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Abstract

Artificial reefs (ARs) have been used on coral reefs for ecological research, conservation,

and socio-cultural purposes since the 1980s. We examined spatio-temporal patterns in AR

deployment in tropical and subtropical coral reefs (up to 35˚ latitude) and evaluated their effi-

cacy in meeting conservation objectives, using a systematic review of the scientific litera-

ture. Most deployments (136 studies) were in the North Atlantic and Central Indo-Pacific in

1980s – 2000s, with a pronounced shift to the Western Indo-Pacific in 2010s. Use of ARs in

reef restoration or stressor mitigation increased markedly in response to accelerating coral

decline over the last 2 decades. Studies that evaluated success in meeting conservation

objectives (n = 51) commonly reported increasing fish abundance (55%), enhancing habitat

quantity (31%) or coral cover (27%), and conserving target species (24%). Other objectives

included stressor mitigation (22%), provision of coral nursery habitat (14%) or source popu-

lations (2%) and addressing socio-cultural and economic values (16%). Fish (55% of stud-

ies) and coral (53%) were the most commonly monitored taxa. Success in achieving

conservation objectives was reported in 33 studies. Success rates were highest for provi-

sion of nursery habitat and increasing coral cover (each 71%). Increasing fish abundance or

habitat quantity, mitigating environmental impacts, and attaining socio-cultural objectives

were moderately successful (60–64%); conservation of target species was the least suc-

cessful (42%). Failure in achieving objectives commonly was attributed to poor AR design or

disruption by large-scale bleaching events. The scale of ARs generally was too small (m2 –

10s m2) to address regional losses in coral cover, and study duration too short (< 5 years) to

adequately assess ecologically relevant trends in coral cover and community composition.

ARs are mostly likely to aid in reef conservation and restoration by providing nursery habitat

for target species or recruitment substrate for corals and other organisms. Promoting local

socio-cultural values also has potential for regional or global impact by increasing aware-

ness of coral reef decline, if prioritized and properly monitored.
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Introduction

The global cover of scleractinian corals has declined dramatically since 1985 due to synergistic

effects of increased ocean temperatures and acidification, predation, biological invasions,

mechanical damage, and disease [1,2]. The increasing frequency and intensity of natural and

anthropogenic stressors has altered coral reefs, contributing to large-scale phase shifts, in some

regions, to alternative stable communities dominated by fleshy macroalgae [3,4], soft corals,

corallimorpharia, or sponges [5]. It is estimated that more than 800 million people worldwide

depend on coral reefs for food, coastal protection, and tourism [6–8], and that persistence of

alternative stable states will cause a significant reduction in these ecosystem services [9].

Traditional conservation measures (e.g. no take-zones, reserves, and marine protected

areas) have been used on coral reefs for decades [10–12], but attention has progressively shifted

toward active restoration methods as a consequence of accelerating coral decline [13,14]. Eco-

logical restoration is the process which assists the recovery of a degraded, damaged or

destroyed ecosystem [15]. Since it may not be possible to remove the threat responsible for

degradation or damage, the trajectory of recovery may allow adaptation to local and global

changes [16]. The United Nations General Assembly recognized the pressing need to restore

damaged ecosystems and proclaimed 2021–2030 to be the United Nations Decade on Ecosys-

tem Restoration, with the primary goal being to prevent, halt and reverse the degradation of

ecosystems worldwide. The United Nations Environment Assembly adopted a resolution that

requested UNEP to specifically better define best practices for coral restoration [17]. Since the

main threat to coral reefs is climate change [18], their restoration is likely most effective as a

complementary tool in a larger management portfolio or as a temporary measure to minimize

loss while global solutions are sought [17,19]. However, restoration of coral reefs has lagged

behind and the spatial extent of restoration is the smallest compared to other major marine

coastal ecosystems [20]. Thus, our knowledge on best practices for coral reef restoration is

limited.

Motivations for coral reef restoration have ranged from ecological to cultural to legislative

reasons, but experimental reasons appear to dominate [21,22]. Experimental approaches to

active restoration include direct transplantation of corals, coral gardening, larval propagation,

substrate manipulation, and substrate addition through the deployment of artificial reefs

[17,19]. All approaches of active restoration have had certain shortcomings, such as short

monitoring periods (average = 18 months) and small scales (< 100 m2) and have often lacked

objectives [19]. Of these, artificial reefs (ARs), although popular for fish enhancement, have

not been used as extensively for coral restoration [19], possibly because of the logistics of

deployment and, on average, an order of magnitude greater cost than other approaches [20].

ARs have been deployed in coral ecosystems globally to address various conservation objec-

tives, including enhancing fish and invertebrate biomass [23], increasing habitat quantity and

structural complexity of denuded reefs [24,25], conservation of target species [26,27], and as

nursery habitat for transplantation initiatives [28]. Examining the objectives of artificial coral

reefs, success in meeting these objectives, and assessing their potential benefits as a restoration

strategy can inform management decisions in different regions and under projected climate

scenarios. However, for management decisions to be effective, the benefits of AR must be

quantified and the efficacy of the methodologies (e.g. AR type, size, distribution, deployment

location and period) evaluated.

ARs deployed in different temperate and tropical ecosystems can provide benefits to both

benthic and pelagic communities [29] by supplying additional hard substrate for settlement

[30], reducing fishing and tourism pressure on natural reefs [31], increasing heterogeneity of

natural substrata [32,33], and providing shelter from predators and human disturbances
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[34,35]. As with other active restoration approaches, clearly defined objectives for the deploy-

ment of ARs are not always provided [29], presenting challenges with monitoring their effec-

tiveness. There is also concern that the scale of ARs is too small to have long-term impacts on

conservation or restoration of target species and their functional relationships [36]. It has been

argued that ARs can introduce alien materials onto reefs that may harm the recipient commu-

nity by leaking toxic compounds [37] or by scouring natural reefs if detached during coastal

storms [38]. Additionally, there is debate as to whether ARs act as a source or sink for fish and

invertebrate populations [39–42].

