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Transfer RNAs (tRNAs) are essential for translation, and tRNA expression and modifications are regulated by many fac-

tors. However, the interplay between the microbiome and host tRNA profiles through host-microbiome interactions has

not been explored. In this study, we investigated host-microbiome interactions via the tRNA profiling of four tissue types

from germ-free and specific pathogen-free mice. Our analyses reveal that cytosolic andmitochondrial tRNA expression and

tRNA modifications in the host are reprogrammed in a tissue-specific and microbiome-dependent manner. In terms of

tRNA expression, the intestines and brains aremore sensitive to the influence of themicrobiome than the livers and kidneys.

In terms of tRNA modifications, cytosolic tRNAs show more obvious changes in the livers and kidneys in the presence of

the microbiome. Our findings reveal a previously unexplored relationship among the microbiome, tRNA abundance, and

epitranscriptome in a mammalian host.

[Supplemental material is available for this article.]

Transfer RNA (tRNA) expression and modifications are crucial pa-
rameters in the regulation of protein synthesis (El Yacoubi et al.
2012; Pan 2018; Schimmel 2018; de Crécy-Lagard et al. 2019;
Thornlow et al. 2020). Human tRNA expression is tissue-specific
and plays crucial roles in tumor development and progression
(Dittmar et al. 2006; Pavon-Eternod et al. 2009; Gingold et al.
2014; Goodarzi et al. 2015). As the most extensively modified
type of RNA in the epitranscriptome, nuclear-encoded tRNAs con-
tain 13–14 post-transcriptional modifications on average (Clark
et al. 2016; Pan 2018; Pereira et al. 2018), and mitochondrial-en-
coded tRNAs contain 2–9 modifications (Suzuki and Suzuki
2014; Suzuki et al. 2020). tRNA modifications are critical for all
core aspects of tRNA functions, such as controlling tRNA stability,
decoding, charging efficiency and fidelity, and generating tRNA
fragments that regulate stress responses and development
(Whipple et al. 2011; Zaborske et al. 2014; Clark et al. 2016;
Chanfreau 2017; de Crécy-Lagard et al. 2019; Pinkard et al.
2020). Dynamic RNA modifications, such as N6-methyladenosine
(m6A), have important biological functions (Liu et al. 2015; Kan
et al. 2017; Louloupi et al. 2018; Gkatza et al. 2019; Yang et al.
2019). Epitranscriptomic modifications can be induced by multi-
ple internal and external factors, including the presence of the
microbiome in a mammalian host. Increasing evidence suggests
that the gut microbiota and its metabolites are associated with
the interactions among the host diet, genome, RNA expression,
and RNA modifications (Pang et al. 2014; Pan et al. 2018;
Cuevas-Sierra et al. 2019; Miro-Blanch and Yanes 2019).
Moreover, the microbial composition is responsible for reversible
changes in host DNA modifications and gene expression (Qin
et al. 2018; Kim et al. 2019; Louwies et al. 2020). We have recently

demonstrated that the presence of the microbiome can markedly
influence m6A modifications in the mouse messenger RNA
(mRNA) transcriptome in a tissue-specific manner (Wang et al.
2019). We have also revealed taxon- and diet-specific variations
in tRNA abundance and modifications among the gut microbial
communities of mice (Schwartz et al. 2018). However, the associa-
tions among the presence of the microbiome, tRNA expression,
and tRNA modifications across mammalian host tissue types re-
main to be studied.

tRNA modifications impair complementary DNA (cDNA)
synthesis, which interferes with the efficiency and accuracy of
the high-throughput sequencing of tRNA (Zheng et al. 2015;
Schwartz et al. 2018). The technical difficulty of tRNA sequencing
(tRNA-seq) has been partially overcome via the recent develop-
ment of sequencing strategies combining demethylase enzymes
to removeWatson-Crick facemethylations (e.g.,N1-methyladeno-
sine [m1A], N1-methylguanosine [m1G], N2,N2-dimethylguano-
sine [m2

2G], N1-inosine [m1I], and N3-methylcytosine [m3C])
and thermophilic reverse transcriptases (TGIRTs) for processive
cDNA synthesis (Zheng et al. 2015; Clark et al. 2016; Schwartz
et al. 2018). Therefore, our demethylase tRNA-seq approach (re-
ferred to as DM-tRNA-seq) facilitates the comprehensive elucida-
tion of microbiome effects on host tRNAs by systematically
quantifying tRNA expression and tRNA modifications under dif-
ferent physiological conditions.

Whether the microbiome of mice can reprogram the host
tRNA transcriptome is an open question in the field, and the mo-
lecular basis of tRNA expression and tRNA modifications associat-
edwith translation in themammalian decoding system remains to
be investigated. In the present study, we appliedDM-tRNA-seq and
obtained the cytosolic and mitochondrial tRNA expression and
modification profiles of four tissue types (brain, intestine, kidney,
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and liver) in germ-free (GF) and specific pathogen-free (SPF) mice.
This study aimed to investigate host-microbiome interactions via
the tRNA profiling of different tissue types from GF and SPF
mice and to further verify the potential of DM-tRNA-seq for study-
ing the epitranscriptome and developmental biology.

Results

Expression-related analyses at the isodecoder level

Figure 1 shows the experimental workflow of tRNA-seq applied in
this study. We constructed a total of 48 tRNA libraries from 24 tis-
sue samples (brain, intestine, kidney, and liver samples from three
GF mice and three SPF mice), each with (+DM) or without (−DM)
demethylase treatment (Supplemental Table S1). After quality
control, each of the clean tRNA-seq data was mapped to modified
cytosolic (21 amino acid isotypes, 49 isoacceptors, 216 isode-
coders) and mitochondrial reference tRNA data sets (20 amino
acid isotypes, 22 isoacceptors). On average, each tRNA library pro-
duced 6.0 and 2.8 million mapped reads for cytosolic and mito-
chondrial tRNAs, respectively (Supplemental Table S1).

tRNA expression–related analyses were performed based
mainly on the tRNA expression normalized and measured by frag-
ments per kilobase per million (FPKM) values for the −DM librar-
ies. We first evaluated the expression of 216 cytosolic tRNAs (Fig.
2A) and 22mitochondrial tRNAs (Fig. 2B) via principal component
analysis (PCA). In these PCAs, all four tissues could be distinctly
separated from each other, and the GF mice generally showed
higher divergences within biological replicates than the SPF mice
(Fig. 2A,B). According to the PCA of cytosolic tRNAs, PC1 and
PC2 explained 50.6% of the total variance (Fig. 2A; Supplemental
Fig. S1A). The SPF replicates of the brain, intestine, and liver tissues
all showed considerable differences from the GF replicates, and
these differences were significantly greater than those among the
corresponding replicates (Fig. 2A). All 216 cytosolic tRNAs contrib-
uted to both PC1 and PC2 to some extent (Supplemental Fig. S1B–
D). According to the PCA ofmitochondrial tRNAs, 67.2%of the to-
tal variance was represented by PC1 and PC2 (Fig. 2B; Supplemen-
tal Fig. S1E). This PCA showed that the SPF replicates (especially
those of the brain and liver tissues) could not be distinctly separat-
ed from the GF replicates (Fig. 2B). Similarly, the 22mitochondrial
tRNAs unevenly contributed to both PC1 and PC2 (Supplemental

