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Abstract: Automated detection of the region of interest (ROI) is a critical step in the two-step
classification system in several medical image applications. However, key information such as model
parameter selection, image annotation rules, and ROI confidence score are essential but usually not
reported. In this study, we proposed a practical framework of ROI detection by analyzing hip joints
seen on 7399 anteroposterior pelvic radiographs (PXR) from three diverse sources. We presented
a deep learning-based ROI detection framework utilizing a single-shot multi-box detector with
a customized head structure based on the characteristics of the obtained datasets. Our method
achieved average intersection over union (IoU) = 0.8115, average confidence = 0.9812, and average
precision with threshold IoU = 0.5 (AP50) = 0.9901 in the independent testing set, suggesting that
the detected hip regions appropriately covered the main features of the hip joints. The proposed
approach featured flexible loose-fitting labeling, customized model design, and heterogeneous data
testing. We demonstrated the feasibility of training a robust hip region detector for PXRs. This
practical framework has a promising potential for a wide range of medical image applications.

Keywords: deep learning; hip detection; deep convolutional neural network; radiography

1. Introduction

The deep convolutional neural network (DCNN) has shown a significant breakthrough
in many aspects of commercial image differentiation and identification. In recent years,
DCNNs have also played important roles in medical image analysis [1,2]. For example, the
ChestX-ray8 [3] and MURA [4] are two representative studies utilizing the state-of-the-art
DCNN classification and visualization models to detect and locate disease patterns in the
chest and musculoskeletal radiographs.

Some studies employ a more delicate “two-step” classification strategy, which first
detects specific ROIs [5–9], followed by conventional classification methods [10–12]. A
seminal work is the automatic knee osteoarthritis diagnosis in lateral knee radiographs,
where knee regions are first identified [13], followed by classification and heatmap visual-
ization [14]. The advantage of this “two-step” approach is the capability to identify subtle
localized abnormalities and has gradually become the mainstream technology, especially
for the analysis of PXRs, including fracture subclass identification [15], hip osteoarthritis
grading [16], and avascular necrosis detection [17]. Nonetheless, the above studies barely
mentioned the model parameter settings and selection criteria, and none of them reported
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the confidence score for the detected ROIs, which the confidence score is a crucial metric
indicating the likelihood that the predicated ROI contains the correct object.

A critical component for a successful “two-step” classification system is accurate ROI
detection, which falls into computer vision object detection tasks [18], usually tackled by
different strategies [19]. Among these methods, the bounding-box-based methodology
is advantageous for its lower annotation workload and simple implementation, which is
proven to be effective in popular computer vision applications in other sectors. In order to
identify multiple objects across different scales in one image, one must generate anchor
boxes of varied sizes and aspect ratios for hyper-parameter optimization. However, there
is usually a small number of non-overlapping objects in medical images. It is not optimal
to apply the same object detection parameters on different underlying applications.

In this work, we propose a labor-less practical framework of ROI detection and
parameter selection in medical images. To the best of our knowledge, this is the first work
that provides a systematic guideline for parameter selection based on the obtained datasets
and has a promising potential for a wide range of medical image applications for further
personalized medicine.

2. Materials and Methods
2.1. Dataset Acquisition

This retrospective study analyzed hip joints seen on 7399 PXRs from three diverse
sources, including the Chang Gung Memorial Hospital Osteoarthritis (CGOA) dataset
containing 4290 high-resolution radiographs, the second Osteoarthritis Initiative Hip
(OAIH, pelvic radiograph dataset extracted from a subset of data from the OAI [20])
dataset containing 3008 radiographs with relatively lower resolutions, and the third Google
Image Search (GIS) dataset containing 101 heterogeneous radiographs. Table 1 lists the
summary statistics of these datasets. This experimental design, which utilizes radiographs
generated from diverse sources of different imaging protocols, resolutions, and ethnicities,
ensures that model generalization can be achieved. Details of these three datasets can be
found in Table 1.

Table 1. Summary statistics of the three datasets used in this study.

