation task.

This study focused solely on segmenting the bony structures of the hip joint, so the 

generalizability of the results for the case of other anatomical structures remains to be 

determined. For example, the unique features and challenges specific to the hip joint, such 

as the deep socket of the acetabulum, may be the reason for the suboptimal performance of 

TL compared to DA. Therefore, further research is necessary to confirm that DA is a better 

approach than TL when only small training sets are available.

A final limitation of our study was the skewed gender distribution of our patient population 

(16 females vs. 4 males). However, note that there were no major gender-related differences 

in segmentation performance metrics on the test cohort of patients, which suggests that the 

developed models perform equally well for males and females.
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5. Conclusions

In conclusion, this study investigated the effect of DA and TL on the accuracy of a CNN 

for the automatic segmentation of the bony structures of the hip joint from MR images, 

for cases when a limited number of datasets is available. We found that DA has a larger 

impact than TL on the network performance, likely because it reduces overfitting. TL still 

has a beneficial effect, but the associated performance depends on how similar the available 

data are compared to those used to train the original model. The proposed network for hip 

bone segmentation could be combined with radiomic analysis [28] to make the diagnosis of 

FAIS completely automatic. In the future, we plan to explore the relationship between the 

complexity of the network and the accuracy of the estimation by using different network 

architectures and DA.
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Fig. 1. 
An example of the ground truth segmentation of the femur (red) and acetabulum (violet). 

The top row shows two water-only images from the Dixon MRI acquisition. The bottom 

row shows the 3D surfaces of the femur and acetabulum reconstructed from the regions of 

interests that were manually segmented on the MR images.
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Fig. 2. 
Architecture of the 3D CNNs used in this work. The network was originally described in 

Ref. [14]. Blue rectangles represent feature maps with the size and the number of feature 

maps indicated on top of the bins. Different operations in the network are depicted by 

color-coded arrows.
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Fig. 3. 
Root Mean Square Deviation (RMDS) of the four DL models for the two anatomical 

regions. The RMDS is a measure of the average error (in mm) between the predicted and 

ground truth segmentations.
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Fig. 4. 
The receiver operating characteristic (ROC) analysis of the four DL models for the two 

regions of interest: acetabulum (left) and femur (right). The performance of YTLNDA was 

statistically different (p < 0.05) from the others for both femur and acetabulum.
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Fig. 5. 
A qualitative comparison of the accuracy of the four DL models. Each row shows the 

segmentation obtained with a different DL model co-registered with the ground-truth manual 

segmentation (red and purple meshes), for a representative hip dataset and for different 

views. The closer a pixel color is to gray, the better the automatic segmentation matches the 

ground-truth at that pixel.
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Fig. 6. 
3D models of the hip (top) and the shoulder joint (bottom). The bony structures of the joints 

are shown in different colors: acetabulum (purple) and femur (red) for the hip joint, glenoid 

(purple), and humerus (red) for the shoulder joint. The femur and the humerus are similar in 

shape and size, while the acetabulum is a deeper socket than the glenoid fossa. To compare 

the size of the two joints across the two images, we added in both images a white sphere of 

radius equal to 1 cm.
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Table 1

Comparison of Deep Learning Models for Acetabulum and Femur Segmentation on 3D MR Images (Bolded 

values indicates the best performing method for each metric).

Metrics NTLNDA YTLYDA NTLYDA YTLNDA

Acetabulum Accuracy 0.946 ± (0.023) 0.980 ± (0.007) 0.985 ± (0.005) 0.931 ± (0.018)

Acetabulum Dice 0.610 ± (0.082) 0.783 ± (0.064) 0.842 ± (0.026) 0.473 ± (0.062)

Acetabulum Recall 0.940 ± (0.019) 0.832 ± (0.051) 0.912 ± (0.026) 0.713 ± (0.045)

Acetabulum F1 0.610 ± (0.082) 0.783 ± (0.064) 0.842 ± (0.026) 0.473 ± (0.062)

Acetabulum Sensitivity 0.940 ± (0.019) 0.832 ± (0.051) 0.912 ± (0.026) 0.713 ± (0.045)

Acetabulum Specificity 0.947 ± (0.024) 0.987 ± (0.006) 0.989 ± (0.005) 0.941 ± (0.017)

Acetabulum False Negative Rate 0.543 ± (0.084) 0.254 ± (0.101) 0.215 ± (0.055) 0.643 ± (0.063)

Acetabulum Jaccard 0.444 ± (0.080) 0.647 ± (0.087) 0.728 ± (0.039) 0.312 ± (0.055)

Acetabulum False Positive Rate 0.053 ± (0.024) 0.013 ± (0.006) 0.011 ± (0.005) 0.059 ± (0.017)

Acetabulum Precision 0.457 ± (0.084) 0.746 ± (0.101) 0.785 ± (0.055) 0.357 ± (0.063)

Femur Accuracy 0.974 ± (0.018) 0.991 ± (0.003) 0.991 ± (0.004) 0.961 ± (0.013)

Femur Dice 0.759 ± (0.101) 0.884 ± (0.043) 0.893 ± (0.042) 0.649 ± (0.098)

Femur Recall 0.972 ± (0.004) 0.946 ± (0.050) 0.968 ± (0.006) 0.934 ± (0.028)

Femur F1 0.759 ± (0.101) 0.884 ± (0.043) 0.893 ± (0.042) 0.649 ± (0.098)

Femur Sensitivity 0.972 ± (0.004) 0.946 ± (0.050) 0.968 ± (0.006) 0.934 ± (0.028)

Femur Specificity 0.974 ± (0.019) 0.992 ± (0.003) 0.992 ± (0.004) 0.962 ± (0.013)

Femur False Negative Rate 0.368 ± (0.119) 0.166 ± (0.065) 0.169 ± (0.069) 0.496 ± (0.112)

Femur Jaccard 0.620 ± (0.115) 0.795 ± (0.068) 0.809 ± (0.065) 0.488 ± (0.109)

Femur False Positive Rate 0.026 ± (0.019) 0.008 ± (0.003) 0.008 ± (0.004) 0.038 ± (0.013)

Femur Precision 0.632 ± (0.119) 0.834 ± (0.065) 0.831 ± (0.069) 0.504 ± (0.112)
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