Fig. S1F–H). tRNATyr and tRNAGln explained nearly 30% variance
of PC2 in total, which was significantly higher than the other mi-
tochondrial tRNAs (Supplemental Fig. S1H). Overall, the PCA of
cytosolic tRNAs showed that the microbiome has a large effect
on tRNA expression of the intestines, brains, and livers, but not
in the kidneys; in contrast, the effect of the microbiome on mito-
chondrial tRNA expression is relatively stronger in the intestines
and kidneys rather than the livers or brains. We then performed
a correlation analysis of tRNA expression for the three intestinal bi-
ological replicates of the GF mice. We found that, although high
variability was observed among the replicates in the PCAs (Fig.
2A,B), the calculated FPKM values still showed strong linear corre-
lations (R>0.96, P<0.0001) (Supplemental Fig. S2).

Next, we analyzed the tRNA expression differences in each
tissue between the GF and SPF mice (Fig. 2C–E; Supplemental
Fig. S3). Both the brains and intestines were found to exhibit sig-
nificant numbers of up- and down-regulated tRNAs (Fig. 2C,D);
the livers primarily exhibited up-regulated tRNAs when the
microbiome was present (Fig. 2E), whereas the kidneys showed
very limited changes (Supplemental Fig. S3). Overall, we found
that the influence of the microbiome on tRNA expression was
not only tissue-specific but also derived from isodecoder-level
differences.

Expression-related analyses at the amino acid isotype level

We further analyzed tRNA expression differences at the amino acid
isotype level (Fig. 3A–D). Overall, the results indicated that the
tRNA isotype patterns and the influence of the microbiome on
these patterns among the four tissues were obviously different.
The brains, intestines, and kidneys all contained numerous tRNA
isotypes that were significantly different between the GF and SPF
mice, and the colonization of the microbiome generally signifi-
cantly increased the expression of tRNA isotypes in the intestines
and kidneys (Fig. 3B,C). The variability (standard deviations, SDs)
of tRNA expression between the GF and SPFmice in the brains and
kidneys was significantly lower than that in the intestines and liv-
ers, which contributed greatly to the numbers of significant
tRNAs (Fig. 3A,C). Mitochondrial tRNAPhe showed the highest ex-
pression ranges beyond the other 40 tRNA amino acid isotypes in
the four tissues. The colonization of the microbiome generally sig-
nificantly increased mitochondrial tRNAMet levels and reduced

Figure 1. Workflow of this study. tRNAs were isolated from the total RNAs extracted from four tissue types (brain, intestine, kidney, and liver) in specific
pathogen-free (SPF) and germ-free (GF) mice. Each tRNA sample was treated with (+DM) or without demethylase (−DM), respectively. After reverse tran-
scription, circularized cDNAs were amplified and sequenced on an Illumina HiSeq system. The sequencing data were used for downstream analyses after
mapping to the constructed cytosolic and mitochondrial reference tRNA data sets. (m1A) N1-methyladenosine, (m1G) N1-methylguanosine, (m3C) N3-
methylcytosine.
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mitochondrial tRNAPhe levels in three mouse tissues (P<0.05 for
all) (Fig. 3A–C), except for the liver data (Fig. 3D).

We then analyzed tRNA coexpression correlations at the ami-
no acid isotype level (Fig. 3E,F; Supplemental Fig. S4). Similarly, we
found that there were large differences in tRNA coexpression pat-
terns among the tissues and that themicrobiome influenced these
patterns to some extent (Fig. 3E,F; Supplemental Fig. S4). More-
over, we noted that the presence of the microbiome distinctly en-
hanced the complexity of the clustering results for tRNA
coexpression patterns, especially in the brains and livers (Supple-
mental Fig. S4A–D).Whenwe combined the data from the four tis-
sues, the 41 tRNA amino acid isotypes were roughly divided into
three hierarchical clusters in the GF mice and four hierarchical
clusters in the SPF mice. The largest clusters included more than
half of themitochondrial tRNA isotypes (Fig. 3E,F). The correlation
of tRNA coexpression in the livers, which showed only two large
unambiguous hierarchical clusters (Supplemental Fig. S4G,H),
wasmuch simpler than that in the other three tissues (Supplemen-
tal Fig. S4A–F).

Expression-related analyses at the isoacceptor level

The compositions of the tRNA isoacceptors provided a representa-
tion at the anticodon level for revealing both tissue-specific and

microbiome-dependent differences (Fig. 4). Overall, the clustering
analyses divided both the 49 cytosolic isoacceptors (Fig. 4A) and
the 22mitochondrial isoacceptors (Fig. 4B) into four unequal-sized
clusters based mainly on their proportions among total cytosolic
or mitochondrial tRNAs. Among these isoacceptors, cytosolic
tRNAGln (Fig. 4A) and mitochondrial tRNAPhe (Fig. 4B) were the
most prominent isoacceptors due to their high proportions among
cytosolic or mitochondrial tRNAs. Similarly, the influence of the
microbiome on the changes in tRNA proportions depended on
the tissue types and isoacceptor types. For example, the proportion
of cytosolic tRNALeu-CAA distinctly increased in the brains and de-
creased in the intestines, whereas no significant changeswere seen
in the kidneys and livers when the microbiome was present (Fig.
4A). Overall, the tRNA compositions at the tRNA isoacceptor
level showed similar results as those from the PCAs, that is, the cy-
tosolic tRNA compositions of the intestines, brains, and livers, as
well as the mitochondrial tRNA compositions of the intestines
and kidneys, were more sensitive to the influence of the micro-
biome. By comparing the fold changes (FCs) of the tRNA isoaccep-
tor proportions between the GF and SPF mice, we found that with
the colonization of the microbiome: mitochondrial tRNALeu-UAA

increased (FC=2.91) and cytosolic tRNAAsp decreased (FC=0.37)
most significantly in the brains; cytosolic tRNAiMet-CAU increased
(FC=2.00) and tRNASer-GGA decreased (FC=0.22) most

