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Abstract: FLT3-ITD and FLT3-TKD mutations were observed in approximately 20 and 10% of acute
myeloid leukemia (AML) cases, respectively. FLT3 inhibitors such as midostaurin, gilteritinib and
quizartinib show excellent response rates in patients with FLT3-mutated AML, but its duration of
response may not be sufficient yet. The majority of cases gain secondary resistance either by on-target
and off-target abnormalities. On-target mutations (i.e., FLT3-TKD) such as D835Y keep the TK domain
in its active form, abrogating pharmacodynamics of type II FLT3 inhibitors (e.g., midostaurin and
quizartinib). Second generation type I inhibitors such as gilteritinib are consistently active against
FLT3-TKD as well as FLT3-ITD. However, a “gatekeeper” mutation F691L shows universal resistance
to all currently available FLT3 inhibitors. Off-target abnormalities are consisted with a variety of
somatic mutations such as NRAS, AXL and PIM1 that bypass or reinforce FLT3 signaling. Off-target
mutations can occur just in the primary FLT3-mutated clone or be gained by the evolution of other
clones. A small number of cases show primary resistance by an FL-dependent, FGF2-dependent,
and stromal CYP3A4-mediated manner. To overcome these mechanisms, the development of novel
agents such as covalently-coupling FLT3 inhibitor FF-10101 and the investigation of combination
therapy with different class agents are now ongoing. Along with novel agents, gene sequencing may
improve clinical approaches by detecting additional targetable mutations and determining individual
patterns of clonal evolution.
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1. Introduction

FMS-like tyrosine kinase 3 (FLT3) is classified as a type 3 receptor tyrosine kinase, along with
KIT, FMS, and PDGFR [1–3]. FLT3 is composed of an extracellular region consisting of five
immunoglobulin-like domains, and an intracellular region consisting of a juxtamembrane (JM) domain,
two tyrosine kinase (TK) domains, and a C-terminal domain. FLT3 is expressed in normal hematopoietic
stem cells and progenitor cells, and is dimerized upon binding with either membrane-bound or
soluble FLT3 ligands (FLs) produced by bone marrow stromal cells, which subsequently causes
the phosphorylation and activation of tyrosine residues in the activation-loop (A-loop) [4,5].
Phosphorylated FLT3 activates multiple intracellular signaling pathways involved in the survival,
proliferation, and differentiation of hematopoietic stem cells, such as RAS/MAPK, PI3K/Akt/mTOR,
and JAK/STAT5 [6–9]. Since FLT3 is frequently expressed in leukemic cells, FL stimulation induces
proliferation and inhibits apoptosis in these cells [10,11]. In 1996, an internal tandem duplication in
the JM domain-encoding region of FLT3 (FLT3-ITD) was identified in acute myeloid leukemia (AML)
cells [12]. Thereafter, several types of mutations, including point mutations, deletions, and insertions
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have been detected around the D835 residue in the TK domain (FLT3-TKD) [13]. FLT3-ITD and
FLT3-TKD mutations were observed in approximately 20 and 10% of AML cases, respectively [14–16].
Although both FLT3-ITD and FLT3-TKD are gain-of-function mutations, the upregulation of STAT5 was
only observed in FLT3-ITD cell lines (32D/ITD) [17]. STAT5 positively regulated Pim-1, which eventually
activated mTOR and Mcl-1, which consequently conferred resistance to Akt inhibition in FLT-ITD
cell lines [18]. An experiment using transgenic mice with FLT3-ITD-positive hematopoietic stem
cells revealed the clear promoting effects of nuclear factors in activated T-cells (NFATC1), a family
of inflammatory transcriptional factors, on FLT3-ITD-driven precursor cell expansion and resistance
to FLT3 inhibitors [19]. Recent studies suggest that circulating MYBL2, encoded by the cell-cycle
checkpoint gene MYBL2, is detected in AML patients with FLT3-ITD mutations and is closely related
to mutant FLT3 expression as well as to tumor cell activity [20]. Unlike FLT3-ITD consistently
upregulating JAK/STAT signaling, FLT3-TKD enhance SHP1 and SHP2 activity that negatively regulate
JAK signaling [21,22]. This may at least partially explain why FLT3-ITD showed more potent
myeloproliferative advantages than those of FLT3-TKD in a mouse model [23,24]. The dual mutation
of FLT3-ITD and -TKD (FLT3-ITD-TKD) has been found in a small population. A recent study showed
that FLT3-ITD-TKD has the ability to activate STAT5, resulting in Bcl-x and RAD51 upregulation
that accounts for drug resistance [25]. Since FLT3 mutations are frequently detected in AML and are
associated with poor prognosis, this gene is considered a promising molecular target for AML [26,27].
It has been 20 years since abnormalities in the FLT3 were first discovered, and the application of FLT3
inhibitors in clinical settings in Japan, Europe, and the United States has resulted in a paradigm shift in
the treatment of FLT3-mutated AML. However, resistance to FLT3 inhibitors has also been reported
concomitantly. Mechanisms of the resistance and strategies to overcome it have been vigorously
studied and ever-reviewed [28–30]. Along with the comprehensive understanding of pathologic FLT3
signaling and the acquired alterations responsible for drug-resistance, non-FLT3 abnormalities that
may be closely associated with leukemic clone evolution are revealing its importance, suggesting new
approaches. In this review, we summarize our current understanding of resistance to FLT3 inhibitors
and discuss the strategies for overcoming this issue.

