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Chemosensory systems are deemed marginal in human pathology. In appraising
their role, we aim at suggesting a paradigm shift based on the available clinical
and experimental data that will be discussed. Taste and olfaction are polymodal
sensory systems, providing inputs to many brain structures that regulate crucial visceral
functions, including metabolism but also endocrine, cardiovascular, respiratory, and
immune systems. Moreover, other visceral chemosensory systems monitor different
essential chemical parameters of “milieu intérieur,” transmitting their data to the brain
areas receiving taste and olfactory inputs; hence, they participate in regulating the same
vital functions. These chemosensory cells share many molecular features with olfactory
or taste receptor cells, thus they may be affected by the same pathological events. In
most COVID-19 patients, taste and olfaction are disturbed. This may represent only a
small portion of a broadly diffuse chemosensory incapacitation. Indeed, many COVID-
19 peculiar symptoms may be explained by the impairment of visceral chemosensory
systems, for example, silent hypoxia, diarrhea, and the “cytokine storm”. Dysregulation
of chemosensory systems may underlie the much higher mortality rate of COVID-
19 Acute Respiratory Distress Syndrome (ARDS) compared to ARDSs of different
origins. In chronic non-infectious diseases like hypertension, diabetes, or cancer, the
impairment of taste and/or olfaction has been consistently reported. This may signal
diffuse chemosensory failure, possibly worsening the prognosis of these patients.
Incapacitation of one or few chemosensory systems has negligible effects on survival
under ordinary life conditions but, under stress, like metabolic imbalance or COVID-
19 pneumonia, the impairment of multiple chemosensory systems may lead to dire
consequences during the course of the disease.

Keywords: chemosensation, olfaction, taste, chemesthesis, carotid bodies, pulmonary neuroendocrine cells,
enterochromaffin cells, solitary chemoreceptor cells

INTRODUCTION

The ongoing COVID-19 pandemic has aroused some interest in taste and olfaction but even
so, anosmia and dysgeusia are considered curious symptoms that at best may help in early
differential diagnosis from benign respiratory tract infections (Menni et al., 2020) and, hopefully
not, as a possible sign of subsequent central nervous system involvement, related to the so-called
Long-COVID (Yong, 2021).
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Chemical senses are commonly considered little more than
evolutionary relics in humans. In everyday life, taste and olfaction
are deemed relatively unimportant for many persons. As a
matter of fact, often the impairment of olfaction was not even
perceived by patients themselves (Croy et al., 2012), at least in
pre-COVID-19 era. Olfaction or taste impairments, which may
be quantitative or qualitative (Ercoli et al., 2021) are usually
considered only with respect to the conscious awareness of
these sensory inputs. Anyhow, these impairments may have
important consequences on nutrition, social behavior, and mood
(Croy et al., 2010, 2014a), as well as on work and quality
of life (Brämerson et al., 2007). Actually, all the cells in our
body may detect the presence of different molecules in the
surrounding environment, yet only a few can use the detection
of some chemicals to inform the central nervous system for
organizing adaptive nervous or neuroendocrine responses that
may impact the whole body. In addition to olfaction and
taste, other cells monitor a wide range of chemicals inside our
body: carotid bodies, solitary chemoreceptor cells, pulmonary
neuroendocrine cells, and enterochromaffin cells. Furthermore,
other ill-defined chemosensory cells are scattered throughout
our body. Of all these inputs, we are rarely aware. In this
review, we will briefly explore all these chemoreceptor systems
and highlight their interconnections under physiological and
pathological states. The following sections will introduce the
chemical senses, their central connections and describe their
involvement in human pathophysiology with the aim to highlight
the intermingled contribution of different chemical receptors to
health and homeostasis maintenance.

Olfaction
Olfaction is probably the most intensively studied chemosensory
system. Odorant molecules may access the olfactory mucosa,
which hosts the olfactory receptor neurons, directly from the
nostrils leading to the orthonasal perception, or from the buccal
cavity, called the retronasal perception (Rombaux et al., 2009).
An impressive fraction of the mammalian genome, comprising
more than 300 genes in humans and even more in other
mammals (Olender et al., 2008), is dedicated to code for
olfactory receptor proteins (Buck and Axel, 1991), the canonical
olfactory receptors, apparently responsible for recognizing odors.
They are seven-transmembrane G-protein-coupled receptors
(GPCRs), monoallelicaly expressed in large amounts in olfactory
neurons (Table 1). Notably, they are expressed also in many
other tissues (see Maßberg and Hatt, 2018) and are deeply
involved, among other functions, in angiogenesis and vascular
tone modulation in the blood vessels (Dalesio et al., 2018),
and in regulating lipid and glucose metabolism (Zhang et al.,
2021). In addition, other receptors, although mainly expressed
in other tissues, are present to a lesser extent also in olfactory
sensory neurons. In humans, there are six genes encoding for
the trace amine-associated receptors (TAARs), five of which are
expressed in olfactory mucosa. They are seven-transmembrane
domain GPCRs (Fleischer et al., 2009) involved in recognizing
neurotransmitters and microbial by-products for regulating the
release of nutrient-related hormones and in the development
of immune cells (Gainetdinov et al., 2018). TAARs are also