Datasets Number of
Images

Max
(Pixels)

Min
(Pixels)

Median
(Pixels)

Mean
(Pixels)

Standard
Deviation Recruit Year

CGOA 4290 4280 1616 2688 2635.8 201.1 2008–2017

OAIH 3008 1080 466 535 571.3 97.0 2004–2014

GIS 101 4256 225 258 515.3 626.6 N/A

2.2. Data Annotation

Figure 1 shows the overview of the proposed framework.
Clinical readings on etiology and grading of all CGOA images were performed by

one physician with 15 years of clinical experience. To annotate hip regions of interest,
we employed three annotators trained to place square bounding boxes approximately
centered at the femoral head or the artificial hip joint with customized GUI software.
It is noted that identifying a complete round femoral head in healthy hips is relatively
straightforward; however, for cases with disrupted hip conditions with collapsed femoral
heads, we employed a loose-fitting manner to make sure every hip joint lay appropriately
in the bounding box. All the labeled ROIs in the CGOA dataset were visually reviewed by
physicians, and the ROI annotators used the same rules to annotate the remaining OAIH
and GIS datasets.
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Figure 1. Overview of the proposed framework for hip ROI detection.

2.3. Proposed SSD Model Architecture for ROI Detection in Hip Radiographs

The proposed hip region detection architecture simplifies existing SSD model architec-
ture (as Figure 2) [9], which was originally developed for detecting multiple objects with
different sizes and aspect ratios in applications.

J. Pers. Med. 2021, 11, x FOR PEER REVIEW 3 of 9 
 

 

 
Figure 1. Overview of the proposed framework for hip ROI detection. 

Clinical readings on etiology and grading of all CGOA images were performed by 
one physician with 15 years of clinical experience. To annotate hip regions of interest, we 
employed three annotators trained to place square bounding boxes approximately cen-
tered at the femoral head or the artificial hip joint with customized GUI software. It is 
noted that identifying a complete round femoral head in healthy hips is relatively straight-
forward; however, for cases with disrupted hip conditions with collapsed femoral heads, 
we employed a loose-fitting manner to make sure every hip joint lay appropriately in the 
bounding box. All the labeled ROIs in the CGOA dataset were visually reviewed by phy-
sicians, and the ROI annotators used the same rules to annotate the remaining OAIH and 
GIS datasets. 

2.3. Proposed SSD Model Architecture for ROI Detection in Hip Radiographs 
The proposed hip region detection architecture simplifies existing SSD model archi-

tecture (as Figure 2) [9], which was originally developed for detecting multiple objects 
with different sizes and aspect ratios in applications.  

 
Figure 2. Comparison of SSD model architectures. Proposed architecture with ResNet-101 backbone 
and other customized settings. 

For ROI detection in medical images, we replaced the SSD VGG-16 backbone by Res-
Net-101 [11] backbone, which was pre-trained on ImageNet [21]. All these modifications 
could reduce ROI detections from several thousands to a few hundreds, decreasing train-
ing time and complexity as well as increasing detection accuracy and confidence. 

Figure 2. Comparison of SSD model architectures. Proposed architecture with ResNet-101 backbone
and other customized settings.

For ROI detection in medical images, we replaced the SSD VGG-16 backbone by
ResNet-101 [11] backbone, which was pre-trained on ImageNet [21]. All these modifications
could reduce ROI detections from several thousands to a few hundreds, decreasing training
time and complexity as well as increasing detection accuracy and confidence.

To best determine the anchor box parameter settings, we first defined the size of the
square ROI divided by the length of the long side of the input image (zero padding to a
square if needed). This ratio is designed as a normalizer, making the anchor boxes and ROI
instances compatible across different datasets. Next, we analyzed image size distributions
(Figure 3A) and distributions (Figure 3B) of the three available heterogeneous datasets,
where the ratios lie mostly between 10% to 30%.

We specified the input image size of 224 × 224 pixels split by 7 × 7 grid cells, where
each grid cell is of size 32 × 32 pixels. We set 6 equally spaced scales parameters {0.7, 1.0,
1.3, 1.6, 1.9, 2.2} (Figure 3C) so that the smallest and largest anchor boxes could cover 10%
and 31.4% of the images, respectively. This design ensures that the designed anchor boxes
can identify appropriate hip ROIs in the datasets.
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Figure 3. Comparison of three radiographic dataset distributions and generation of anchor boxes.
(A) The image size distributions of the three datasets. (B) The distributions of three datasets. (C) Gen-
eration of anchor boxes for the one feature layer of the customized SSD head structure. With an input
square image with 224 × 224 pixels, there are 7 × 7 grid cells with 32 × 32 pixels with scale = 1, and
each grid cell can use different scale parameters to generate various sizes of anchor boxes covering
10% to 31.4% of the input image size, depending on the training image size distributions.