2. Prognostic Impact of FLT3 Mutations

FLT3-ITD mutation has been recognized as one of the major adverse prognostic factors
with nearly twice the increase in hazard ratio [31]. As mentioned in the European LeukemiaNet
(ELN) recommendations [27], high allelic burden (generally indicating 50% or more) of FLT3-ITD
(FLT3-ITDhigh) is consistently associated with worse prognosis [32–34]. On the other hand, the low
allelic frequency of FLT3-ITD (FLT3-ITDlow) concomitant with NPM1 mutation possibly leads to
favorable prognosis [35], though it has been fraught with controversy [36–38]. FLT3-ITDhigh with
wild type NPM1 and FLT3-ITDlow with mutated NPM1 are classified as intermediate-risk [27].
Unlike FLT3-ITD, the prognostic significance of FLT3-TKD has not been determined [32,39]. With the
development of potent FLT3 inhibitors, better clinical outcomes would be expected, especially in
patients with FLT3-ITDhigh. Indeed, previously untreated FLT3-ITDhigh patients who received intensive
chemotherapy with sorafenib, a FLT3 inhibitor, showed no significant but seemingly better relapse-free
and overall survival than those with FLT3-ITDlow AML [34]. It is not fully known if the FLT3 allelic
burden affects the properties in acquiring resistance to FLT3 inhibitors. However, given a certain
somatic mutation will belong to a single clone, a larger proportion of mutant FLT3 allele may link to
less divergent leukemic clones and vice versa, which theoretically affect drug sensitivity, relapse rates
and eventually survival rates. Zhang and his colleagues graphically displayed the clonal evolutions of
two individual cases; one for a single clone with a high frequency of FLT3-TKD that later relapsed with
an additional mutation within the same clone and the other for complex clones not associated with
first-detected FLT3-ITD mutation with low frequency [40]. The prognostic impact of FLT3 mutations
and its allele frequency possibly be changed in the era of FLT3 inhibitors.
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3. Classification of FLT3 Inhibitors by Its Pharmacodynamics

As first-generation FLT3 inhibitors, existing TK inhibitors such as tandutinib (CT53518), lestaurtinib
(CEP-701), sunitinib (SU11248), midostaurin (PKC412), and sorafenib (BAY 43-9006), which can
effectively inhibit FLT3 kinase have been studied [41–45]. Thereafter, the compounds with higher
selectivity and inhibitory activity were identified. Gilteritinib (ASP2215), quizartinib (AC220),
and crenolanib (CP868596) were developed as second-generation FLT3 inhibitors [46–50]. These FLT3
inhibitors are roughly classified into two types (i.e., type I and type II) based on their binding mode
to FLT3 molecules. The conformation of the three amino acid residues Asp–Phe–Gly (DFG) in the
A-loop of the FLT3 molecule is altered in accordance with the phosphorylation status of the tyrosine
residue, which leads to the formation of an active DFG-in conformation or an inactive DFG-out
conformation [51–53]. Type I inhibitors bind to the ATP-binding site and its vicinity, and subsequently
bind with molecules in both DFG-in and DFG-out conformations. Since the molecular homology of
various TKs is high and the ATP-binding sites are highly conserved among kinases, type I inhibitors are
often less selective. In contrast, type II inhibitors bind to the target kinase by utilizing the hydrophobic
space that appears in the proximity of the ATP-binding site in the DFG-out conformation. Since the
hydrophobic space in this structure varies significantly between various kinases, type II inhibitors are
expected to be more selective than type I inhibitors and are unable to inhibit activated kinases in the
DFG-in conformation. Midostaurin, gilteritinib, and crenolanib are type I inhibitors, while quizartinib
and sorafenib are type II inhibitors [54]. FLT3-TKD maintains a constant DFG-in conformation owing
to alterations in the TK domain, whereas FLT3-ITD can exist in both active DFG-in conformation
and inactive DFG-out conformation. Therefore, while type I inhibitors inhibit both FLT3-TKD and
FLT3-ITD, type II inhibitors only inhibit FLT-ITD owing to the differences in binding properties,
with a few exceptions in first-generation agents (e.g., midosutaurin and sunitinib). For example,
TK domain-altering D835 point mutations confer resistance to a type II second-generation inhibitor
quizartinib, but not to type I gilteritinib and crenolanib [55]. However, a “gatekeeper” mutation F691L
shows universal resistance to all the currently available FLT3 inhibitors [47,49,56–59]. The characteristics
of the FLT3 inhibitors are summarized in Table 1.

Table 1. FLT3 inhibitors.

Agent Generation Type Selectivity IC50 (nM)
Drug Sensitivity

ITD D835Y ITD-D835Y F691L

Midostaurin (PKC412) First I Low 139 S S R R
Sunitinib (SU11248) First I Low 250 S R R R

Lestaurtinib (CEP701) First I Low 5 S Int S −

Gilteritinib (ASP2215) Second I Moderate 1.6 S S Int R
Crenolanib (CP868596) Second I Moderate 2 S S Int R
Sorafenib (BAY43-9006) First II Moderate 58 S R R R

Tandutinib (CT53518) First II High 100 S R − −

Quizartinib (AC220) Second II High <1.0 S R R R

S (sensitive) means the IC50 is less than or equal to that of FLT3-ITD. R (resistant) means more than two folds
increase in IC50. Int (intermediate) remains a 1.0–2.0-folds increase. Here is the reference of selectivity [60–62],
IC50 for FLT3-ITD [47,49,63–68] and drug sensitivity [47,55,69–72].