expressed in the olfactory bulb, and they modulate limbic brain
areas involved in the emotional control of anxiety and depressive
behaviors (Espinoza et al., 2020). The 7-transmembrane GPCRs
formyl-peptide receptors are encoded by three genes in humans.
In mice olfactory mucosa, they switched from an immune role
to external molecules sensing, yet they still may trigger immune
responses (Dietschi et al., 2017). The olfactory epithelium also
hosts microvillous cells, which have been suggested to modulate
local responses (Hansen and Finger, 2008). They express the
TrpM5 receptor, a calcium-activated voltage- and temperature-
dependent channel for monovalent cation influx, which serves
as downstream effector in bitter, sweet, and umami transduction
both in taste and solitary chemoreceptor cells (see below; Burman
and Kaji, 2021). Other receptors are present in rodents, but
they are either absent or debated in humans, and these include
the membrane guanylyl cyclase-D in olfactory and septal organ
neurons and the seven transmembrane GPCRs vomeronasal
receptors type 1 and 2 (Fleischer et al., 2009), not reviewed here.

Moreover, receptors for many hormones, pertaining to
metabolism homeostasis, are present in olfactory mucosa,
including receptors for insulin, leptin, orexin, cholecystokinin,
adiponectin, NPY, and ghrelin, in addition to glucose transporters
and fatty acid sensors like CD36 (Palouzier-Paulignan et al., 2012;
Julliard et al., 2017). Also, the olfactory system is modulated by
the internal state (McIntyre et al., 2017). Hence, it makes sense
to consider the main olfactory system, not as a specific sensory
system able to detect only external molecules (odors), but rather
as a polymodal sensory system activated and modulated both by
external and internal chemical signals.

Trigeminal Chemesthesis
Besides olfactory receptors, the nose and the mouth host many
trigeminal terminals, which are present also in the eye (not
reviewed here) and are responsible for trigeminal “chemesthesis,”
presumably a mix of pain, tingling, thermal, numbing, and
other sensations arising from chemical receptors (Hummel
and Frasnelli, 2019). These terminals are stimulated by CO2,
menthol, capsaicin, eucalyptol, and a variety of other stimuli
(Konstantinidis et al., 2010; Hummel and Frasnelli, 2019). The
receptors for irritant chemical stimuli have been identified
in the trigeminal terminals as transient receptor potential
(TRP) channels and acid-sensing ion channels (ASICs), which
are heterotrimeric and permeable to sodium, and two-pore
potassium channels (KCNK; Simons et al., 2019). Trigeminal
afferents express the following TRP channels, which are six-
transmembrane domains homotetramer cation channels: TRPA1,
broadly tuned to give pungent sensation and with multiple
regulations; TRPV1, which mediates capsaicin hot and acid-
sensing; TRPV3, which mediates thymol, eugenol, and fatty
acids metabolites; and TRPM8, which mediates the freshness
of menthol, while TRPM5 is expressed in trigeminal ganglia
(Vandewauw et al., 2013). The first two may also modulate bitter,
sour, and salt taste perception by releasing neuromodualtors
like CGRP and substance P (Hummel and Frasnelli, 2019;
Rhyu et al., 2021). The trigeminal stimuli may interact with
olfaction peripherally (Tremblay and Frasnelli, 2018), modulate
olfactory bulb activity in the rat (Schaefer et al., 2002), and
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TABLE 1 | Main receptor types expressed in the different peripheral chemosensory structures.