2.4. Data Preprocessing, Training, and Evaluation

For data preprocessing, each radiograph was zero padding to a square image and
resized to 224 × 224 pixels with 8-bit grayscale before feeding into the model. The model
was implemented by fastai v0.7 library [22] with Python 3.6.4, and we randomly split the
combined CGOA and OAIH dataset into 90% for training and 10% for validation once, and
used all 101 GIS radiographs as the independent test dataset. We fixed the same training
and validation images in either the combined dataset or each individual dataset in all
experiments for fair comparison. For evaluation, we used the standard IoU metric for
comparing the predicted bounding box Bpred and ground truth bounding box Bgt:

IoU =
Bpred ∩ Bgt

Bpred ∪ Bgt

where ∩ and ∪ denote intersection and union, respectively. We reported the associ-
ated confidence, which denotes the likelihood that the anchor box contains an object,
for each predicted bounding box, average IoU, average confidence, minimal confidence,
and AP50, as the 0.5 cutoff indicates poor ROI detection, which may cause issues for
downstream analysis.

3. Results
3.1. Demographics of the Study Population

The original CGOA cohort contained 4643 high resolution radiographs, including
3013 patients who underwent hip surgery with an average age of 63.06 ± 15.72 years and
40.8% being male, and 1630 control cases from emergency room without undergoing hip
surgery with an average age of 44.88 ± 20.46 years and 68.2% being male. Among the
3013 surgical patients, 353 cases with severe fractures were excluded due to completely
different morphology and treatment options. The remaining 2660 trauma patients including
hundreds of occult fracture cases and 1630 control cases constructed the COGA dataset.
The second OAIH dataset was a consolidated pelvic radiograph dataset extracted from
subset of data from the OAI project, which recruited 4796 participants from February 2004
to May 2006 to form a baseline cohort (58% female and ranged in age from 45 to 79 years
at time of recruitment). The third GIS dataset was acquired through Google image search
engine, and the demographics are not available.

3.2. Model Performance and Visualization

In Table 2, we take a closer look at the best performance results and carefully examine
those cases where hip ROIs had IoU < 0.5. As AP50 metrics were 1 in both training
and validation set and 0.9901 in the independent GIS test set, we only identified two
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cases below IoU 0.5 cutoff, which may indicate poor ROI detection and cause issues for
downstream analysis.

Table 2. Detailed performance metrics with the optimal parameters using the proposed hip region detection architecture.

Datasets Number of
Images

Number of
Hip ROIs Avg IoU Avg

Confidence
Minimal

IoU
Number of Hip

ROIs with IoU < 0.5 AP50

All: CGOA &
OAIH & GIS 7399 14,798 0.9176 0.9688 0.3861 2 0.9999

Train: 90%
CGOA & OAIH 6568 13,136 0.9260 0.9698 0.5955 0 1

Valid: 10%
CGOA & OAIH 730 1460 0.8571 0.9582 0.5907 0 1

Test: GIS 101 202 0.8115 0.9812 0.3861 2 0.9901

We further examined other radiographs in the heterogeneous test set, and the hip ROI
detection showed several representative results, as Figure 4 presents. Figure 4A shows a
radiograph with some text outside the key hip area. Figure 4B shows the dislocation on the
left hip, but the detected hip ROI covers most key features of the left hip. Figure 4C shows
a radiograph with plates on the left pubic ramus and acetabulum, and ROI can detect the
hips correctly. Figure 4D shows a radiograph with pediatric patients. Figure 4E shows left
hip artificial can be detected correctly. Figure 4F hip ROI indicated right proximal femoral
fracture. Figure 4G shows right temporal cemented prosthesis fracture and left total hip
replacement, and the hip ROI can be detected. Finally, as shown in Figure 4H, the hip
ROI was able to detect right acetabular fracture with plate fixation and destructed femoral
head. These results suggest that our model with specially designed anchors and trained
by diverse datasets is a general and robust hip region detector that can be applicable for a
wide range of heterogeneous datasets with different qualities and resolutions and can be
potentially useful for automated assessment of many hip bone conditions.
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Figure 4. Visualization of hip ROI detection results on the testing dataset. Yellow boxes indicate manual labels, and red
boxes indicate detected hip ROIs. In all scenarios, the ROI could be detected well in both hips. (A) A radiograph with
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pubic ramus and acetabulum. The hips were detected correctly. (D) A radiograph of pediatric patients. (E) A radiograph
showing left hip replacement and deformity of the right hip. (F) Right proximal femoral fracture. (G) The right hip showing
a fracture of a temporal cemented prosthesis and left total hip replacement. (H) Right acetabular fixation with plate with
destructed femoral head.
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4. Discussion