4. Current Clinical Role of FLT3 Inhibitors

Among a number of tyrosine kinase inhibitors active against pathologic FLT3 signaling, gilteritinib
and midostaurin are now available for the treatment of FLT3-mutated AML in most developed countries.
Quizartinib is currently available only in Japan. Stone and his colleagues reported a randomized
phase 3 trail, RATIFY, where midostaurin or placebo were added to standard therapy in patients
with newly diagnosed FLT3-mutated AML [73]. The midosutaurin group showed longer survival
(hazards ration (HR) 0.78) and improved event-free interval (HR 0.78) than the counterpart. Recently,
the combination of midostaurin and standard therapy followed by midostaurin maintenance also
showed better outcomes compared with historical controls (HR 0.58 in event-free survival) [74]. Efficacy
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of single-agent gilteritinib for relapsed/refractory FLT3-mutated AML was proved in a randomized
phase 3 trial, ADMIRAL [75]. The median overall survival was significantly longer in the gilteritinib
group than the conventional chemotherapy group (9.3 months vs. 5.6 months), with a higher percentage
of patients who underwent allo-stem cell transplantation (SCT) (26% vs. 15%). However, the median
event-free interval was less than 3 months. Similarly, the phase 3 QuANTUM-R trial showed the
superiority of single-agent quizartinib over salvage chemotherapy in the same situation (HR 0.76 in
overall survival) [76]. Quizartinib has also been tested in the first-line setting and showed activity
in a phase 1 trial [77]. In addition to the approved drugs mentioned above, other FLT3 inhibitors
also have displayed clinical benefits. Published trials and their primary results are summarized
in Table 2. Sorafenib, already approved for renal cell cancer, thyroid cancer and hepatocellular
carcinoma, were evaluated in either in a first-line and salvage situation combined with chemotherapy
and HMAs (hypomethylating agents), showing promising results [78–84]. A novel second-generation
FLT3 inhibitor crenolanib has shown possible benefits in combination with conventional chemotherapy,
in either first-line and salvage treatment [85–87]. Lestaurtinib, however, failed to display clinical benefit
when administered as maintenance therapy following standard treatment [88,89].
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Table 2. Clinical results of FLT3 inhibitors.

SORAFENIB (BAY 43-9006)

Authors and Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Rolling, et al. Lancet Oncol 2015 SORAML AML (age < 60) Newly diagnosed Sorafenib + Standard therapy II CR 60% (81/134) 21 mo. [9–32] Not Reached
(3-yr OS 63%) 31% (42/132)

Uy, et al. Blood Advances 2016 CALGB 11001 AML (age > 60) with
FLT3-ITD and/or TKD Newly diagnosed Sorafenib + Standard therapy II CR 74% (40/54) 8.8 mo. (FLT3-ITD)

7.8 mo. (FLT3-TKD)
15.0 mo. (FLT3-ITD)
16.2 mo. (FLT3-TKD) 53% (22/54)

Ohanian, et al. Am J Hematol 2018 −
AML (age > 60) with

FLT3-ITD Newly diagnosed Sorafenib + Azacitidine I/II CR/Cri
PR

70% (19/27)
7% (2/27)

7.1 mo.
(only in responders)

8.3 mo.
(in all participants) 11% (3/27)

Sasaki, et al. Cancer 2019 − AML with FLT3-ITD Newly diagnosed Soragenib + Standard therapy Retrospective CR/CRi 99% (78/79) 31 mo. [5.7–56.8] 17 mo. [11.1–22.4] 67% (53/79)

Muppidi, et al. Clinical Lymphoma
Myeloma and Leukemia 2015 − AML with FLT3-ITD Newly diagnosed or relapsed Sorafenib + Decitabine Case Series CR/CRi 83% (5/6) Not Reported 5.1 mo. [1.9–14.5] 33% (2/6)

Ravandi, et al. Blood 2013 − AML with FLT3-ITD Relapsed or refractory
(including prior allo-SCT) Sorafenib + Azacitidine II CR/Cri

PR
43% (16/37)
3% (1/37) 3.8 mo. [1.0–16.4] 6.2 mo. 16% (6/37)

Bazarbachi, et al.
Heamatologica 2019 − AML with FLT3-ITD Relapsed ater allo-SCT Sorafenib as part

of/after salvage Retrospective CR 39% (10/26) Not Reported (2-yr. OS 38%) 13% (3/26)

MIDOSTAURIN (PKC412)

Authorsand Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Stone, et al. N Engl J Med 2017 RATIFY AML with FLT3-ITD
and/or TKD Newly diagnosed Midostaurin + Standard

induction/consolidation III CR 70% (504/717) 8.2 mo. [5.4–10.7] 74.7 mo. [31.5–inf.] 57% (287/504)

Schlenk, et al. Blood 2019 AMLSG 16-10 AML with FLT3-ITD
and/or TKD Newly diagnosed

Midostaurin + Standard
induction/consolidation f/b

Midostaurin maitenance
II CR/CRi 76% (217/292) 13.2 mo. [10.0–18.3] 26.0 mo. [18.9–37.0] 62% (134/217)

Fischer, et al. J Clin Oncol 2010 − AML or high-risk MDS Relapsed or refractory or
ineligible to standard therapy Midostaurin IIB

PR
HI

Blast

1% (1/97)
46% (16/35 *)
71% (25/35 *)

* only in FLT3-mt

Not Reported 4.3 mo. [3.5–5.2] 31% (42/132)

Strati, et al. Am J Hematol 2015 − AML or high-risk MDS Relapsed or refractory or
ineligible to standard therapy Midostaurin + Azacitidine I/II CR/Cri

PR/MLFS
15% (8/54)
13% (7/54)

4.6 mo. [2.3–6.9]
* Duration of Response 5.1 mo. [3.5–6.7] 0% (0/8)

Walker, et al. Leukemia &
Lymphoma 2016 − AML Relapsed or refractory

(including prior allo-SCT)
Midostaurin + Bortezomib +

Chemotherapy(MEC) I CR/CRi 83% (19/23) Not Reported 10.8 mo. 63% (12/19)

Maziarz, et al. Blood 2018 RADIUS AML with FLT3-ITD in 1st CR after allo-SCT Midostaurin + Standard of care II Not Applicable (18mo.-PFS 89%) Not Reported Not Applicable

GILTERITINIB (ASP2215)

Authors and Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Perl, et al. N Engl J Med 2019 ADMIRAL AML with FLT3-ITD
and/or TKD Relapsed or refractory Gilteritinib III CR/Cri

PR
54% (134/247)
13% (33/247) 2.8 mo. [1.4–3.7] 9.3 mo. [7.7–10.7] 26% (63/247)

Perl, et al. Lancet Oncol 2017 −
AML with FLT3-ITD

and/or TKD Relapsed or refractory Gilteritinib I/II CR/Cri
PR

41% (69/169)
11% (19/169)

4.6 mo.
* Duration of Response 7.1 mo. 22% (37/169)

Usuki, et al. Cancer Science 2018 − AML Relapsed or refractory Gilteritinib I
CR/Cri

PR
60% (3/5 *)
20% (1/5 *)

* only in FLT3-mt.
Not Reported Not Reported Not Reported
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Table 2. Cont.