E

B

A

C D

Figure 2. tRNA expression–related analyses at the isodecoder level. (A,B) Principal component analyses (PCAs); (C–E) Volcano plots based on the frag-
ments per kilobase per million (FPKM) values of 216 cytosolic and 22mitochondrial tRNAs from three tissues (n =3, SPF vs. GF mice). (A) PCA based on the
FPKM values of 216 cytosolic tRNA isodecoders. (B) PCA based on the FPKM values of 22 mitochondrial tRNA isoacceptors. (C) Volcano plot for the brains.
(D) Volcano plot for the intestines. (E) Volcano plot for the livers. For C–E, P<0.05 and log2 (fold change) > 1 were set as the thresholds of significance, and
the names of the significant cytosolic tRNA isodecoders follow the names in the Genomic tRNA Database (GtRNAdb, http://gtrnadb.ucsc.edu/genomes/
eukaryota/Mmusc10/). (C) Cytosolic tRNA, (M) mitochondrial tRNA.
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significantly in the intestines; mitochondrial tRNAMet increased
(FC=1.69) and tRNAThr decreased (FC=0.61) most significantly
in the kidneys; mitochondrial tRNASer-GCU increased (FC=6.71)
and cytosolic tRNASer-GGA decreased (FC=0.18) most significantly
in the livers.

Modification-related analyses between

+DM and −DM libraries

tRNAmodification–related analyses were
performed based mainly on the muta-
tion fractions of Watson-Crick face
methylations within each tRNA isoac-
ceptor or amino acid isotype at single-
base resolution (Fig. 5; Supplemental
Figs. S5, S6).We first compared the differ-
ences in tRNAmethylations between the
+DM and −DM samples to confirm the
effect of demethylase treatment in this
study. Compared with the−DM libraries,
the mutation fractions of most types of
tRNA methylations (including known
cytosolic m1A58, m1G37, m3C32, and
m3C47 and mitochondrial m1A/G9
according to the standard tRNA nomen-
clature) in the +DM libraries were signifi-
cantly reduced (Fig. 5A–F); an exception
was observed for known cytosolic
m1I37 in the tRNAAla amino acid isotype
(Fig. 5C), where demethylase converts
m1I to inosine, and different bases are
further incorporated by TGIRT during re-
verse transcription. To provide more de-
tails about the changes in mapping
coverage and mutations, we selected
four representative tRNA amino acid iso-
types/isoacceptors to visualize the effect
of demethylase treatment between the
−DM and +DM libraries of the brains
(Supplemental Figs. S5, S6). Consistent
with related studies (Zheng et al. 2015;
Clark et al. 2016), all common types of
tRNA methylations except for cytosolic
m2

2G26 were sensitive to demethylase
treatment and exhibited less reverse tran-
scriptase (RT) stops and smallermutation
fractions (Supplemental Figs. S5, S6).
Among mitochondrial tRNAs, bulky
tRNA modifications such as 2-methyl-
thio-N6-isopentenyladenosine (ms2i6A)
within tRNAPhe (Supplemental Fig. S6),
tRNATrp, and tRNATyr were insensitive
to demethylase treatment and could
cause serious RT stops and induce many
deletions during cDNA synthesis (Sup-
plemental Fig. S6).

Modification-related analyses among

tissues, and between GF and SPF mice

We further identified the tissue-specific-
ity and microbiome-dependence of host
tRNA modifications. Among the −DM li-
braries of the four tissues, the kidneys

and livers of both the GF and SPF mice displayed very similar
high mutation fractions among multiple methylations (Fig. 5);
in contrast, the intestines of the SPF mice showed universally
lowmutation fractions among thesemodifications (Fig. 5), where-
as the brains of the GFmice showed lower mutation fractions only

E F
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C

D

Figure 3. tRNA expression–related analyses at the amino acid isotype level. tRNA expression was mea-
sured by the FPKM values of 21 cytosolic and 20 mitochondrial tRNA isotypes. (A–D) tRNA expression in
four tissues (n=3 for both GF and SPF mice). (E,F) tRNA coexpression correlation plots for the GF and SPF
mice obtained by combining the data from the four tissue types (brain, intestine, kidney, and liver; each n
=3). (A) tRNA expression in the brains. (B) tRNA expression in the intestines. (C) tRNA expression in the
kidneys. (D) tRNA expression in the livers. (E) tRNA coexpression correlation plot for the GFmice. (F) tRNA
coexpression correlation plot for the SPFmice. Significant differences were determinedwith the unpaired
Student’s t-test. (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001. For A–D, red asterisks indicate the tRNA isotypes
significantly down-regulated in the SPF mice compared with the GFmice, whereas blue asterisks indicate
the tRNA isotypes significantly up-regulated in the SPF mice compared with the GF mice. In E and F, the
squares indicate hierarchical clusters.
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for cytosolicm1A58 (Fig. 5A).We visualized themutation and stop
fractions across the cytosolic isoacceptor tRNALeu-CAG to show the
above-mentioned differences among the tissues (Fig. 6). In themu-
tation plots (Fig. 6A,C,E,G), knownmethylations can be identified
easily. With the colonization of the microbiome, the mutation
fraction of m1A58 was slightly increased in the brains (Fig. 6A),
whereas those of m3C47 and m1A58 were decreased in the intes-
tines (Fig. 6C). The stop patterns of m2

2G26, m1G37, and m3C47
of this tRNA were different between the GF and SPF mice in all
four tissues (Fig. 6B,D,F,H). In the brains, m2

2G26 and m3C47 de-
creased in the SPF mice (Fig. 6B); in the intestines, all three modi-
fications decreased in the SPF mice (Fig. 6D); in the kidneys, no
obvious difference in the stop fraction was seen between the GF
and SPF mice (Fig. 6F); whereas in the livers, m2

2G26 increased
and m1G37 decreased in the SPF mice (Fig. 6H).

Compared to themodification-related analyses of the−DM li-
braries (Fig. 6), we noted that the host tRNA methylations in the
+DM libraries were more comparable among the tissues and be-
tween the GF and SPF mice in our study because the patterns of
mutation fractions showed more distinct tissue-specificity and

microbiome-dependence. In the +DM
libraries, the results indicated that the
livers and intestines showed higher
mutation fractions for multiple methyla-
tions than the kidneys and brains (Fig. 5).
The colonization of the microbiome also
strongly influenced the semiquantified
results of tRNA methylations. In the
brains and intestines, the mutation frac-
tions only significantly increased for mi-
tochondrial m1A/G9 (Fig. 5F), whereas
the kidneys and livers showed different
mutation patterns for multiple cytosolic
methylations between the GF and SPF
mice. Furthermore, we found that the
mutation fractions of mitochondrial
m1A/G9 (Fig. 5F) were more easily influ-
enced by the presence of themicrobiome
than other cytosolic tRNA methylation
types in all four tissues (Fig. 5A–E).