In this work, we have demonstrated a practical framework for detecting regions of
interest in medical images. With the case study for hip detection in PXRs, we achieved
average IoU over 80% and average confidence higher than 95%. These independent test
set showed promising ROI detection results on GIS with heterogeneous resolutions and
appearance. The proposed hip region detection architecture simplified existing SSD model
architecture, which was originally developed for detecting multiple objects with different
sizes and aspect ratios in applications. For ROI detection in medical images, there are
usually one or two important organs in one radiograph. It is feasible to have a simplified
SSD architecture with only one feature layer as the only convolutional predictor, with
an appropriate receptive field size, one aspect ratio (1:1 in for hip ROI), and a small set
of scales.

Compared to traditional object detection tasks, which need to recognize multiple
objects with different sizes and aspect ratios in images and videos, the proposed SSD
architecture has the advantages of simpler structure, higher IoU accuracy, and reliable
confidence. The challenge of determining those empirical parameter settings now relies on
the basic statistics on the available datasets to generate enough anchor boxes. Our results
suggest that more anchors do not necessarily encourage higher IoU but may decrease the
prediction performance. The proposed method provides a more effective approach for
anchor design and parameter optimization.

Annotation by doctors is time-consuming and is usually the bottleneck for medical im-
age analysis. The approximate identification of hip regions by automated and accurate ROI
detection is critical for automated computer-assisted analysis for screening and diagnostics.
The proposed framework provides a guideline for parameter settings in anchor-based
object detection algorithms, and it is especially useful for applications such as joint identi-
fication in medical image problems. Several studies have reported good results [14–17].
However, heavy labeling workload and cost of physicians’ label are another consideration
that has limited this method from going global. Our study provided a method of man-
ual annotation with approximation identification of hip regions that can be performed
effectively and inexpensively.

Medical artificial intelligence is progressive in order to change the healthcare system,
and various DCNNs have showed that it is feasible to detect lesions from pathologic
images [23] and radiography [24]. These algorithms presented outstanding achievement
in disease detection or prediction of whose performance is not inferior to that of the
physicians [23–25]. These results inspire us in that DCNN might help individuals in
the healthcare sector in different ways. However, the development of medical AI is not
accessible due to some limitations. The data clearance and accurate label were considered
fundamental for deep learning because of the limited size and data quality of medical
images [19] and the high cost of a medical expert to perform labeling [26]. Moreover, the
hip ROI detection system can help the physician to label the lesion in a weak supervision
way, wherein we can pick out the hip regions and save time for the physician to crop and
copy the images. The reduction of the barrier between an outliner and the way in which to
attract more physicians and scientists to join a new rising technologic field are other issues
to be considered in the real world. In this study, we developed the diagnostic assistance
system and created a useful tool for reducing the workload during data collection and
tuning. With our tool, we can simply label workload, minimize the calculation requirement,
and eventually make the physician use it in the way they need. There are numerous existing
programs [27,28] that can help orthopedics to plan the surgical strategy. Our algorithm
might accelerate the speed of these programs by reducing calculation requirements in the
future. The utility of such ROI detection approaches highly depends on the downstream
applications. With input of clinical physicians’ expertise, this automated hip ROI detection
enables applications such as fracture identification, osteoarthritis assessment, osteoporosis,
and even surgical prediction in the future. The evaluations of such applications and
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integrated systems remain to be investigated in future works and remain to be open
research topics.

5. Limitation

Our study provided a feasible framework of automated ROI labeling. However, there
are still some limitations in the existing method. First, the manual hip annotation with
loose-fitting criteria is not unique and can be varied from person to person, especially
for those cases with destructed hips. In these situations, a closer visual examination is
needed. Because of the data distribution, we excluded most images from patients with
endomedullary prostheses to make the training data solid. Therefore, we did not have
these kinds of images for further validation, which might impact the usability of this
algorithm. Lastly, limited medical image data might influence the performance of this
algorithm. Increasing data from other sources might increase the performance and prevent
the possibility of overfitting.

6. Conclusions

In conclusion, with the proposed DCNN framework, we can identify the hip joint
with high accuracy, reliability, and reproducibility. It has a clear approach for ROI detection
in plain X-ray and has practical usefulness for future applications in medical imaging. In-
creasing data and destructed hip analysis might improve the performance of this algorithm.
However, the downstream application of hip ROI detection is a further research direction,
and with our tool, we can simply label workload and eventually adjust the algorithm to
fulfil the physicians’ need to achieve the aim of personalized healthcare.
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