QUIZARTINIB (AC220)

Authors and Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Altman, et al. Blood 2018 − AML Newly diagnosed
Quizartinib + Standard

induction/consolidation f/b
Quizartinib maitenance

I CR/CRi 74% (14/19) (Maximum 16.3 mo.) Not Reported 47% (9/19)

Cortes, et al. Blood 2019 QuANTUM-R AML with FLT3-ITD Relapsed or refractory Quizartinib III CR/Cri 48% (118/245) 1.4 mo. [0.0–1.9] 6.2 mo. [5.3–7.2] 32% (78/245)

Cortes, et al. Blood 2018 − AML with FLT3-ITD Relapsed or refractory Quizartinib IIB CR/Cri
PR

47% (36/76)
18% (14/76) 12.3 mo. [9.7–16.1] 22.6 mo. [19.9–28.3] 37% (28/76)

Cortes, et al. Lancet Oncol 2018 − AML Relapsed or refractory Quizartinib II
CR/Cri

PR
50% (125/248)
25% (62/248)

* only in ITD-mt.

2.8 mo. [1.4–3.6]
* duration of CR,
only in ITD-mt.

5.8 mo. [4.9–6.8] *
only in ITD-mt. 35% (61/176)

Sandmaier, et al. Am J Hematol 2017 − AML with FLT3-ITD in 1st CR after allo-SCT Quizartinib maintenance I Not Applicable (0.4–22.8 mo.)
* duration of maitenance (3.0–32.7 mo.) Not Applicable

CRENOLANIB (CP868596)

Authors and Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Wang, et al. Blood 2016 −
AML with FLT3-ITD

and/or TKD Newly diagnosed
Crenolanib + Standard

induction/consolidation f/b
Crenolanib maintenance

II CR/CRi 96% (24/25) Not Reported Not Reached
(6 mo. OS 85%) 50% (12/24)

Randhawa, et al. Blood 2014 −
AML with FLT3-ITD

and/or TKD Relapsed or refractory Crenolanib II

CR/Cri
MLFS

HI

23% (3/13)
8% (1/13)
31% (4/13)

* only in TKI-naïve

3.0 mo.
* only in TKI-naïve

12.7 mo.
* only in TKI-naïve 26% (9/34)

Ohanian, et al. Blood 2016 −
AML with FLT3-ITD

and/or TKD Relapsed or refractory Crenolanib + Salvage chemotherapy
(IDA/AraC) I CR/CRi 36% (4/11) Not Reported 8.5 mo. 75% (3/4)

Iyer, et al. Blood 2016 − AML Relapsed or refractory Crenolanib + Chemotherapy (HAM) I CR/CRi 67% (4/6) Not Reported Not Repoted 25% (1/4)

LESTAURTINIB (CEP701)

Authors and Jounals Trial Name Objectives Disease Status Agents * Controls Not Shown Phase/Design Response Rate Median PFS Median OS Sequential
allo-SCT

Levis, et al. Blood 2017 −
AML with FLT3-ITD

and/or TKD Relapsed Slavage chemotherapy (MEC) f/b
Lestaurtinib maintenance II CR/CRi 26% (29/112) Not Reported 5.2 mo. 20% (22/112)

Knapper, et al. Blood 2017 −
AML with FLT3-ITD

and/or TKD Newly diagnosed Standard induction/consolidation f/b
Lestaurtinib maintenance III CR/CRi 92% (277/300) (5-yr. PFS 39–40%) (5-yr. OS 43–50%) 21% (58/277)
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5. Mechanisms of Resistance to FLT3 Inhibitors

5.1. Primary Resistance

Resistance to FLT3 inhibitors can be classified as primary resistance (innate resistance) and
secondary resistance (acquired resistance). In primary resistance, the effect of FLT3 inhibitors are
prevented during the initial administration in an FL-dependent, FGF2-dependent, and stromal
CYP3A4-mediated manner as well as by the activation of other signaling pathways (Figure 1).
Most FLT3-mutant AML cells also express wild-type (WT) FLT3 concomitantly. Since WT-FLT3
is sensitive to FL and is affected negligibly by FLT3 inhibitors, FL secretion in the bone marrow
microenvironment leads to the activation of the FLT3/MAPK pathway and provides survival signals to
AML cells during induction and consolidation therapy. Indeed, certain studies have demonstrated that
the co-existence of WT-FLT3 attenuated the anti-tumor effects of FLT3 inhibitors on FLT3-mutated AML
cells in vitro and in vivo [88,90,91]. In addition to FL, other cytokines, growth factors, and soluble
proteins from the bone marrow microenvironment have been studied with respect to their resistance
against quizartinib. For example, fibroblast growth factor 2 (FGF2) induces resistance by activating
FGFR1 and inducing downstream MAPK signaling. FGF2 expression in bone marrow stromal cells
increased in patients with FLT3-ITD-positive AML treated with quizartinib and was maximized prior
to clinical relapse and the induction of resistance mutations [92]. CXCL12, a chemokine expressed by
osteoblasts in the bone marrow, is a ligand of CXCR4 expressed by hematopoietic stem cells as well
as AML cells. Certain reports revealed that the CXCR4 antagonist plerixafor (AMD 3100) selectively
reduced the proliferation of FLT3-ITD AML blasts and increased the sensitivity of FLT3-mutated
leukemic cells to the apoptogenic effects of FLT3 inhibitors [93,94]; therefore, the activation of the
CXCL12/CXCR4 axis may also induce resistance to FLT3 inhibitors in AML cells. The inactivation of
TKIs by CYP3A4 is well established. In particular, hepatic CYP3A4 inactivates all TKIs, including FLT3
inhibitors. Additionally, the expression of CYP3A4 in bone marrow stromal cells attenuated the activity
of three different FLT3 inhibitors (sorafenib, quizartinib, and gilteritinib) in FLT3-ITD-positive AML [95].
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Figure 1. Schematic mechanisms of primary resistance to FLT3 inhibitors. (1) Wild-type FLT3s are
a little sensitive to FLT3 inhibitors and allow downstream signaling by binding with FLT3 ligands.
(2) FGF2 secreted from bone marrow stromal cells activates FGFR1 on leukemic cells which leads to
MAPK activation. (3) Cell adhesion to the microenvironment may also help leukemic proliferation.
Antagonizing CXCR4 that binds to CXCL12 on osteoblasts resulted in attenuated leukemia progression.
(4) Upregulating CYP3A4 leads to the rapid inactivation of FLT3 inhibitors.
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5.2. Secondary Resistance Due to Additional FLT3 Mutations (on-Target Resistance)