To assess the functional importance of ARs, an understanding of the dynamics of estab-

lished benthic communities and their relationship with demersal and pelagic species is impera-

tive [35]. Deploying ARs for restoration of coral ecosystems specifically is a relatively new

strategy, and most research to date has been largely descriptive [43], with few replicated com-

parisons to natural reefs [44]. For example, there is increasing evidence that fish and inverte-

brate assemblages on ARs deployed in coral ecosystems do not mimic those on natural reefs

[45–47]; the role of ARs in colonization by reef invertebrates is unknown [35]. Long-term data

on species’ residence time, growth and survival, and production patterns on adjacent natural

coral reefs rarely are collected during studies of ARs [34,40].

Planning AR deployments in coral ecosystems with specific goals and objectives coupled with

long-term monitoring plans can allow the assessment of conservation outcomes from these inter-

ventions [17,19,29]. Here, we present results of a systematic review of the scientific literature

focussed specifically on the use of ARs as an active restoration strategy for coral ecosystems. In

particular, we examine stated objectives of ARs over the past 100 years and across 8 marine

realms, along with records of the spatial scale, monitored taxa, and study duration. For studies

that recorded progress toward meeting conservation objectives, we evaluate and discuss the

reported success, and identify factors that may limit the attainment of objectives. Based on our

findings, we propose that among all prospective conservation objectives for artificial coral reefs,

the provision of nursery habitats and additional hard substrate for colonization, and the promo-

tion of local socio-cultural values are those most likely to achieve conservation success. However,

given the limited evidence of setting conservation objectives specific to deployment, the large vari-

ation in size, spacing and monitoring effort, and the potential cost, much more research is needed

to assess the use of ARs as a coral restoration strategy globally.

Methods

Literature search and data extraction

We conducted searches in ISI Web of Science Core Collection (1900–2020), Scopus (https://

www.scopus.com), and Google Scholar (https://scholar.google.ca) for peer-reviewed publica-

tions that measured or monitored ecological and socio-cultural variables on ARs deployed in

tropical and subtropical coral reef ecosystems (up to 35˚ latitude). In each database, we

adapted the following general search terms to account for syntax differences: (TITLE-ABS--

KEY ((artificial� OR “man-made” OR construct�) W/2 (coral� OR reef� OR habitat� OR

nursery�)) AND TITLE-ABS-KEY (coral� OR tropic� OR subtropic�)). The first two sets of

search terms were optimized to return studies that incorporate AR structures that both were

designed purposefully and became de facto ARs. The last set narrowed the scope of the search

to articles pertaining to ARs deployed in coral ecosystems. Studies on both vertebrate and

invertebrate groups were included. Searches in all databases were completed on 31 December

2020. To ensure scientific rigour in the assessment of conservation objectives, we did not

include the 1000s of studies from the grey literature, the validity of which had not been evalu-

ated through peer review.
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Over all databases, the search terms returned 4088 articles after duplicates were removed.

All article citations and abstracts were imported into the web-based software review program

Covidence (https://www.covidence.org), their titles and abstracts were screened, and 802 stud-

ies were extracted that included research on AR structures in coral reef ecosystems (Fig 1). A

full text review was conducted for 530 articles, and data were extracted from 136 that met one

Fig 1. PRISMA 2009 flowchart describing the process of selecting articles for inclusion in the qualitative synthesis of our systematic review.

https://doi.org/10.1371/journal.pone.0261964.g001
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or more of the following secondary inclusion criteria: 1) included a date, precise location, and

depth of deployment, 2) included the precise dimensions and number of ARs in the study, and

3) stated an objective of AR deployment.

Articles were divided into two categories: 1) those that directly measured the success of meet-

ing the objective(s) of ARs, and 2) those that were deployed for the purposes of scientific experi-

ments or as de facto submergences (e.g. accidental ship groundings, dumping vehicles or building

materials as waste). All 136 studies from both categories were surveyed for 1) duration of study, 2)

clear description of AR dimensions, 3) targeted taxonomic groups, and 4) socio-cultural and eco-

logical response variables used to assess whether the conservation objective(s) of the AR was

being met. Latitude and longitude were extracted for each AR and then categorized into marine

realms as defined in [48]. All 136 studies were used to examine spatio-temporal patterns of AR

deployments as presented in the scientific literature. For the analyses of global AR abundance

over time and to ensure representation of definitions used in the studies, we included all struc-

tures clearly defined as ARs by study authors and with a minimum area of� 0.25 m2.

To ensure ecological relevance of conclusions about conservation success, studies reporting

on progress towards attaining conservation objectives of deployed ARs fulfilled all secondary

inclusion criteria listed above as well as two additional ones: (1) the monitored ARs were� 1

m2 to allow for comparison with natural reef formations and knolls; and (2) for studies report-

ing on multiple ARs, individual AR structures were defined as such if they were at least 2 m

from the nearest adjacent AR. This spacing reflects what is considered an AR by study authors

and the methods used to ensure connectivity of motile organisms and larvae between ARs. It

has been shown that ARs > 2 m apart can form distinct benthic communities [49]. A total of

53 studies fulfilled all inclusion criteria and were used in this analysis of conservation

objectives.