Discussion

The elucidation of the roles and effects of
themicrobiome inmammalian hosts has
become an increasingly important issue
in a range of biological fields. The re-
sponse between microbiome-host inter-
actions and the host epitranscriptome
currently remains poorly studied. In
this study, we explored this unresolved
question by performing expression-relat-
ed analyses of different tRNA levels and
modification-related analyses of known
methylations across mammalian tRNAs.
Overall, the results obtained from the ex-
pression-related analyses revealed the as-
sociations between the microbiome and
host tRNA genes in different tissues,
and modification-related analyses pro-
vided semiquantified results regarding
tissue-specific and microbiome-depen-

dent differences. Altogether, our results showed that there were
very distinct tRNA abundance and modification patterns among
the tissues and that the presence of the microbiome resulted in
the tissue-specific reprogramming of host tRNA expression and
modifications. It is still unclear whether certain microbes are asso-
ciated with variations in tRNA expression, tRNA modifications,
mRNA translation, or protein expression. These questions will be-
come the foci of interest in the field and remain to be investigated
in future studies.

The impacts of the microbiome on host tRNA expression

and modification

Among the four tissue types, host tRNA expression in the brains
and intestines was more sensitive to the influence of the micro-
biome than that in the kidneys and livers in nearly all analyses
conducted in this study. These findings are consistent with our
previous findings from mRNA analyses that the m6A contents in
the brains and intestines show more noticeable differences be-
tween the GF and SPF mice than those in the livers (Wang et al.

B

A

Figure 4. tRNA composition heat maps at the isoacceptor level. tRNA proportions were calculated
based on the FPKM values of 49 cytosolic and 22mitochondrial tRNA isoacceptors among total cytosolic
or mitochondrial isoacceptors, respectively. (A) Heat map of cytosolic tRNAs. (B) Heat map of mitochon-
drial tRNAs.
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2019). Recent advances have shown that cellular gene expression
patterns in the microbiota-gut-brain axis can be interfered with
by the microbiome through epigenetic modifications (Canani
et al. 2012; Fofanova et al. 2016; Hoban et al. 2017). These findings
could be explained by the direct influence of the activities or me-
tabolites produced by the gut microbiota, which represents one of

the densest microbial communities inmammals, with growing ev-
idence showing its contributions to maintaining homeostasis and
various physiological processes (Sandhu et al. 2017).

In our study, we noted that the microbiome could reprogram
not only the cytosolic but also the mitochondrial tRNA profiles of
the host. The changes in mitochondrial tRNA expression in the

E
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Figure 5. Mutation heat maps of common methylation types within cytosolic or mitochondrial tRNAs according to the standard tRNA nomenclature.
The modification level of each type of tRNA methylation was semiquantified based on the corresponding mutation fraction, and presented data are from
four tissues (n=3 for both GF and SPF mice). (A) N1-methyladenosine of position 58 (m1A58) within cytosolic tRNAs. (B) N1-methylguanosine of position
37 (m1G37) within cytosolic tRNAs. (C) N1-inosine of position 37 (m1I37) within cytosolic tRNAs. (D) N3-methylcytosine of position 32 (m3C32) within
cytosolic tRNAs. (E) N3-methylcytosine of position 47 (m3C47) within cytosolic tRNAs. (F ) N1-methyladenosine or N1-methylguanosine of position 9
(m1A/G9) within mitochondrial tRNAs.
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kidneys and intestines were particularly noteworthy when the
microbiomewas present (Figs. 2B, 3B,C). On the other hand,mito-
chondrial m1A/G9 (Fig. 5F) was more sensitive to the microbiome
than all other cytosolic types of tRNAmethylations (Fig. 5A–E). All
of these results suggest that the presence of the microbiome could
influence mitochondrial translation activity and energy metabo-
lism. Colonization of the gutmicrobiota in theGFmicewas shown
to cause rapid weight gain or increase obesity (Bäckhed et al. 2004;
Heiss and Olofsson 2018). This phenomenon may be linked to
changes in mitochondrial tRNA expression and associated mito-
chondrial translational regulation. The relatively high variance

of mitochondrial tRNA expression among biological replicates
from the same tissues should be noted and taken into consider-
ation. One possible explanation could be related to PCR bias dur-
ing library construction, which will be optimized in our future
work.

The accuracy of expression-related analyses is closely related to

the correct construction of a cytosolic tRNA reference database

The construction of tRNA reference data sets is an important step
that can profoundly influence the accuracy of expression-related

E F

BA

C D

G H

Figure 6. Mutation and stop plots for the cytosolic tRNALeu-CAG isoacceptor in four tissues (n=3 for both GF and SPF mice) from the −DM libraries. (A)
Mutation plot for the brains. (B) Stop plot for the brains. (C) Mutation plot for the intestines. (D) Stop plot for the intestines. (E) Mutation plot for the kid-
neys. (F) Stop plot for the kidneys. (G) Mutation plot for the livers. (H) Stop plot for the livers. The stop fractions at and after m1A58 are not shown. The x-
axis corresponds to the nucleotide position along the tRNA. Watson-Crick facemethylations that are sensitive to demethylase treatment can be easily iden-
tified from the mutation plots. (m2

2G) N
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analyses. Although the cytosolic tRNA reference data set of Mus
musculus was based mainly on the high confidence set from the
Genomic tRNA Database (GtRNAdb), there remains substantial
room for further improvements in data set construction. First,
the extremely short lengths of tRNAs limit the traceability of their
sources on chromosomes. One hundred ninety of the 401 cytosol-
ic tRNAs from the high confidence set were merged to reduce re-
dundancy from the beginning due to their entirely identical
sequences. For example, tRNAGlu-CTC-1 isodecoder contained
nine entirely identical tRNA sequences derived from five chromo-
somes. However, it is still unknown whether the influence of the
microbiome on different sources of tRNAs is consistent and linear-
ly correlated. Additionally, because the primary filter of the cyto-
solic tRNA reference data set of M. musculus contained 36,415
tRNA pseudogenes with low general tRNA model scores predicted
by the tRNAscan-SE search server, whether these pseudogenes are
involved in determining the composition of mature tRNA abun-
dance remains to be studied.