Secondary resistance negates the effects of FLT3 inhibitors via the abnormalities acquired by
FLT3 inhibition, such as additional mutations in FLT3 (“on-target” resistance) and defective factors
apart from FLT3 (“off-target” resistance). Several genetic mutations associated with FLT3 inhibitor
resistance have been reported in clinical trials on FLT3 inhibitors. As mentioned earlier, since type
II inhibitors originally have no affinity for FLT3-TKD, additional mutations in the TK domain can
confer resistance via the elimination of the inhibitory effect on FLT3-ITD. In cases of recurrence after
quizartinib treatment in patients with FLT3-ITD-positive AML, secondary mutations at D835 and
Y842 residues as well as at the commonly known “gatekeeper residue” F691 in the kinase domain
have been reported (Figure 1) [96]. In vitro, Ba/F3 cells expressing FLT3-ITD and one additional TKD
mutation, detected in patients with clinical resistance (+D835Y, +D835V, +Y842C, +Y842H, or +F691L),
exhibited resistance to the growth inhibitory effect and dephosphorylation activity of quizartinib.
These resistance mutations in the A-loop were also observed in patients treated with sorafenib, another
type II inhibitor. Furthermore, during the treatment with gilteritinib and crenolanib (a type I inhibitor),
the additional appearance of FLT3-TKD mutations in patients with resistance was infrequent, although
the appearance of F691L, a gatekeeper mutation, was observed (Figure 2).

Biomedicines 2020, 8, x FOR PEER REVIEW 9 of 23 

Antagonizing CXCR4 that binds to CXCL12 on osteoblasts resulted in attenuated leukemia 
progression. (4) Upregulating CYP3A4 leads to the rapid inactivation of FLT3 inhibitors. 

5.2. Secondary Resistance due to Additional FLT3 Mutations (on-Target Resistance) 

Secondary resistance negates the effects of FLT3 inhibitors via the abnormalities acquired by 
FLT3 inhibition, such as additional mutations in FLT3 (“on-target” resistance) and defective factors 
apart from FLT3 (“off-target” resistance). Several genetic mutations associated with FLT3 inhibitor 
resistance have been reported in clinical trials on FLT3 inhibitors. As mentioned earlier, since type II 
inhibitors originally have no affinity for FLT3-TKD, additional mutations in the TK domain can 
confer resistance via the elimination of the inhibitory effect on FLT3-ITD. In cases of recurrence after 
quizartinib treatment in patients with FLT3-ITD-positive AML, secondary mutations at D835 and 
Y842 residues as well as at the commonly known “gatekeeper residue” F691 in the kinase domain 
have been reported (Figure 1) [96]. In vitro, Ba/F3 cells expressing FLT3-ITD and one additional TKD 
mutation, detected in patients with clinical resistance (+D835Y, +D835V, +Y842C, +Y842H, or +F691L), 
exhibited resistance to the growth inhibitory effect and dephosphorylation activity of quizartinib. 
These resistance mutations in the A-loop were also observed in patients treated with sorafenib, 
another type II inhibitor. Furthermore, during the treatment with gilteritinib and crenolanib (a type 
I inhibitor), the additional appearance of FLT3-TKD mutations in patients with resistance was 
infrequent, although the appearance of F691L, a gatekeeper mutation, was observed (Figure 2). 

 

Figure 2. Additional FLT3 tyrosine kinase domain mutations responsible for secondary on-target 
resistance. These mutations keep the TK domain in active FDG-in form, not allowing the type II 
inhibitors to bind there. Mutations in a “gate-keeping” residue F691 shows the universal resistance to 
both type I and II inhibitors. 

Although the FLT3-F837K and FLT-C35S mutations occurred after the gilteritinib treatment in 
one patient each, both were considered silent mutations as these did not induce self-proliferation in 
Ba/F3 cells40. Among the 50 resistant patients treated with crenolanib, five FLT3 (D200N, K429F, 

Figure 2. Additional FLT3 tyrosine kinase domain mutations responsible for secondary on-target
resistance. These mutations keep the TK domain in active FDG-in form, not allowing the type II
inhibitors to bind there. Mutations in a “gate-keeping” residue F691 shows the universal resistance to
both type I and II inhibitors.

Although the FLT3-F837K and FLT-C35S mutations occurred after the gilteritinib treatment in
one patient each, both were considered silent mutations as these did not induce self-proliferation
in Ba/F3 cells40. Among the 50 resistant patients treated with crenolanib, five FLT3 (D200N, K429F,
Y572C, L601F, and F691L) mutations were observed in six patients; the D200N and L601F mutations
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did not result in leukemia [40]. Since the frequency of the acquired mutations in FLT3-ITD in patients
with clinical resistance to quizartinib, a type II inhibitor, was 50% or less, other resistance mechanisms
are also anticipated. In four out of eight patients treated with quizartinib, one or more resistance
mutations were observed in the TK domain [96]. In addition to FLT3-ITD alleles, mutations in the TK
domain of the original FLT3 allele were detected in seven individuals. Notably, the patients exhibited
different frequencies of mutations between the original FLT3 allele and the FLT-ITD allele. In this study,
the AML cells collected from one quizartinib-resistant patient did not acquire resistance mutations in
either the original FLT3 allele or the FLT3-ITD allele. No mutations were detected in the genes apart
from FLT3, although the existence of off-target resistance mechanisms was considered in this patient.
These findings suggest the existence of a polyclonal resistance mechanism in patients with AML that
relapses after quizartinib treatment.