Classification of deployment objectives and response variables

Studies monitoring the success of an AR towards achieving one or more conservation objec-

tives were further sub-classified into 8 categories of objectives: increase fish abundance,

increase coral cover, conservation of target species (i.e. reef species of significant ecological or

socio-cultural importance), socio-cultural value (e.g. economic evaluation, attractiveness to

divers or tourists), serving as a source population for recruitment to the surrounding ecosys-

tems, nursery or coral garden, increase habitat quantity, and stressor mitigation (i.e. deploy-

ment following catastrophic events, such as bleaching, severe tropical storms, and dredging).

The ecological response variables used to assess success in meeting the conservation objective

(s) of ARs were categorized according to the measurements (abundance, diversity, cover,

recruitment, biomass, size distributions, survival/mortality, growth and reproduction rates,

species turnover, connectivity/space use, and structural complexity) and by broad taxonomic

groups (fish, coral, other invertebrates, and algae).

AR deployments on coral reefs

Definitions of AR

There is little standardization or agreement about the definition of AR in the scientific litera-

ture. Definitions within the studies examined in this review were disparate or absent. Authors

reported on a vast array of structures, from de facto or accidental deployments to purposefully

designed and deployed ARs. De facto or accidentally deployed ARs are wide ranging. Most are

wrecks (or pieces of wrecks) of various numbers (15 in one case [50]), sizes and types of ves-

sels; retired oil rigs [51], breakwaters and coastal jetties [52], and ropes in a tuna farm [53]

were also considered ARs. Purposefully deployed ARs ranged from piles of rocks [54] or tires
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on the seafloor [55] to specifically engineered structures optimized for recruitment of target

species for conservation, such as casitas or Autonomous Reef Monitoring Structures

[28,56,57]. This is a similar range in structures and materials as for all ARs and is not particular

to tropical reefs [58]. We used a broad AR definition when examining spatio-temporal pat-

terns of AR deployment to accurately characterize the wide variety of structures that are cur-

rently being categorized as ARs in the peer-reviewed literature.

There is also little consistency in AR area within the peer-reviewed literature. Deployments

of ARs for conservation purposes were conducted on a larger scale than ARs deployed for sci-

entific experimentation. Most ARs used in experimental studies (70%) were 1–5 m2 (Table 1),

while more than a half (60%) of ARs with conservation objectives were> 150 m2 (Table 2).

The small size in experimental studies likely reflects logistical constraints of monitoring large

reef structures in scientific experiments or of experimentally controlling and disentangling

confounding abiotic effects of reef development on larger ARs [36]. Spacing between individ-

ual ARs is not well reported in studies examining structures with conservation objectives,

which often neglect to distinguish between ARs and AR modules. Nearly all studies that moni-

tored communities on de facto reefs reported that the structures were> 150 m2; only two stud-

ies monitored response variables on ARs of smaller area (Table 1).

Spatio-temporal patterns in deployments of ARs

There were only 4 reports of AR deployments in the scientific literature until the mid-twenti-

eth century. More than 2200 ARs were deployed in the 1960s, most in Hawaii (Fig 2). Compar-

atively few deployments were recorded from the 1970s to the 1990s, with a greater than 2-fold

increase from the 1960s in the 2000s, followed by a similar increase between the 2000s and the

2010s (Fig 2). The increase in the 2000s corresponds to the increased focus on effects of climate

change on coral reefs in the late 1990s following the first major global bleaching event in 1998

Table 1. AR deployment for scientific experimentation or de facto ARs deposited as marine waste or accidental submergences (n = 75 studies).

Objective No. of

studies

Response variables Study

duration (y)

Reef area

(m2)

Marine realm

Scientific

experimentation

53 Fish density (23), fish diversity (13), fish recruitment

(8), invertebrate density (8), coral recruitment (4),

coral diversity (4), coral cover (4), coral size-

distributions (1), invertebrate diversity (4),

invertebrate recruitment (3), fish size-distributions (3),

fish biomass (2), structural complexity (2), invertebrate

biomass (2), coral density (2), coral survival/mortality

(2), invertebrate survival/mortality (1), fish survival/

mortality (2), invertebrate cover (2), coral growth (1),

invertebrate growth (1), fish connectivity/ space use

(2), species turnover (1), other ecological response

variables (4)

1.8,

0.08–9

1–5 (37)

5–25 (6)

75–150

(4) >150

(6)

Tropical Atlantic (22) Western Indo-Pacific (12)

Central Indo-Pacific (12) Eastern Indo-Pacific (2)

Temperate N. Atlantic (2) Tropical E. Pacific (1)

Temperate Australasia (2)

De facto 22 Fish diversity (10), fish density (10), coral cover (7),

coral diversity (6), coral density (4), coral recruitment

(2), coral size distributions (2), fish size distributions

(3), fish connectivity/space use (1), invertebrate

density (2), invertebrate diversity (1), invertebrate

cover (1), fish biomass (1), coral survival/mortality (1),

coral growth (1), coral genetics (1), socio-cultural

variables (1), structural complexity (1), other

ecological response variables (2)

1.9,

0.33–11

25–75 (1)

75–150

(1) >150

(22)

Western Indo-Pacific (9) Temperate N. Atlantic

(5) Tropical Atlantic (5) Central Indo-Pacific (2)

Temperate N. Pacific (1)

Response variables, study duration (mean, range), AR reef area, and marine realm (see Fig 2 for bioregions) are given for each objective. Numbers in parentheses are

studies per variable or category. Note: Individual studies may have multiple response variables. See Appendix 1 in S1 File for reference list.

https://doi.org/10.1371/journal.pone.0261964.t001
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Table 2. AR deployment for conservation objectives (n = 51 studies).