The noncanonical roles of tRNAs beyond translation may be the

main reason for their large expression differences in the presence

of the microbiome

It is widely accepted that the most canonical role of tRNAs is to
transfer activated amino acids from aminoacyl-tRNA synthetases
to ribosomes for protein synthesis (Katz et al. 2016). Translational
control by tRNA abundance has been inferred to play roles via co-
don usage (Dittmar et al. 2006). Therefore, we attempted to inves-
tigate the correlations between the codon usage of coding
sequences (CDSs) and the expression of corresponding tRNA isoac-
ceptors in the GF and SPFmice to determine whether the presence
of the microbiome can influence the dynamic balance between
mRNAs and tRNAs, in conditions such as breast cancer (Pavon-
Eternod et al. 2009). The liver was selected as the representative tis-
sue type for this analysis because its tRNAs in the SPFmice showed
a universally up-regulated trend in the volcano plot (Fig. 2E). We
first calculated the SPF/GF ratio for each tRNA isoacceptor type.
By using the transcriptome data from our previous mRNA study
(Wang et al. 2019), we extracted the expression of all 15,901
CDSs from the livers of the GF and SPF mice. We then calculated
the total codon usage and obtained the SPF/GF ratio for each co-
don type. Finally, we established the connections between codons
and anticodons considering the wobble base pairing that occurs
between position 34 of the tRNA anticodon and the third base of
the mRNA codon. We failed to find a linear or near-linear correla-
tion between the codons and anticodons even if a series of efforts
had been made to optimize the analysis (Supplemental Fig. S7).
The potential positive association between codon usage and
tRNAexpression could only be found for a few specific codon types
within overexpressed genes (Pavon-Eternod et al. 2009). It is worth
noting that the influence of the microbiome only slightly altered
the codon usage of total CDSs for any codon type in the livers
(with SPF/GF ratios ranging from 0.98 to 1.03), whereas the expres-
sion of tRNA isoacceptors was sensitive to the microbiome and
showed much higher variations (with SPF/GF ratios ranging
from 0.57 to 2.23) (Supplemental Fig. S7). The noncanonical roles
of tRNAs beyond translation include synthetic, regulatory, and in-
formation functions (Rogers et al. 2012; Colussi et al. 2014; Raina
and Ibba 2014; Katz et al. 2016; Pan 2018). In this analysis, the var-
iations in tRNA expression were much greater than the require-
ments of codon usage, indicating that the colonization of the
microbiome might markedly influence the noncanonical roles of

tRNAs beyond the transfer of amino acids. Additionally, the tis-
sue-specificity of tRNA coexpression patterns (Supplemental Fig.
S4) may shed light on the dominant noncanonical function of
tRNAs in further studies.

Methods

Sample collection and tRNA isolation

GF and SPF mice (4-wk-old C57BL/6NTac male mice, both n=3)
were purchased from Taconic Biosciences. A total of 24 tissue sam-
ples (brains, intestines, kidneys, and livers) from the six mice
(Supplemental Table S1) were dissected and freshly frozen on dry
ice and then stored at −80°C. These tissues were homogenized
with glass beads using a tissue homogenizer, and their total RNA
was isolated using TRIzol reagent (Ambion) following the manu-
facturer’s protocol. The RNA samples were dissolved in RNase-
free water, and the concentration and purity of the total RNAs
were spectrophotometrically measured at 260nm using a
NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific).
Total RNA was first deacylated with Tris-HCl (pH=9.0) at 37°C
for 30mins and then purified in a 10% urea denaturing gel accord-
ing to standard procedures. The tRNAbandswere cut out underUV
shadowing, and the isolated total tRNAs (∼3 µg, 60 pmol) were dis-
solved in RNase-free water.

DM-tRNA-seq and regular tRNA-seq

We performed DM-tRNA-seq as previously reported in human
(Zheng et al. 2015; Clark et al. 2016) and microbial tRNA studies
(Schwartz et al. 2018). Briefly, ∼1.5 µg of total tRNA from each
sample were treated with a 3× molar ratio of wild-type AlkB (180
pmol) and a 4× molar ratio of the D135S mutant (240 pmol) to re-
move Watson-Crick face methylations on tRNAs, which can im-
pede the processivity of reverse transcription, while another 1.5
µg of total tRNA extracted from the same sample were left untreat-
ed. Thereafter, we performed reverse transcription from 150-ng
tRNA samples of the −DM and +DM libraries with TGIRT (InGex).
We purified and eluted cDNAs from 10% urea denaturing gels by
using linear acrylamide (Thermo Fisher Scientific AM9520) as
the carrier. The purified cDNAs were circularized with CircLigase
II (Epicentre) at 60°C overnight following the manufacturer’s pro-
tocol and then extracted with phenol-chloroform-isoamyl alcohol
(25:24:1), followed by ethanol precipitation. For library construc-
tion, the circularized cDNAs were amplified with Phusion-HF
(NEB) by PCR amplification for 12 cycles after ligationwith Illumina
universal adapter sequence (5′-AATGATACGGCGACCACCG
AGATCTACACGTTCAGAGTTCTACAGTCCGACGATC-3′)andRNA
adapter sequence (5′-CAAGCAGAAGACGGCATACGAGAT[Index]
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′). The PCR
products were purified with AMPure XP beads (Beckman Coulter)
and sequenced on an Illumina HiSeq system.

Construction of tRNA reference data sets

For cytosolic tRNAs, we obtained an initial reference data set for
Mus musculus (GRCm38/mm10) from GtRNAdb (http://gtrnadb
.ucsc.edu/genomes/eukaryota/Mmusc10/). The high confidence
set of this data set contained 400 standard decoding tRNAs and
one selenocysteine tRNA, and the set of notable atypical predic-
tions included five tRNAs with anticodon/isotype mismatch(es).
We first merged all entirely identical tRNA isodecoders to reduce
redundancy. For mitochondrial tRNAs, we obtained an initial mi-
tochondrial reference genome for M. musculus from the NCBI
GenBank database (https://www.ncbi.nlm.nih.gov/genbank/) (ac-
cession number NC005089). Mitochondrial tRNA genes were
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identified based on annotations and using the tRNAscan-SE search
server (version 2.0, http://lowelab.ucsc.edu/tRNAscan-SE/) (Lowe
and Chan 2016).

Themerged cytosolic andmitochondrial reference tRNA data
sets contained 216 isodecoders (21 amino acid isotypes and 49 iso-
acceptors including the selenocysteine tRNA) and 22 isoacceptors
(20 amino acid isotypes), respectively. Thereafter, we mapped ran-
domly selected raw sequencing data to these two data sets using
Geneious Prime (version 2019.2.3) (https://www.geneious.com)
to eliminate the single nucleotide polymorphisms (SNPs) in
tRNAs between the mice used in the current study and the two
data sets. Briefly, apart from the wobble anticodon positions of
several cytosolic tRNAs (e.g., tRNAAla-AGC and tRNAArg-ACG), the
bases showing amutation rate >0.98 to only one of the other three
bases in the mapping alignments were regarded as SNPs and mod-
ified. Most tRNA methylation sites incorporate different bases
rather than just the cognate nucleotide type in the reference ge-
nome during reverse transcription. For a specific methylation
site, the incorporated bases should not have a strong bias to any
one of the other three different bases in general. Therefore, this
threshold can effectively distinguish the SNPs from the methyla-
tion sites in tRNAs.