5.3. Secondary Resistance Due to Non-FLT3 Abnormalities (off-Target Resistance)

Resistant clones formed after treatment with gilteritinib and crenolanib, and a type I inhibitor that
exerts an inhibitory effect on FLT3-TKD, have characteristics that are different from those observed after
treatment with type II inhibitors. In a comparative genetic analysis before and after relapse in patients
treated with gilteritinib, several distinct patterns of clonal selection were observed during the treatment
period with gilteritinib [97]. In five out of 41 (12.2%) gilteritinib-resistant patients, FLT3 mutations
were not observed in AML cells after the gilteritinib treatment; however, mutations in the RAS/MAPK
pathway were present in all of the patients. These results suggest that mutant FLT3-negative clones
acquire mutations in the RAS/MAPK pathway and expand as resistant clones. In 36 other patients,
the resistant clones contained the original FLT3 mutation, and five of them acquired an F691L TKD
mutation in addition to the original FLT3 mutation. In 10 out of the 36 patients with the original
FLT3 mutation, additional mutations in the RAS/MAPK pathway, such as NRAS, KRAS, PTPN11, CBL,
and BRAF mutations, were acquired. Of note, the mutations in the RAS/MAPK pathway and FLT-F691L
mutations were mutually exclusive. In vitro experiments conducted in MOLM-14, an AML cell line
with FLT3-ITD, where either mutant RAS or FLT3-F691L was transduced into the parental cells and
gilteritinib was administered at low/high-dose (25 and 250 nmol/L), suggested that the RAS-mutant
clones were more likely selected by the high concentration of the inhibitor, besides the FLT3-F691L
which was more likely to be selected by a low one. Similar to RAS mutations [97,98], the activation
of Axl-1, a member of the TAM family of receptor TKs, may also contribute to FLT3-resistance by
constantly activating the RAS/MAPK and PI3K/Akt/mTOR pathway. Axl-1 was observed to be highly
phosphorylated in midosutaurin-resistant AML cell lines and its resistance was diminished by the
Axl-1 inhibition in vitro [99]. In another experiment, patient-derived AML cells with FLT3-ITD were
co-cultured with stromal cells and treated with quizartinib [100]. The surviving cells underwent
STAT5 activation, which consequently upregulated AXL, which was further enhanced by the hypoxic
environment. Conversely, in patients eliciting poor response to crenolanib, several abnormalities
have been observed in the loci encoding epigenetic regulators and granulocyte transcription factors,
as well as in the cohesin complex. In particular, NRAS, STAG2, CEBPA, ASXL1, and IDH2 mutations
were observed in FLT3-WT clones [40]. These findings suggest that the clones escaped and expanded
during crenolanib therapy. However, TET2, IDH1, and TP53 mutations occurred simultaneously in
FLT3-mutated clones during crenolanib treatment. These results suggest that the off-target resistance
mechanism is more frequent when using type I inhibitors, such as gilteritinib or crenolanib, than type
II inhibitors. Besides, IDH1 inhibitor ivosidenib [101] and IDH2 inhibitor enasidenib [102,103],
both approved by the FDA, are active against IDH1/2-mutant relapsed/refractory AML, though the
significance of co-existing FLT3 mutations is not fully understood. In addition, the upregulation of the
PI3K/AKT/mTOR pathway in resistant cell lines treated with sorafenib has also been reported [104].
Pim-1 is a proto-oncogene originally detected in hematopoietic cells that functions downstream of
STAT5 [105]. Its overexpression induced resistance to lestaurtinib in BaF3/ITD cells and in samples
collected from FLT3-ITD-positive patients [106]. Additionally, Pim kinase overexpression has been
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observed in the samples collected post sorafenib administration in patients with FLT3-ITD-positive
AML compared to the levels observed in the samples collected before administration [107]. Pim-1 was
associated with an increased expression of anti-apoptosis proteins, such as Bcl-2, BCL-XL, and MCL-1,
in FLT3 inhibitor-resistant cases [25,108–110]. In particular, the observed resistance may be partly
induced by Pim-1. Off-target abnormalities along with FLT3 signaling are schematically summarized
in Figure 3.
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Figure 3. Schematic description of genetic abnormalities (mutations or upregulation) associated with
secondary off-target resistance to FLT3 inhibitors. Mutations involved in the RAS/MAPK pathway
were reported. NRAS mutation is the most common among them. Axl-1, coded by the AXL gene,
is a receptor tyrosine kinase that leads to the activation of RAS/MARK and PI3K/Akt/mTOR pathway.
The upregulation of the AXL gene was observed in midostaurin-resistant AML cell lines. Pim-1 is part of
the downstream signaling of STAT5, contributing cell survival and proliferation as well as cell migration.
A lestaurtinib-resistant AML cell line showed the overexpression of Pim-1. Other gene mutations
commonly seen in AML regardless of FLT3 status were also detected. Although a direct relationship
with FLT3 signaling was not suggested, these mutations have an essential role in maintaining leukemic
clones by modulating epigenetic/transcriptional regulations (e.g., ASXL1, TET2, DNMT3A and STAG2),
altering the metabolism of the citrate acid cycle (e.g., IDH1 and IDH2) and preventing apoptosis
(e.g., TP53).
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6. Strategies to Overcome Resistance to FLT3 Inhibitors