Receptor Olfactory
mucosa

Trigeminal
nerve

Taste
buds

Carotid
bodies

Aortic
bodies

Solitary
chemoreceptor

cells

Entero-
chromaffin

cells

Pulmonary
neuroendocrine

cells

GPCR

Olfactory receptors X X X X X

Trace amine-associated receptors X X

Formyl-peptide receptors X

T1R1-T1R3 umami taste receptor X X

T1R2-T1R3 sweet taste receptor X X

T2R bitter taste receptor X X X

GPR* fatty acids receptors X X

TRP

TRPM5 X X X X

TRPM8 X X

TRPA1 X X

TRPV1 X X

TRPV3 X

Trpc5 X

Ionic channels

Acid-sensing Na+ channels (ASICs) X

Two-pore domain K+ channels (KCNK) X X

KATP X

OTOP1 proton channel - sour taste receptor X

Epithelial Sodium channels (ENaC) -salty taste X

P2X ATP receptors X X X X

NADPH oxidase-K+ channel X

See text for details and references. GPCR, G-protein coupled receptors; TRP, transient receptor potential channels; X, present.
*Several receptors, see text.

greatly contribute to the food flavor perception, besides eliciting
protective reflexes like sneezing and coughing (Klein, 2019).

Taste
Strictly speaking, taste depends on the functioning of taste buds
present in the oral cavity, mainly on the tongue. The sensory cells
within these structures express membrane receptors responsible
for recognizing the five traditional sensory modalities of taste:
bitter, sweet, sour, salty, and umami (Kinnamon and Finger,
2019). Sweet and umami taste receptors are heterotrimeric
GPCRs, both are dimers composed of the T1R3 subunit
coupled to the T1R1 for umami and T1R2 for sweet receptors
(Kochem, 2017). For sweet taste, a parallel route involving
glucose transporters and KATP channels triggering calcium and
GLP-1 signaling has been proposed (Takai et al., 2015; von
Molitor et al., 2020). There are at least 25 bitter taste receptors
(T2Rs) in humans pertaining to the 7-transmembrane GPCR T2R
family (Behrens et al., 2007). The sour taste receptor has been
recently identified in mice as OTOP1, a proton channel with
12 transmembrane domains, assigning an ancillary role to the
amiloride-sensitive sodium channel ASIC, the hyperpolarization-
activated and cyclic-nucleotide gated HCN4, and PKD2L1, a TRP
channel (Turner and Liman, 2022). Salty taste in humans, like in
rodents, appears mainly mediated by the heterotrimeric (α, β, and
γ) epithelial sodium channel (ENaC), with humans expressing

also a fourth subunit (δ) localized to the taste-pore region of taste
cells (Bigiani, 2020).

As is the case for canonical olfactory receptors, also taste
receptors (mainly bitter and sweet receptors) are expressed
in many other cell types outside the mouth and in turn
may modulate the release of different hormones (Behrens and
Meyerhof, 2019). All these cell types, including taste receptor
cells and taste receptor-expressing cells like tuft, brush, or
solitary chemoreceptor cells in different tissues, may have
a common phylogenetic origin and may serve defensive or
digestive functions (Sbarbati and Osculati, 2005). Bitter taste
receptors are expressed in the lung-smooth muscle with a
bronchodilation function (An and Liggett, 2018). Also, bitter
taste receptors are found in testis, bladder, heart, kidney, brain,
airway epithelial, immune, and smooth muscle cells, serving
different functions according to the molecular machinery and
possible neural connections of the different cell types (Lu et al.,
2017; Martens et al., 2021).

In addition to taste receptors, also other types of receptors
are expressed in sensory cells of taste buds: a high number of
molecules involved in various immune mechanisms, especially
of the innate system, are present, including Toll-like receptors
(Wang et al., 2009), cytokines, and their receptors (Feng et al.,
2014). Recently, taste cells were also found to express olfactory
receptors (Malik et al., 2019). Moreover, as is the case for olfactory
neurons, receptors for many hormones and neurotransmitters
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are also expressed on taste bud cells (Calvo and Egan, 2015).
Lastly, different receptors of the TRP family are involved in
different sensory mechanisms, like thermal, mechanical, and pain
sensations, and also in taste. Notably, genomic polymorphism of
TRPV1 has been associated with pain and salty taste sensitivity
(Aroke et al., 2020).

Other Chemoreceptors: Carotid and
Aortic Bodies, Solitary Chemoreceptor
Cells, Pulmonary Neuroendocrine Cells,
and Enterochromaffin Cells
Other chemosensory systems are present within our body, but
at variance with olfaction and taste, they convey information
on internal molecules. While providing fundamental inputs for
homeostasis, they rarely give rise to conscious perception.