AR objective No. of

studies

Response variables that address objective Study

duration

(y)

Reef

area

(m2)

Reported

success rate

(%)

Reported reasons for limited success

Increase fish

abundance

28 Fish density (21), diversity (20), biomass (4),

size distribution (2), recruitment (1),

connectivity/space use (3), socio-cultural

variables (1), other ecological response

variables (3)

1.4,

0.01–3.0

1–5 (1)

5–25 (4)

25–75

(6)

75–150

(7)

>150

(15)

64 Poor design for target species (2), colonization

interference by invasive species (1), extensive

bleaching during study (1), conclusions made

about another conservation objective (4),

depth limitations (1), inconclusive data (1)

Increase coral

cover

14 Coral diversity (5), recruitment (3), density

(4), cover (2), growth (3), survival (5), biomass

(1), reproduction (1), other ecological response

variables (1)

2.5,

0.50–5.0

1–5 (1)

5–25 (3)

25–75

(5)

75–150

(4) >150

(2)

71 Extensive bleaching during study (1),

conclusions made about another conservation

objective (3)

Conservation of

target species

12 Coral recruitment (6), fish recruitment (1),

coral diversity (5), invertebrate diversity (2),

fish diversity (3), fish density (4), coral density

(6), invertebrate density (3), coral cover (2),

invertebrate cover (3), coral size distribution

(1), coral survival (2), coral growth (3), coral

biomass (1), invertebrate biomass (1), fish

biomass (1), coral reproduction (1), fish

connectivity/space use (1)

2.0,

0.55–3.5

1–5 (1)

5–25 (2)

25–75

(4)

75–150

(4) >150

(1)

42 Poor design for target species (1), extensive

bleaching during study (2), colonization

interference by invasive species (1),

interference by vessels (1)

AR objective No. of

studies

Response variables that address objective Study

duration

(y)

Reef

area

(m2)

Reported

success rate

(%)

Reasons for limited success

Socio-cultural

value

8 Diver behaviour and attitudes towards ARs

(2), diving tourism/public education (4), cost-

benefit analysis (1), citizen science (1),

fishermen attitudes towards ARs (1)

2.5,

0.50–10

1–5 (2)

5–25 (1)

25–75

(2)

>150 (3)

63 Conclusions made about another conservation

objective (3)

Provide nursery

area

7 Coral growth (4), reproduction (1), survival

(5), fish density (1)

0.9,

0.08–2.0

1–5 (3)

5–25 (2)

75–150

(1)

>150 (1)

71 Extensive bleaching during study (1),

conclusions made about another conservation

objective (1)

Increase habitat

quantity

16 Coral recruitment (4), coral diversity (4), coral

density (1), fish diversity (8), fish density (8),

coral survival (5), coral growth (2),

invertebrate biomass (1), invertebrate diversity

(3), invertebrate cover (2), invertebrate density

(3), invertebrate growth (1), fish biomass (2),

fish connectivity/space use (3), fish

recruitment (1), fish size distributions (1),

structural complexity (1), socio-cultural

variables (1), other ecological response variable

(3)

1.8,

0.01–3.5

1–5 (1)

5–25 (2)

25–75

(1)

75–150

(6)

>150 (4)

63 Extensive bleaching during study (2), depth

limitations (1), conclusions made about

another conservation objective (2),

interference by vessels (1)

Stressor

mitigation

11 Fish diversity (5), coral cover (4), fish density

(4), coral recruitment (4), coral growth (2),

coral survival (2), invertebrate density (3),

invertebrate cover (1), invertebrate diversity

(2), coral diversity (6), coral density (5),

structural complexity (2), other ecological

response variable (1)

2.6,

0.70–5.0

1–5 (4)

5–25 (1)

25–75

(2)

75–150

(1)

>150 (3)

64 Extensive bleaching during study (2),

conclusions made about another conservation

objective (2)

Response variables, study duration (mean and range), AR reef area (5 levels), reported success rate (%), and reported reasons for limited success are given for each

objective. Numbers in parentheses are studies per variable or category. Note: Individual studies may have multiple objectives and response variables. See Appendix 2 in

S1 File for reference list.

https://doi.org/10.1371/journal.pone.0261964.t002
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[59]. In the 2010s, > 10000 deployments were reported during a single study on the Indian

shelf [60], resulting in the highest recorded number of ARs in coral ecosystems globally. These

temporal patterns parallel those for ARs in other coastal ecosystems, reflecting a general global

transition in AR research [61].

Following the large number of AR deployments in the Western Indo-Pacific, the Tropical

Atlantic region has the next greatest number of AR deployments to date, with a coral restora-

tion effort in Antigua contributing substantially to the region’s deployments (~ 3500 ARs

deployed in 2004). However, the high abundance of ARs from the Tropical Atlantic is biased

by a high intensity of study and frequency of publication from the southern United States (par-

ticularly Florida) from the 1960s onward [61,62]. Florida has a long history of AR deployment,

with reefs often made from cheap waste materials (tires, metal construction materials, automo-

tive parts) or de facto structures (sunken vessels, planes) [63].

The Central and Eastern Indo-Pacific exhibit similar numbers of AR deployments (Fig 2).

AR deployments in the Eastern Indo-Pacific are attributed mostly to a single location (Hawaii),

while in the Central Indo-Pacific they are distributed across several countries (e.g. Australia,

Indonesia, Malaysia, Taiwan, Thailand, Vietnam) but largely concentrated in Indonesia. The

regional interest of ARs in the Central Indo-Pacific may be a consequence of increasing exploi-

tation of marine habitats [64] and the reliance of Southeast Asian countries on the economic

value of ecosystem services associated with coral reefs (e.g. fisheries, tourism, shoreline protec-

tion) [65].