6.1. Development of Novel Agents

Previous reports suggest that on-target resistance tends to occur in patients after type II inhibitor
treatment, while off-target resistance is likely to occur after type I inhibitor treatment. Since these
reports are currently limited to patients recruited during clinical trials, for a better understanding
of the mechanism underlying the resistance to each FLT3 inhibitor, it is necessary to determine the
characteristics of patients with resistance in real-word settings. In addition, to counter the gatekeeper
mutation (F691L) in FLT3, which confers resistance to all existing FLT3 inhibitors, it is necessary to
develop a novel FLT3 inhibitor. As described above, while type I inhibitors can also inhibit FLT3-TKD,
they exhibit low selectivity, whereas although type II inhibitors cannot inhibit FLT3-TKD, they exhibit
high selectivity. FLT3-TKD inhibitory activity and FLT3 selectivity share a trade-off relationship.
To resolve these issues, a novel FLT inhibitor known as FF-10101 was designed, which would
form covalent bonds with the C695 residues of FLT3. The creation of covalent bonds by FF-10101
enables the selective and irreversible inhibition of FLT3 in either the active or the inactive form [111].
Furthermore, the unique binding method of FF-10101 exerts wide inhibitory action against various FLT3
mutations, including F691L. Currently, phase 1/2 trials are underway to evaluate its safety, tolerability,
pharmacokinetics, and efficacy against recurrent refractory AML (NCT03194685). In addition, several
agents that may overcome or prevent resistance are currently under investigation. A pan-PIM/FLT3
inhibitor SEL24 [112], a type II FLT3 inhibitor MZH29 [113], a MERTK/FLT3 inhibitor MRX-2843 [114],
a BCR-ABL inhibitor ponatinib [115], and a multiple tyrosine kinase inhibitor cabozantinib [116] have
exhibited anti-tumor activity in cases with FLT3-TKD, including those with the F691 pointmutation.

6.2. Combination with Different Class Agents

Existing FLT3 inhibitors are now being tested in combination with HMAs, standard chemotherapy,
bortezomib (proteasome inhibitor), atezolizumab (anti-PD-L1 antibody), venetoclax (BCL-2 inhibitor),
milademetan (MDM2 inhibitor) and homoharringtonine (STAT inhibitor). Ongoing trails of combination
strategy are summarized in Table 3 Preclinically, FLT3 ligand-mediated resistance was attenuated by
the dual inhibition of AKT/FLT3 in vivo [117]. The combination of the MEK and FLT3 inhibitors as
well as the dual inhibition of MEK/FLT3 proved to be effective against resistance-conferring FLT3
mutations in in vivo and in vitro mutations [97,118]. The sensitization of FLT3 inhibitors can serve
as an alternate strategy. Proteasome inhibitors, arsenic trioxide (ATO), and a CDK4/6 inhibitor
palbociclib downregulated FLT3 molecules in FLT3-ITD AML cells by promoting cytotoxic autophagy,
inhibiting the expression of FLT3 RNAs, and dysregulating the transcription of FLT3 and PIM1,
respectively [119–121]. The inactivation of ATM or its downstream effector G6PD also induced synthetic
lethality along with FLT3 inhibition by enhancing mitochondrial oxidative stress, which eventually
resulted in tumor apoptosis [122].
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Table 3. Clinical trials of FLT3 inhibitors.

SORAFENIB (BAY 43-9006)

Trial Number Objectives Disease Status Agents * Controls Not Shown Phase/Design

NCT01371981 AML with FLT3-ITD
(high allelic ratio) Newly diagnosed Sorafenib + Bertezomib III

NCT03170895 AML with FLT3-ITD Newly diagnosed or relapsed Sorafenib + Homoharringtonine
(STAT inhibitor) II

MIDOSTAURIN (PKC412)

NCT03686345 Core binding factor AML Newly diagnosed Midostaurin + Standard induction II

NCT03280030 AML with FLT3-ITD
and/or TKD Newly diagnosed

Midostaurin + Standard
induction/consolidation f/b
Midostaurin maitenance

II

NCT03512197 AML with FLT3-ITD
and/or TKD Newly diagnosed

Midostaurin + Standard
induction/consolidation f/b
Midostaurin maitenance

III

NCT03379727 AML with FLT3-ITD
and/or TKD Newly diagnosed

Midostaurin + Standard
induction/consolidation f/b
Midostaurin maitenance

III

GILTERITINIB (ASP2215)

NCT02236013 AML Newly diagnosed Gilteritinib + Standard
induction/consolidation I

NCT02752035 AML with FLT3-ITD
and/or TKD

Newly diagnosed and
ineligible to standard therapy Gilteritinib + Azacitidine III

NCT03730012 AML with FLT3-ITD
and/or TKD Relapsed or refractory Gilteritinib + Atezolizumab

(anti-PD-L1 antibody) I/II

NCT02310321 AML Newly diagnosed Gilteritinib + Standard
induction/consolidation I/II

NCT03182244 AML with FLT3-ITD
and/or TKD Relapsed or refractory Gilteritinib + Salvage

chemotherapy III

QUIZARTINIB (AC220)

NCT02668653 AML with FLT3-ITD Newly diagnosed Quizartinib + Standard
induction/consolidation III

NCT03723681 AML Newly diagnosed Quizartinib + Standard
induction/consolidation I

NCT02834390 AML Newly diagnosed Quizartinib + Standard
induction/consolidation IB

NCT03552029 AML with FLT3-ITD Relapsed or refractory or
ineligible to standard therapy

Quizartinib + Milademetan
(MDM2 inhibitor) I

NCT03135054 AML with FLT3-ITD Newly diagnosed or relapsed Quizartinib + Homoharringtonine
(STAT inihibitor) II

NCT03661307 AML with FLT3-ITD Newly diagnosed or relapsed Quizartinib + Decitabine +
Venetoclax (BCL-2 inhibitor) I/II

NCT03735875 AML with FLT3-ITD Relapsed or refractory Quizartinib + Venetoclax
(BCL-2 inhibitor) IB/II

CRENOLANIB (CP868596)