Mapping of tRNA-seq data

Prior to mapping, all raw sequencing data were filtered to remove
de-multiplexing, adapters, primers, and low-quality reads using
Trimmomatic (version 0.32) as clean data. Because different bases
will be incorporated where tRNA methylations are located by
TGIRT during cDNA synthesis, we first determined the types and
positions of known methylations within mammalian tRNAs
(Suzuki and Suzuki 2014; Clark et al. 2016; Suzuki et al. 2020).
Considering the average numbers of potentialmutation sites with-
in target tRNAs, we set themaximalmismatch percentages for sub-
sequent mapping at 9% and 5% for the modified cytosolic and
mitochondrial reference tRNA data sets, respectively. As the most
commonmethylation type closest to the 3′ end (16 bp in general)
within cytosolic tRNAs,m1A58hinders cDNA synthesis by causing
RT stops from the 14th base to the 3′ end. Therefore, the minimal
overlap between themapped reads and the tRNA databases was set
as 14 bp for evaluating the obstacles caused by m1A58. Briefly, all
clean reads from the filtered sequencing data of ≥14 bp were
mapped to targeted tRNAs under the allowed mismatch settings.
We simultaneously mapped all clean reads of each sample to the
modified cytosolic and mitochondrial reference tRNA data sets
according to the above-mentioned parameters without iteration
using Geneious Prime.

Expression-related analyses of tRNA-seq data

In the current study,we focusedmainly on the transcriptome-wide
expression and modification differences in host tRNA profiles be-
tween the GF and SPF mice and among the four examined tissue
types.

The length of most cDNAs was shorter than that of the
Illumina reads, so generally only one end read of paired-end reads
contained effective information, whereas the other end read was
lost during quality control or mapping. Therefore, prior to the cal-
culation of tRNA expression, we first reduced the influence of
paired-end sequencing on the expression measurements. Briefly,
for each mapping alignment of the targeted tRNA gene in the da-
tabases, we counted themapped reads and themapped paired-end
reads. The number of mapped tRNA molecules (including full-
length tRNAmolecules and partial tRNA fragments) could be com-
puted for each sample (Supplemental Table S1). Thereafter, the

mapped tRNA molecules were normalized to calculate tRNA ex-
pression according to FPKM values using the following formula:
FPKM=mapped cytosolic or mitochondrial tRNA molecules/
(mapped total cytosolic or mitochondrial tRNA molecules [mil-
lions] × tRNA length [kbp]). The FPKMvalues at higher tRNA levels
(isoacceptors and amino acid isotypes) were calculated according
to mammalian genetic codes.

Prior to the performance of expression-related analyses, we
first evaluated the accuracy of the calculated FPKM values via
PCA of the cytosolic (216 tRNA isodecoders) and mitochondrial
tRNAs (22 tRNA isoacceptors) of the +DM and −DM libraries using
the R (version 4.0.1) (R Core Team 2020) packages FactoMineR
(version 2.4) (Lê et al. 2008) and factoextra (version 1.0.7) (https://
CRAN.R-project.org/package=factoextra), respectively. The PCAs
indicated that the accuracy, stability, and replicability of tRNA
expression in the −DM libraries were better than those in the
+DM libraries. The most likely cause might be the nonuniform
or nondirectional tRNA loss of the +DM libraries during additional
experimental treatments. Therefore, we performed subsequent ex-
pression-related analyses based mainly on the data from the −DM
libraries.

To further verify the reliability of the calculated FPKM values,
we first performed a correlation analysis of tRNA expression in the
three intestinal biological replicates of the GF mice based on the
FPKM values of the 238 tRNAs. Volcano plots based on the
FPKM values of the 238 tRNAs were generated with the R package
ggplot2 (version 3.3.2) (Wickham 2016) to evaluate tissue-specifi-
cally up- and down-regulated genes between the GF and SPF mice.
P<0.05 and log2 (fold change) > 1 were set as the thresholds of sig-
nificance. Using the FPKM values of the 21 cytosolic and 20 mito-
chondrial tRNA amino acid isotypes as the input data, tRNA
expression in the four tissues at the amino acid isotype level was
visualized. Significant differences between the GF and SPF mice
were determinedwith the unpaired Student’s t-test.We further cal-
culated the percentage of each tRNA isoacceptor among total cyto-
solic or mitochondrial tRNA isoacceptors for each sample and
visualized the results using a heat map. In addition, we performed
a tRNA coexpression correlation analysis at the amino acid isotype
level based on the data from the four tissues with the R package
corrplot (version 0.84) (https://github.com/taiyun/corrplot) to in-
vestigate the tRNA coexpression correlations among the tissues
and between the GF and SPF mice.

Modification-related analyses of tRNA-seq data

According to our previous studies related to DM-tRNA-seq (Zheng
et al. 2015; Clark et al. 2016), in −DM libraries, the specific tRNA
sites of the main Watson-Crick face methylations that were sensi-
tive to demethylase treatment could be easily identified because
they generally show high mutation fractions. The levels of these
tRNA methylations could be reflected by using the mutation and
stop fractions as semiquantitative indicators for both the −DM
and +DM libraries, respectively. In this case, the differences in
these tRNA methylations between the −DM and +DM libraries,
among the tissues, or between the GF and SPF mice in the same li-
brary type could be compared to some extent. For the calculation
of mutation and stop fractions, we used previously described for-
mulas and protocols (Clark et al. 2016). The mutation fraction of
each modification site in each sample was calculated based on
the sequencing reads that covered the modification site while ex-
cluding shorter reads that stopped before the site. As a common
case, deletionswere also considered and counted as amutation sig-
nature. To efficiently count and calculate themutation fractions at
the tRNA isodecoder level, we first merged the clean data from bi-
ological replicates and performed mapping again with the same
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parameters. Thereafter, the mutation fractions at the tRNA isoac-
ceptor level were calculated according to mammalian genetic
codes. The mutation fractions of the main methylations at the
Watson-Crick face, including m1A, m1G, m1I, and m3C, were dis-
played using heat maps generated with the R package pheatmap
(version 1.0.12) (https://CRAN.R-project.org/package=pheatmap).

To compare the differences between the +DM and −DM se-
quencing data, we randomly selected two cytosolic amino acid iso-
types (tRNAHis and tRNAPhe) and two mitochondrial isoacceptors
(tRNALeu-UAG and tRNAPhe). All tRNA isodecoders of each selected
cytosolic tRNA isotype were merged as a single tRNA gene using
degenerate bases. Thereafter, we performed mapping again for
the−DMand +DM libraries from the brains (randomly selected tis-
sue type) with the same parameters and further compared the
mapping coverage and mutation fraction variations between
them. A representative cytosolic isoacceptor (tRNALeu-CAG) was se-
lected to show themutation and stop fractions at every position of
the tRNA to explore tissue-specific and microbiome-dependent
differences in tRNA modifications for the −DM libraries. The
stop fractions of and after m1A58 were not accurately quantified
by tRNA-seq and are not shown.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE150355.