Scientific experimentation and de facto AR deployments

Studies reporting on ARs that did not have a direct conservation-oriented objective were clas-

sified as either scientific experimentation or de facto submergences (Table 1) and were not

included in our exploration of AR conservation objectives (Table 2). Over one third of the

studies examined in this review (53 of 136) reported on scientific experiments conducted on

ARs and 42% of these were conducted in the Tropical Atlantic realm. Overall, studies

Fig 2. Abundance of tropical and subtropical (up to 35˚ latitude) deployments of ARs in each marine realm by decade of deployment from

1940s to 2010s. Inset shows marine realms defined by [48].

https://doi.org/10.1371/journal.pone.0261964.g002
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addressing only scientific objectives were marginally shorter than conservation-oriented proj-

ects, with mean durations of 1.7 y (Table 1) and 2.0 y (Table 2), respectively.

ARs recorded in peer-reviewed literature and deployed in the 1920s – 1950s were

unplanned ship groundings that later were observed to have an AR effect by attracting fish and

invertebrate colonizers [66]. Research efforts on de facto reefs (22 of 136 studies) reflect largely

opportunistic monitoring, with data most often collected through digital imagery and a few

manipulative experiments (Table 1). De facto ARs are the most variable in terms of study dura-

tion, ranging from 4 months to 11 years.

The Tropical Atlantic and Central Indo-Pacific realms have the highest number of AR

deployments for scientific objectives or de facto deployments, with 414 and 402, respectively.

In the past two decades, more than half (57%) of all such AR deployments are from the Central

Indo-Pacific, a region which has experienced significant coral mortality since 1998 [4,67].

Conservation-purposed AR deployments

Conservation objectives of Ars. The three most-commonly cited conservation objectives

of ARs were increasing fish abundance (55%), increasing habitat quantity (31%), and increas-

ing coral cover (27%) (Table 2). These conservation objectives were most common in the

Western and Central Indo-Pacific, Tropical Atlantic and Temperate Australasia (Fig 3). Many

of these ARs are in countries with substantial government funding for research and conserva-

tion, notably the USA (Florida) and Israel. In the Central Indo-Pacific, ARs with conservation

objectives were predominantly deployed in countries with well-established national programs

for AR development (Thailand, Malaysia), as well as those which received international fund-

ing in response to reef decimation by the Indian Ocean tsunami of 2004 (Thailand, Indonesia)

[68,69].

Fig 3. Number of studies that measured each objective by marine realm (Temperate Australasia, n = 11 studies; Temperate Northern Atlantic, n = 6; Tropical

Atlantic, n = 12; Central Indo-Pacific, n = 22; Eastern Indo-Pacific, n = 3; Western Indo-Pacific, n = 42; Temperate Northern Pacific, n = 1; Tropical Eastern

Pacific, n = 1) in ARs reporting success in meeting conservation objectives. See Fig 2 for map of bioregions.

https://doi.org/10.1371/journal.pone.0261964.g003
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The most frequently cited conservation objectives reflect a concentration on enhancing the

quantity of hermatypic coral habitat and its most economically valuable inhabitants, including

commercial fish (Fig 3). Fewer studies reported on ARs deployed for objectives related to the

mitigation of natural and anthropogenic impacts on reef communities, such as conservation of

target species (24%), mitigation of environmental stressors (22%), and provision of coral nurs-

eries (14%), a relatively new restoration goal [70]. These AR conservation objectives are partic-

ularly common in the Central and Western Indo-Pacific (Fig 3). Studies addressing socio-

cultural value and economic analyses on ARs (16%) were most frequently conducted in the

Western Indo-Pacific. More specifically, 8 out of 51 studies were from the Middle East, where

sea surface temperatures (SST) have increased more than 3 times the global average since 1985

[1]. This region is a global hotspot for AR research, leading the publication output in many cat-

egories of conservation objectives (Fig 3). Two studies (both from Malaysia) stated their con-

servation objective was to deter fishing trawlers and were not included in Table 2.

Taxonomic groups monitored on Ars. Globally, fish and coral (29 and 26 studies, respec-

tively) were the most frequently monitored taxonomic groups in the 51 studies assessing prog-

ress towards achieving conservation objectives of an AR. Most studies on corals (79%) were

conducted in the Central and Western Indo-Pacific, while studies addressing fish populations

were more evenly distributed across realms (Fig 4). Publications on corals were most frequent

in the Central and Western Indo-Pacific, indicating biases in the AR conservation literature.

ARs have been deployed on coral reefs to assess and increase abundance of fish populations

since the 1980s, and fish taxa were monitored in 55% of studies evaluating the conservation suc-

cess of ARs (Fig 4). This is largely in response to declining fisheries on coral reefs due to overfish-

ing and harmful fishing practices that have had catastrophic effects on coral reef fish since the

1980s, such as cyanide and dynamite fishing [4,71]. Many studies have focused on the population

dynamics and behaviour of commercially or recreationally desirable fish species on and near ARs

[72,73]. In the 1980s and 1990s, publications focused on protecting and increasing target fish spe-

cies on reefs [74–76]. From the 1990s to 2010s, research effort on fish taxa has continually

increased (Fig 5). In the late 2010s and 2020, a few conservation-oriented publications from Tem-

perate Australasia and the Eastern Indo-Pacific focused on space use or connectivity of fish popu-

lations on ARs and adjacent natural reefs, likely reflecting an increased focus on the importance

of connectivity in the persistence of reef fish assemblages [77–79].

Scleractinian corals were the other most frequently monitored (53%) taxonomic group on

ARs in the peer reviewed literature. Similarly to fish population metrics, the number of studies

monitoring coral communities increased every decade from the 1990s to 2010s (Fig 5), reflect-

ing the increasing scale and severity of anthropogenic impacts on coral reefs [80,81]. Due to

the alarming decline in coral cover and associated biodiversity worldwide, objectives of ARs

that focus on coral conservation (e.g. coral nurseries or transplantation initiatives) [10,82] will

likely continue to increase into the 2020s and beyond. More studies on coral conservation

were published in the first five months of 2020 than during an entire decade in the 1980s and

1990s (Fig 5).