NCT03258931 AML with FLT3-ITD
and/or TKD Newly diagnosed Crenolanib + Standard

induction/consolidation III

NCT02283177 AML with FLT3-ITD
and/or TKD Newly diagnosed Crenolanib + Standard induction II

NCT03250338 AML with FLT3-ITD
and/or TKD Relapsed or refractory Crenolanib + Salvage

chemotherapy III

NCT02400281 AML with FLT3-ITD
and/or TKD Relapsed or refractory Crenolanib + Salvage chemo. or

Azacitidine I/II

NCT02626338 AML Relapsed or refractory Crenolanib + Salvage
chemotherapy I/II

NCT01522469 AML with FLT3-ITD
and/or TKD Relapsed or refractory Crenolanib + Standard

induction/consolidation IB

OTHERS

NCT00783653 AML with FLT3-ITD
and/or TKD Newly diagnosed Sunitinib + Standard induction I/II

NCT00469859 AML with FLT3-ITD
and/or TKD Relapsed or refractory Lestaurtinib + Salvage

chemotherapy I/II



Biomedicines 2020, 8, 245 13 of 21

6.3. Genetic Mutation Analysis

As described, the presence or absence of mutations in FLT3 has become an important
determinant of the treatment methods in AML. Currently, a companion diagnostic tool LeukoStratCDx
(Invivoscribe, Inc., San Diego, CA, USA) is widely used for the clinical use of FLT3 inhibitors in Japan,
the United States, and Europe, among others. However, LeukoStratCDx is only able to detect D835
and I836 mutations and cannot detect any other FLT-TKD mutations, including F691L. Therefore,
the instrument might incorrectly analyze the condition in patients with FLT3-TKD that is potentially
treatable by FLT3 inhibitors. Although intensive chemotherapy has ensured substantial clinical benefit
in AML patients, several patients eventually require targeted therapy, particularly young patients.
In addition, CEBPA and NPM1, and recently TP53, ASXL1 and RUNX1, have been determined to
be important markers prognosis [27,31,123], transplant eligibility, and treatment strategy. Even after
FLT3-ITD/TKD becomes undetectable in remission, the expression of persistently mutated genes such
as DNMT3A, TET2, SRSF2, and ASXL1 continues to be associated with high relapse rates and poor
prognosis [124]. Although the negative prognostic impact of FLT3-ITD might be, at least partially,
attenuated by upfront haploidentical stem cell transplantation (haplo-SCT) [125], FLT3 inhibitors
remain one of the useful choices for treating the majority of FLT3-mutated AML patients, especially
elderly and/or unfit people. To overcome resistance to FLT3 inhibitors, mutation analyses in patients
with resistance to FLT3 inhibitors are required to identify the genetic abnormalities that contribute
to drug-resistance and determine additional therapeutic targets. Genome-wide analysis using the
CRISPR-Cas9 single-guide RNA (sgRNA) library, a vector-mediated technique for the knockdown of
particular genes, revealed that the loss of SPRY3 and GSK3 confers resistance to quizartinib by inducing
the reactivation of the FGF/RAS/ERK pathway and Wnt signaling [126]. Likewise, in addition to FLT3
mutations, it is necessary to comprehensively evaluate various genetic abnormalities; comprehensive
mutation testing by next-generation sequencing (NGS) is expected to enable this. Accordingly,
we analyzed the cancer-related genetic abnormalities (i.e., in an NGS panel) in patients with AML who
were ineligible for intensive chemotherapy or developed recurrent/refractory cancer after initial therapy
(Foundation One Heme; we planned HM-SCREEN-JAPAN, an observational study that analyzes
and evaluates the relationship between prognosis by F1H). The primary goal of this project is the
development of F1H and the promotion of targeted therapy for AML [127].

7. Conclusions and Future Perspectives

This paper described the principal mechanisms of resistance to FLT3 inhibition and the current
investigations to overcome it. Secondary on-target mutations (i.e., FLT3-TKD) can be managed by
choosing type I inhibitors such as gilteritinib that are consistently active against FLT3-TKD as well as
FLT3-ITD, except for a “gatekeeper” F691L mutation. Covalently-coupling FF-10101 and other novel
FLT3 inhibitors are now under investigation and have shown promising data on FLT3 F691L. Strategies
for secondary off-target abnormalities and a part of primary resistance cannot be simple, regarding
the diverse relating genomic abnormalities and complex patterns of clonal evolution. Nevertheless,
some genetic abnormalities are/will be clinically targetable, expecting a synergistic anti-tumor effect
with FLT3 inhibition. For example, several agents targeting BCL-2, MDM2 and STAT as well as
conventional chemotherapy are being evaluated in combination with FLT3 inhibitors. Similarly,
abnormal RAS and PIM1 pathways as well as metabolic modifications (e.g., G6PD inactivation) are
subject to preclinical investigations. Recent studies have suggested the non-negligible importance
of clone-evolutional patterns in terms of acquiring resistance, which possibly affects clinical strategy
in managing FLT3-mutated AML. Simply, when you find two distinct targetable mutations and the
corresponding agents are available (e.g., FLT3-ITD and IDH2 mutation), you can choose either one
agent if both mutations are limited in a single leukemic clone, but if each mutations are found in
different clones, it is worth considering combination or sequential therapy, if allowed. Routine and
successive gene sequencing will help detecting additional targetable mutations and determining
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individual patterns of clone evolution, which would improve our clinical approaches along with the
development of novel agents and combination strategies.

Several new agents such as FLT3 inhibitors can create overlapping treatment options, especially
in the elderly, unfit AML patients as well as in relapse/refractory AML patients. A lot of clinical trials
evaluating the efficacy of promising investigational drugs in AML are ongoing and more drugs will
go to the market than ever before. Based on the resistant mechanisms during treatment, how to use
these new agents properly is one of the issues with the treatment of AML. Physicians should select an
optimal treatment depending on factors such as age, performance status, comorbidities, and genome
profiling analysis upon new diagnoses and during treatment.
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