Carotid and Aortic Bodies
Carotid bodies are positioned close to carotid bifurcation and
have multiple functions. Their structure closely resembles that
of taste buds (Gonzalez et al., 2014), and similarly, they
use purinergic transmission between sensory cells and nerve
terminals (Finger et al., 2005). Carotid bodies are innervated by
the glossopharyngeal (Hering’s) nerve expressing P2X purinergic
receptors at complex quadripartite synapses. These sense
ATP released from chemosensory cells, which are excited by
the inhibition of resting potassium currents via TASK two-
pore domain potassium channels (Buckler, 2007; Piskuric and
Nurse, 2013). Besides pannexin-1, different connexins functional
hemichannels are present in the carotid body sensory cells and
nerve terminals, Cx43 and Cx36, respectively, and may contribute
to cell coupling under resting state, which is relieved upon
chemosensory stimulation (Reyes et al., 2014). The first function
that was described for carotid bodies was their ability to measure
oxygen partial pressure in plasma and, to a lesser extent, plasma
CO2 and pH. These incoming data allow the regulation of gases
and acid–base balance in the blood, and ventilation in a reflex
way, as a consequence of stressor stimuli like sleep apneas,
exposure to high-altitude environment, but also in lung diseases
like asthma and COPD (Whipp, 1994). Actually, the activation
of carotid bodies induces a reflex bronchoconstriction (Nadel
and Widdicombe, 1962), claiming for carotid body denervation
as a treatment for asthma and COPD (Winter and Whipp,
2004). Moreover, carotid bodies orchestrate the responses to
physical exercise, a common physiological stressor, allowing
the estimation of functional capacity and hence predicting the
clinical responses also to non-physiological stressors like surgery
(Levett et al., 2018).

Glucose sensing, which serves a vital homeostatic function,
is under the control of multiple central (ventromedial
hypothalamus and several areas in the pons and medulla)
and peripheral chemosensors located in the oral cavity,
gastrointestinal tract, portal vein, and curiously, in the carotid
bodies (Donovan and Watts, 2014). Carotid bodies are indeed
sensitive to glucose (Pardal and López-Barneo, 2002) and
metabolic signals and also to inflammatory signals since insulin,
leptin, and pro-inflammatory cytokines activate the carotid

bodies, inducing a sympathetic overactivation that leads to
glucose intolerance and insulin insensitivity (Sacramento et al.,
2020). The carotid body-induced sympathetic overactivation may
thus underlie metabolic syndrome and systemic hypertension
(Kim and Polotsky, 2020) and justify carotid body denervation
or pharmacological targeting as possible therapies (Lastra et al.,
2014; Pijacka et al., 2016; Sacramento et al., 2017). These,
however, are not without risk, given the relevance of carotid
bodies in the response to acute hypoxia and hypercapnia in
particular in hypertensive subjects (Conde, 2018). Hence,
carotid body impairment is involved to various extents in the
pathophysiology not only of respiratory dysfunction but also
of hypertension, insulin resistance, and metabolic syndrome.
The molecular machinery subtending these abilities is still
under investigation, anyhow carotid bodies are known to
express canonical olfactory receptors like Olfr78 (the mouse
ortholog of human OR51E2) that senses lactate produced under
hypoxia (Chang A. J. et al., 2015) and ion channels, like the
ATP-sensitive P2X2 ionotropic receptor, which are similar to
those of taste nerve processes (Rong et al., 2003; Finger, 2005;
Yang et al., 2012), depicting similar processes for transmission of
information (Kinnamon and Finger, 2013).

At variance with carotid bodies, which are clumped at a single
site and are sensitive to arterial oxygen partial pressure, aortic
bodies are patches of chemosensory cells innervated by the vagus
nerve, distributed along the aortic arch. Their function is less
explored in humans; in experimental animals they are sensitive
to hemoglobin oxygen saturation (Piskuric et al., 2014). Red
blood cells release ATP via pannexin-I channels in response
to the conformational change in desaturated hemoglobin, and
ATP, in turn, activates P2X receptors on aortic bodies’ nerve
terminals to enhance the response of local chemosensory cells,
which are supposed to share the same transduction mechanism as
carotid bodies (Piskuric and Nurse, 2013). Aortic bodies mainly
serve, together with similar chemosensory cells sparsely located
in the thorax and abdomen, to regulate circulation (Piskuric and
Nurse, 2013) by triggering reflexes in response to hypoxiemia,
in particular when carotid bodies’ function is blunted or absent
(Prabhakar and Peng, 2004). Actually, both these systems sense
different features of oxygen shortage and foster the relevant
functional response, which are enhanced respiratory drive
via carotid bodies for decreased oxygen partial pressure and
increased cardiovascular activation for decreased hemoglobin
saturation, thus paving the way for addictive responses.