Benthic algae and invertebrates other than corals were the least monitored taxonomic

groups on ARs (Fig 4). Understanding the successional patterns of these organisms on differ-

ent AR structures is important because they can attract or deter target species [35]. Monitoring

frequency of these underrepresented groups has increased since the 1990s, but they were still

only measured in 0.05% (algae) and 20% (other invertebrates) of conservation studies pub-

lished in the 2010s (Fig 5). However, despite increasing awareness of the importance of these

groups for attaining conservation objectives of ARs, monitoring is still lacking in many regions

[35,83]. Non-coral invertebrate groups were monitored in studies from the Indo-Pacific

realms (16%), the Tropical Atlantic (17%), and Temperate Australasia (33%) (Fig 4). Only 1%
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of conservation studies measured benthic algae, all in the Indo-Pacific and the Tropical Atlan-

tic. Fouling invertebrates and macroalgae growing on ARs can attract fish and motile inverte-

brate grazers [84–86]. Structures designed to support the growth of these organisms on coral

reefs can enhance reef complexity and the abundance of local consumer populations [87,88].

Alternatively, excessive fouling by toxic invertebrates (e.g. ascidians and sponges) and some

species of macroalgae deter coral larvae from settling and increase post-recruitment mortality

rates [89–91]. Therefore, it is unclear whether ARs designed to promote fouling communities

for the attraction of target fish species are conducive to coral recruitment.

Potential of ARs as a conservation or restoration strategy on coral

reefs

Reported success of achieving AR conservation objectives

Deployment of ARs with specific conservation objectives has varied over time (Fig 6) and geo-

graphic locations (Fig 3). Of the 51 studies, 65% reported success or progress towards

Fig 4. Number of studies monitoring conservation success of an AR (n = 51 studies) that measured ecological response

variables for 4 taxonomic groups (Benthic Algae, Coral, Other Invertebrates, Fish) for each marine realm. See Fig 2 for map of

bioregions.

https://doi.org/10.1371/journal.pone.0261964.g004
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achieving the conservation objective of AR deployment. Objectives with the highest reported

rates of success were provision of nursery habitat and increasing coral cover (each 71%), fol-

lowed by increasing fish abundance and mitigating effects of environmental impacts (each

64%), and increasing habitat quantity and attaining socio-cultural objectives (each 63%) and

(Table 2). Conservation of target species was reported as successful in only 42% of studies. The

most-commonly cited reasons for not achieving conservation objectives were poor AR design

for target species and extensive bleaching during the study period (Table 2). Effective AR

design considerations can be integrated into management strategies and deployment plans;

however, reducing the level of extensive bleaching on artificial and natural reefs will require

global cooperation for reducing carbon emissions [92].

Fig 5. Number of studies monitoring conservation success of an AR (n = 51) that measured ecological response

variables for 4 taxonomic groups (Benthic Algae, Coral, Other Invertebrates, Fish) on ARs by publication decade

from 1980s to 2020s (to December 2020).

https://doi.org/10.1371/journal.pone.0261964.g005
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Many studies reported multiple conservation objectives for each AR (Table 2), and 35% did

not draw conclusions on all stated objectives. For example, if an AR was deployed for both

increasing fish abundance and mitigating an environmental stressor, researchers may have

recorded progress towards attaining only one of the two objectives due to constraints of logis-

tics or expertise. Deploying ARs with multiple conservation objectives may reduce the likeli-

hood of evaluating success or measuring ecological function of the AR. Structural design, site,

and monitoring should be tailored for specific conservation objectives to limit ambiguous con-

clusions about success.

Evaluation of reported success in achieving AR conservation objectives

While ARs have been deployed to increase fish abundance since the 1980s, many studies moni-

toring their success did not measure appropriate ecological response variables for detecting

increased fish production on the reef (Fig 7). For example, few studies examining the success

of ARs in increasing fish abundance effectively monitored fish recruitment and movement

between natural reefs and ARs. Therefore, authors were not able to distinguish whether ARs

Fig 6. Percent of studies citing each category of AR conservation objective (n = 50 studies; 1 study was excluded because

deployment date was unavailable) by deployment decade from 1960s to 2010s. Numbers above bars indicate number of studies.

https://doi.org/10.1371/journal.pone.0261964.g006
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are attracting fish from adjacent habitats or enhancing abundance of resident populations. The

three-dimensional structure and physical relief of the AR plays a significant role in attracting

adult and juvenile fish from the water column [34,93,94]. Factors that contribute to the species

composition of the colonizing fish community on ARs include distance from suitable sub-

strate, distance from source populations, access by predators, access to food, and shelter for

protection and egg-laying [34,63]. Disentangling whether ARs actually enhance production of

fish or simply redistribute them within the ecosystem would enable researchers to evaluate

whether ARs can be used to increase absolute fish abundance on coral reefs. This knowledge

gap is well cited within the AR literature [34,40,42] and new approaches, such as modelling of

biomass flux, may prove useful [95]. However, our results indicate that the gap remains poorly

addressed in coral reef ecosystems specifically.

Increasing coral cover has been a relatively successful AR conservation strategy (Table 2).

Overall, peer-reviewed studies used appropriate monitoring strategies for determining the suc-

cess of this objective; however, there was regional variation in the measured response variables.