Competing interest statement

The authors declare no competing interests.

Acknowledgments

This work was supported by the U.S. National Institutes of Health
(K01 DK111764 to X.W. and R01 GM113194 to T.P.), National
Natural Science Foundation of China (32070615 to X.W.), and
Guangdong Province Universities and Colleges Pearl River
Scholar Funded Scheme (recipient in 2019 to X.W.).

Author contributions: X.W. and T.P. conceived and initiated
the study. X.W. and W.C. designed and performed the experi-
ments. J.H. conducted the analyses. J.H., X.W., and T.P. wrote
the manuscript. F.Z., Z.P., and L.W. contributed to the manuscript
preparation. All authors read, proofread, and approved the final
manuscript.

References

Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF,
Gordon JI. 2004. The gut microbiota as an environmental factor that
regulates fat storage. Proc Natl Acad Sci 101: 15718–15723. doi:10
.1073/pnas.0407076101

Canani RB, CostanzoMD, Leone L. 2012. The epigenetic effects of butyrate:
potential therapeutic implications for clinical practice. Clin Epigenetics
4: 4. doi:10.1186/1868-7083-4-4

Chanfreau GF. 2017. Impact of RNAmodifications and RNA-modifying en-
zymes on eukaryotic ribonucleases. Enzymes 41: 299–329. doi:10.1016/
bs.enz.2017.03.008

Clark WC, Evans ME, Dominissini D, Zheng GQ, Pan T. 2016. tRNA base
methylation identification and quantification via high-throughput se-
quencing. RNA 22: 1771–1784. doi:10.1261/rna.056531.116

Colussi TM, Costantino DA, Hammond JA, Ruehle GM, Nix JC, Kieft JS.
2014. The structural basis of transfer RNA mimicry and conformational
plasticity by a viral RNA. Nature 511: 366–369. doi:10.1038/
nature13378

Cuevas-Sierra A, Ramos-LopezO, Riezu-Boj JI,Milagro FI,Martinez JA. 2019.
Diet, gutmicrobiota, and obesity: links with host genetics and epigenet-

ics and potential applications. Adv Nutr 10: S17–S30. doi:10.1093/ad
vances/nmy078

de Crécy-Lagard V, Boccaletto P, Mangleburg CG, Sharma P, Lowe TM,
Leidel SA, Bujnicki JM. 2019. Matching tRNA modifications in humans
to their known and predicted enzymes.Nucleic Acids Res47: 2143–2159.
doi:10.1093/nar/gkz011

Dittmar KA, Goodenbour JM, Pan T. 2006. Tissue-specific differences in hu-
man transfer RNA expression. PLoS Genet 2: e221. doi:10.1371/journal
.pgen.0020221

El Yacoubi B, Bailly M, de Crécy-Lagard V. 2012. Biosynthesis and function
of posttranscriptional modifications of transfer RNAs. Annu Rev Genet
46: 69–95 doi:10.1146/annurev-genet-110711-155641

Fofanova TY, Petrosino JF, Kellermayer R. 2016. Microbiome–epigenome
interactions and the environmental origins of inflammatory bowel
diseases. J Pediatr Gastr Nutr 62: 208–219. doi:10.1097/MPG
.0000000000000950

Gingold H, Tehler D, Christoffersen NR, NielsenMM, Asmar F, Kooistra SM,
ChristophersenNS, Christensen LL, BorreM, SørensenKD, et al. 2014. A
dual program for translation regulation in cellular proliferation and dif-
ferentiation. Cell 158: 1281–1292. doi:10.1016/j.cell.2014.08.011

Gkatza NA, Castro C, Harvey RF, Heiß M, Popis MC, Blanco S, Bornelöv S,
Sajini AA, Gleeson JG, Griffin JL, et al. 2019. Cytosine-5 RNA methyla-
tion links protein synthesis to cell metabolism. PLoS Biol 17: e3000297.
doi:10.1371/journal.pbio.3000297

Goodarzi H, Liu X, Nguyen HCB, Zhang S, Fish L, Tavazoie SF. 2015.
Endogenous tRNA-derived fragments suppress breast cancer progression
via YBX1 displacement. Cell 161: 790–802. doi:10.1016/j.cell.2015.02
.053

Heiss CN, Olofsson LE. 2018. Gut microbiota-dependent modulation of en-
ergy metabolism. J Innate Immun 10: 163–171. doi:10.1159/000481519

Hoban AE, Stilling RM,Moloney GM,Moloney RD, Shanahan F, Dinan TG,
Cryan JF, Clarke G. 2017. Microbial regulation of microRNA expression
in the amygdala and prefrontal cortex. Microbiome 5: 102. doi:10.1186/
s40168-017-0321-3

Kan L, Grozhik AV, Vedanayagam J, Patil DP, Pang N, Lim KS, Huang YC,
Joseph B, Lin CJ, Despic V, et al. 2017. The m6A pathway facilitates
sex determination in Drosophila. Nat Commun 8: 15737. doi:10.1038/
ncomms15737

Katz A, Elgamal S, Rajkovic A, Ibba M. 2016. Non-canonical roles of tRNAs
and tRNA mimics in bacterial cell biology. Mol Microbiol 101: 545–558.
doi:10.1111/mmi.13419

Kim H, Worsley O, Yang E, Purbojati RW, Liang AL, Tan W, Moses DID,
Hartono S, FanV, Lim TKH, et al. 2019. Persistent changes in livermeth-
ylation andmicrobiome composition following reversal of diet-induced
non-alcoholic-fatty liver disease. Cell Mol Life Sci 76: 4341–4354. doi:10
.1007/s00018-019-03114-4

Lê S, Josse J, Husson F. 2008. FactoMineR: an R package for multivariate
analysis. J Stat Softw 25: 1–18. doi:10.18637/jss.v025.i01

Liu N, Dai Q, Zheng G, He C, ParisienM, Pan T. 2015.N6-methyladenosine-
dependent RNA structural switches regulate RNA-protein interactions.
Nature 518: 560–564. doi:10.1038/nature14234

Louloupi A, Ntini E, Conrad T, ØromUAV. 2018. Transient N-6-methylade-
nosine transcriptome sequencing reveals a regulatory role of m6A in
splicing efficiency. Cell Rep 23: 3429–3437. doi:10.1016/j.celrep.2018
.05.077