Studies done in marine realms that encompassed ocean warming hotspots (Western and Cen-

tral Indo-Pacific) concentrated on response variables pertaining to specific coral life history

events (e.g. recruitment, survival/mortality, reproduction, and growth) (Fig 7). However, the

scale of ARs has been too small to address regional losses in coral cover and the study duration

has been too short to adequately assess a sustained increase in coral cover (Table 2), which can

take decades to detect [96,97]. Small-scale rehabilitation projects using ARs to increase coral

cover in denuded areas might be successful if proper design considerations and environmental

stressors are taken into account [17]. For example, suspended ARs could be deployed on shal-

low water reefs and moved to deeper or cooler water during periods of peak SST to avoid

bleaching [47].

Fig 7. Number of studies that measured each ecological response variable by marine realm (Temperate Australasia, n = 6 study; Temperate Northern Atlantic,

n = 4; Tropical Atlantic, n = 9; Central Indo-Pacific, n = 15; Eastern Indo-Pacific, n = 2; Western Indo-Pacific, n = 13; Temperate Northern Pacific, n = 1;

Tropical Eastern Pacific, n = 1) in ARs reporting success in meeting conservation objectives. See Fig 2 for map of bioregions.

https://doi.org/10.1371/journal.pone.0261964.g007
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Protecting select ecologically and socio-culturally important species was addressed through

the objective of conserving target species. Authors reported limited success for this objective,

with many studies citing inappropriate design for target species as the reason (Table 2). One

study reported that colonization of target fish species was interrupted by the presence of inva-

sive lionfish [98]. Structural design and site selection must be considered using species-specific

requirements to increase the overall success of this conservation objective [17]. ARs deployed

for the purpose of restoring, rehabilitating, or mitigating reef degradation for conservation of

selected species need to be specifically engineered to enhance settlement and survival of tar-

geted species [94].

Stressor mitigation has been increasingly used as a conservation objective for ARs over the

past two decades (Fig 6). This is most likely a response to the increasing frequency and severity

of coral bleaching events and concurrent climate change perturbations since the 1990s

[1,80,99]. While this objective can be met on small spatial scales (e.g. preventing impacts of

wave action and sedimentation) [60], our results suggest limited success when ARs are

deployed to address ecosystem-wide stressors because ARs operate on a much smaller scale

(m– 100s m) than natural reefs (10s – 100s km). Both scientific and conservation projects on

ARs can be interrupted by large-scale bleaching events during the study period, making it diffi-

cult or impossible to assess the efficacy of ARs in mitigating stressors [26,68]. ARs do not

directly alleviate underlying environmental stressors and may only be effective at remediating

damages once the original perturbation has been substantially reduced or removed [17,100].

Coral reef restoration (including through the deployment of ARs) is most effective as an inte-

grated component of wider management frameworks that include stressor mitigation [17].

The mismatch between the increasing spatial scale of stressors and the small scale of manage-

ment interventions, such as ARs, reinforce the urgency for developing comprehensive man-

agement frameworks [101].

Arguably the most successful application of ARs is as nursery habitat for coral transplanta-

tion or source populations for which specific and appropriate ecological response variables

(i.e. coral growth, reproduction, and survival) were used to determine success (Table 2). As

long as coral colonies or fragments of colonies experience low mortality, increased larval pro-

duction and a high yield of functional adult colonies with low environmental impact are possi-

ble [102,103]. Native species predicted to respond well to anticipated climatic changes can be

selectively bred as a biological bank to re-populate natural reefs after disturbances [104]. If

ARs are suspended or designed to detach from the seafloor, they also can be moved horizon-

tally or vertically to avoid unfavorable growing conditions [70]. While nurseries operate on a

relatively small scale compared to natural reefs, the likelihood of an AR functioning as a small

source population in the region can be maximized by seeding it with high densities of coral

species [28]. As with many studies published on active coral restoration strategies, publications

examining the success of ARs as coral nurseries were exclusively from the Western and Central

Indo-Pacific (Fig 3).

ARs deployed to increase habitat have been largely successful, likely because they add hard

substrate to the benthic environment, making this a relatively attainable objective

[39,105,106]. Measured response variables focused on benthic community development and

fish presence at the AR (Table 2). Study durations for this objective were too short (0.01–3.5 y)

to characterize success beyond initial recruitment and colonization phases for fish and inverte-

brates [63]. However, increasing hard substrate is not considered a high priority in reef conser-

vation compared to addressing large-scale tissue loss of scleractinian corals caused by ocean

acidification and warming [36].

In studies where deployment of ARs for socio-cultural purposes was the primary goal, the

ARs were monitored appropriately and can be considered successful. However, in studies that
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combined socio-cultural and ecological objectives, conclusions were only drawn about the lat-

ter. Studies that monitored AR success using socio-cultural objectives employed a variety of

socio-cultural variables, which can be separated into those monitoring human behaviour and

emotions relative to ARs and those concerned with economic valuation (Table 2). In the West-

ern Indo-Pacific, researchers surveyed the attractiveness of ARs to divers and diver behaviour

on ARs [107]. Some studies examining the economic value of ARs lacked secondary inclusion

criteria for this review but conducted a cost-benefit analysis [108] or estimated gross revenue

generated from commercial fisheries as a consequence of ARs [109].

Limitations of ARs and current knowledge gaps

Overall, our results indicate that ARs have limited success in meeting regional-scale conserva-

tion objectives, such as increasing abundance of coral and fish species or stressor mitigation.

Nonetheless, these objectives are being increasingly cited in studies examining AR success,

likely because of the acceleration of coral decline globally and the increasing call for remediat-

ing losses with active restoration strategies [14]. Because ARs mostly operate on a much

smaller scale than natural reefs (except possibly small patch reefs), their success in addressing

large-scale objectives must be assessed. Reference or control sites can provide context for the

observed outcomes on ARs [29]. For example, a meta-analysis of 39 studies documented no

difference in fish community metrics between natural and artificial reefs [41]. While it has

been suggested that larger ARs (> 150 m2) support higher fish abundances [23], the extent to

which ARs function as a source of fish production remains poorly understood [34,40,42]. Fur-

ther, larger ARs are logistically difficult to fund, deploy, and monitor. The introduction of net-

works of ARs to regions with minimal environmental stressors may increase the success of

abundance-oriented conservation objectives (i.e. increasing fish abundance and coral cover)

by increasing colonizable reef area while fostering connectivity of fish and invertebrate species

between degraded natural reefs [100]. Overall, small-scale objectives of ARs (e.g. increasing

public education, selective coral breeding programs, training scientific and recreational divers)

are far more achievable because they do not require additional intensive, long-term studies to

determine their contribution to reef conservation and are generally successful when well

defined and monitored.

Among all studies considered in this review, more than 73% spanned 3 years or less, which

is too short a period for elucidating or predicting long-term shifts in coral reef populations.

Studies that examined the success of ARs in meeting conservation objectives spanned 1 week

to 5 years. This period matches the average for monitoring studies of several different coral res-

toration approaches [19,10] and may be adequate for addressing short-term goals of restora-

tion at local scales [17]. For example, observation periods of months to years can allow

monitoring colonization patterns in many short-lived organisms, such as reef-associated

invertebrates (e.g. ascidians, bryozoans, and some sponges), that can settle, reproduce, and die

on a substrate within months [47,110,111]. These durations also may be effective for monitor-

ing fish populations on ARs, as many fish species have a life expectancy of under 5 years due to

their inherent longevity or high rates of juvenile mortality [112–114]. Changes in coral com-

munity composition and dynamics, however, take much longer to detect [115,116]. For exam-

ple, scleractinian coral communities require multidecadal monitoring to properly assess

ecologically relevant trends in coral cover and species composition [96,97]. Longer monitoring

periods also may be needed to capture effects of aperiodic or stochastic events, such as heat-

waves or storms. Future studies examining the success of ARs in achieving coral-oriented con-

servation objectives must adjust study duration according to the relevant time scales of biotic

and abiotic factors that govern the underlying ecological processes.
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ARs can have some potentially negative impacts on the surrounding ecosystems. Often the

materials used in ARs, such as rubber or plastics, are not biodegradable or may even leach

toxic substances into the surrounding ecosystems [63]. Concrete, which is used for many ARs

because of ease of production and low cost, in addition to leaching metals has a high alkalinity

that may inhibit colonization [117,118]. To increase the ecological value of artificial structures,

new materials using aggregate concrete with different chemistries are being developed

[117,118]. ARs can also facilitate the introduction and spread of invasive species [119,120];

modification of the physical and chemical properties of the ARs and pre-seeding by native spe-

cies may minimize colonization by non-native species [119]. Engineering solutions can pro-

vide potential mitigation strategies for the negative impacts of ARs.

Conclusions and recommendations

1. To be an effective management tool, ARs deployed for conservation purposes must employ

SMART (specific, measureable, achievable, realistic, time bound) objectives. Structural

design, site, and monitoring should be tailored for specific conservation objectives to limit

ambiguous conclusions about success. We showed that evaluation of success is less effective

when ARs have multiple conservation objectives, either because some objectives are not

evaluated or the measured ecological function is inappropriate for all objectives.

2. To be useful, ARs deployed for conservation purposes must be clearly described and accu-

rately contextualized within the recipient environments to facilitate comparisons across

geographic locations, target species and conservation objectives. Only 136 of 530 studies on

research on coral reef ARs included a date, precise location, and depth of deployment, pre-

cise dimensions and number of ARs and stated an objective of AR deployment. In the sci-

entific literature alone, the array of materials, shapes, sizes and distribution of ARs on the

seafloor varied widely from haphazardly deployed sunken ships or car tires to deliberately

deployed cinder blocks or reef balls.

3. The design of ARs must be suitable for the specific conservation objectives. Many of the

studies we examined reported that ARs were unsuccessful in meeting their objective either

because of an inappropriate design or because of loss of AR communities due to severe

environmental perturbations, such as heatwaves. Future studies aiming to increase the effi-

cacy of ARs for conservation purposes should choose structures and sites that are tailored

for specific conservation objectives. The objective of using ARs to address ecosystem-wide

restoration goals, such as increasing coral cover and stressor mitigation, has been met with

limited success, because of the mismatch in scales between the AR and the recipient ecosys-

tem. While nearly all AR projects are relatively small compared to adjacent natural reefs,

they can address local, conservation-specific objectives, such as assisting the recovery of

smaller patch reefs or local enhancement of coral cover if the stressor can be removed.

4. Monitoring of the performance of ARs in meeting conservation objective(s) must be based

on ecologically relevant variables measured over appropriate time scales. For example,

although increases in fish abundance and habitat quantity were the most frequently docu-

mented conservation objectives of ARs, monitoring over short-term scales failed to capture

recruitment and community succession. Overall, fewer than one quarter of the 136 studies

measured the success of ARs in meeting conservation objectives.

Based on their reported success as active restoration tools for tropical coral reefs, ARs are most

likely to achieve their conservation objectives by providing nursery habitat for rearing target

reef species or by supplying additional hard substrate for settlement and recruitment of corals
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and other marine organisms. We suggest that promoting local socio-cultural values also has

potential for success if it is prioritized as an objective and properly monitored. This objective

can be effective also globally, by increasing awareness of coral reef decline among tourists who

mostly originate from countries without corals. While the effectiveness of ARs per se in achiev-

ing regional-scale conservation objectives may be limited, their integration into a larger resto-

ration program could prove beneficial if used conjunction with other conservation strategies.

However, given their relatively high cost, the implementation of ARs into larger restoration

programs would require the development of better practices in identifying objectives, selecting

the appropriate designs, and monitoring the relevant ecological responses.
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