Louwies T, Johnson AC, Orock A, Yuan T, Greenwood-Van Meerveld B.
2020. The microbiota-gut-brain axis: an emerging role for the epige-
nome. Exp Biol Med 245: 138–145. doi:10.1177/1535370219891690

Lowe TM,Chan PP. 2016. tRNAscan-SEOn-line: integrating search and con-
text for analysis of transfer RNA genes. Nucleic Acids Res 44: W54–W57.
doi:10.1093/nar/gkw413

Miro-Blanch J, Yanes O. 2019. Epigenetic regulation at the interplay be-
tween gut microbiota and host metabolism. Front Genet 10: 638.
doi:10.3389/fgene.2019.00638

Pan T. 2018. Modifications and functional genomics of human transfer
RNA. Cell Res 28: 395–404. doi:10.1038/s41422-018-0013-y

Pan WH, Sommer F, Falk-Paulsen M, Ulas T, Best P, Fazio A, Kachroo P,
Luzius A, Jentzsch M, Rehman A, et al. 2018. Exposure to the gut micro-
biota drives distinct methylome and transcriptome changes in intesti-
nal epithelial cells during postnatal development. Genome Med 10: 27.
doi:10.1186/s13073-018-0534-5

Pang YLJ, Abo R, Levine SS, Dedon PC. 2014. Diverse cell stresses induce
unique patterns of tRNA up- and down-regulation: tRNA-seq for quan-
tifying changes in tRNA copy number. Nucleic Acids Res 42: e170.
doi:10.1093/nar/gku945

Pavon-EternodM,Gomes S, Geslain R, Dai Q, RosnerMR, PanT. 2009. tRNA
over-expression in breast cancer and functional consequences. Nucleic
Acids Res 37: 7268–7280. doi:10.1093/nar/gkp787

Pereira M, Francisco S, Varanda AS, Santos M, Santos MAS, Soares AR. 2018.
Impact of tRNA modifications and tRNA-modifying enzymes on

Huang et al.

956 Genome Research
www.genome.org

https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


proteostasis and human disease. Int J Mol Sci 19: 3738. doi:10.3390/
ijms19123738

Pinkard O, McFarland S, Sweet T, Coller J. 2020. Quantitative tRNA-se-
quencing uncovers metazoan tissue-specific tRNA regulation. Nat
Commun 11: 4104. doi:10.1038/s41467-020-17879-x

Qin Y, Roberts JD, Grimm SA, Lih FB, Deterding LJ, Li R, Chrysovergis K,
Wade PA. 2018. An obesity-associated gut microbiome reprograms the
intestinal epigenome and leads to altered colonic gene expression.
Genome Biol 19: 7. doi:10.1186/s13059-018-1389-1

Raina M, Ibba M. 2014. tRNAs as regulators of biological processes. Front
Genet 5: 171. doi:10.3389/fgene.2014.00171

R Core Team. 2020. R: a language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna. https://www.R-project
.org/.

Rogers TE, Ataide SF, Dare K, Katz A, Seveau S, Roy H, Ibba M. 2012. A pseu-
do-tRNA modulates antibiotic resistance in Bacillus cereus. PLoS One 7:
e41248. doi:10.1371/journal.pone.0041248

SandhuKV, Sherwin E, SchellekensH, StantonC,Dinan TG, Cryan JF. 2017.
Feeding themicrobiota-gut-brain axis: diet, microbiome, and neuropsy-
chiatry. Transl Res 179: 223–244. doi:10.1016/j.trsl.2016.10.002

Schimmel P. 2018. The emerging complexity of the tRNAworld: mammali-
an tRNAs beyond protein synthesis. Nat Rev Mol Cell Bio 19: 45–58.
doi:10.1038/nrm.2017.77

Schwartz MH, Wang H, Pan JN, Clark WC, Cui S, Eckwahl MJ, Pan DW,
ParisienM, Owens SM, Cheng BL, et al. 2018. Microbiome characteriza-
tion by high-throughput transfer RNA sequencing and modification
analysis. Nat Commun 9: 5353. doi:10.1038/s41467-018-07675-z

Suzuki T, Suzuki T. 2014. A complete landscape of post-transcriptionalmod-
ifications in mammalian mitochondrial tRNAs. Nucleic Acids Res 42:
7346–7357. doi:10.1093/nar/gku390

Suzuki T, Yashiro Y, Kikuchi I, Ishigami Y, Saito H, Matsuzawa I, Okada S,
Mito M, Iwasaki S, Ma D, et al. 2020. Complete chemical structures of

human mitochondrial tRNAs. Nat Commun 11: 4269. doi:10.1038/
s41467-020-18068-6

ThornlowBP, Armstrong J, Holmes AD, Howard JM, Corbett-Detig RB, Lowe
TM. 2020. Predicting transfer RNA gene activity from sequence and ge-
nome context. Genome Res 30: 85–94. doi:10.1101/gr.256164.119

Wang X, Li Y, Chen W, Shi H, Eren AM, Morozov A, He C, Luo GZ, Pan T.
2019. Transcriptome-wide reprogramming of N6-methyladenosine
modification by the mouse microbiome. Cell Res 29: 167–170. doi:10
.1038/s41422-018-0127-2

Whipple JM, Lane EA, Chernyakov I, D’Silva S, Phizicky EM. 2011. The yeast
rapid tRNA decay pathway primarilymonitors the structural integrity of
the acceptor and T-stems of mature tRNA. Genes Dev 25: 1173–1184.
doi:10.1101/gad.2050711

Wickham H. 2016. ggplot2: elegant graphics for data analysis. Springer-
Verlag, New York. https://ggplot2.tidyverse.org

Yang L, Perrera V, Saplaoura E, Apelt F, Bahin M, Kramdi A, Olas J, Mueller-
Roeber B, Sokolowska E, Zhang W, et al. 2019. m5C methylation guides
systemic transport ofmessenger RNA over graft junctions in plants.Curr
Biol 29: 2465–2476.e5. doi:10.1016/j.cub.2019.06.042

Zaborske JM, DuMont VL,Wallace EW, Pan T, Aquadro CF, DrummondDA.
2014. A nutrient-driven tRNA modification alters translational fidelity
and genome-wide protein coding across an animal genus. PLoS Biol
12: e1002015. doi:10.1371/journal.pbio.1002015

Zheng G, Qin Y, Clark WC, Dai Q, Yi C, He C, Lambowitz AM, Pan T. 2015.
Efficient and quantitative high-throughput tRNA sequencing. Nat
Methods 12: 835–837. doi:10.1038/nmeth.3478

Received September 29, 2020; accepted in revised form April 7, 2021.

Microbiome reprograms host tRNA profiles

Genome Research 957
www.genome.org

https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org
https://ggplot2.tidyverse.org