Solitary Chemosensory Cells
Solitary chemosensory cells (Finger et al., 2003), also known
as brush cells in airways and tuft cells in the gastrointestinal
tract, are present on most mucosal surfaces including nasal, oral,
respiratory, and intestinal mucosa (Sbarbati and Osculati, 2005).
Noteworthy, many solitary chemosensory cells are interspersed
in the nasal mucosa. These cells express canonical T2R bitter
taste receptors and transduction pathways, sense bitter molecules
including those originated by bacteria, stimulate the trigeminal
terminals with acetylcholine, and participate in regulating
immune responses (Carey et al., 2016), although presumably
they are involved also in other functions. They are polymodal
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chemosensors for irritants and bacterial signals that release
acetylcholine and are also involved in regulating mucosal innate
immune response (Tizzano et al., 2010; Saunders et al., 2014).
These cells form a heterogeneous population since sometimes
they may co-express T2R and T1R taste receptors, while in other
cases cells do not appear innervated (Tizzano et al., 2010).

In the lower airways, tuft cells release acetylcholine when
stimulated by bacterial compounds and they modulate ciliary
beating, while the function of tuft cells in the stomach and the
urethra appears less clear, even if their number is associated with
microbial colonization and appears to drive the antimicrobial
response (Schneider, 2021). In the small intestine, tuft cells
express both T1R and T2R (O’Leary et al., 2019). They sense a
variety of molecules and are closely linked to type 2 immunity,
triggering aversive responses through immune and neuronal cells
(Schneider et al., 2019).

Enterochromaffin Cells and Pulmonary
Neuroendocrine Cells
At the mucosal interface between the internal and external
environment, similar cells, namely enterochromaffin cells in the
gut and pulmonary neuroendocrine cells in the lungs, monitor
the chemical features of the external environment.

Pulmonary neuroendocrine cells are a small percentage (less
than 1%) of pulmonary epithelial cells, innervated by the vagus
nerve (Noguchi et al., 2020). They sense oxygen through a
NADPH oxidase coupled to a potassium channel sensitive to
oxygen. They may sense multiple chemical parameters from
hypoxia to air pollutants in bronchial air (for example nicotine
sensing through nicotinic Ach receptors), secrete serotonin,
other peptides, and also ATP, which acts on autoreceptors
and nerve terminals’ P2X receptors, and are involved in
regulating Type 2 immune response (Noguchi et al., 2020).
They amplify allergic asthma responses (Sui et al., 2018) via
a neuroimmune mechanism (Pavón-Romero et al., 2021), yet
mitigate hypoxic injury (Shivaraju et al., 2021). Besides, they
are also mechanosensitive through the cation channels Piezo2
and Trpc5 (Noguchi et al., 2020). They appear overactive in
patients suffering from lung diseases, including asthma, COPD,
and bronchopulmonary dysplasia (Noguchi et al., 2020), and
contribute to altered sensitivity toward volatile molecules (Gu
et al., 2014). In the respiratory system, they are also involved
in regulating inflammatory response (Branchfield et al., 2016),
lung blood flow (Fu et al., 2002), and bronchial muscle tone
(Skogvall et al., 1999).

Both the enterochromaffin cells and pulmonary
neuroendocrine cells, as isolated cells or clustered at airway
bifurcations in neuroepithelial bodies, whose anatomical
structure closely resembles that of carotid bodies and taste buds
(Lauweryns and Cokelaere, 1973), express GPCRs including
canonical olfactory receptors; enterochromaffin cells also express
bitter taste T2R receptors and trace amine-associated receptors
(TAR1; Kidd et al., 2008; Gu et al., 2014; Bellono et al., 2017).
Interestingly, the stimulation with an olfactory receptor ligand
triggers serotonin release in the colon and modulates anion
secretion and epithelial permeability (Kaji et al., 2011).

Enterochromaffin cells also express TRPA1, the alpha2A-
adrenoreceptor, SNAT1/2 glutamine transporters, GLUT and
SGLT glucose transporters, ABST bile salt transporters, and toll-
like receptors (Kidd et al., 2008; Bellono et al., 2017; Wang H.
et al., 2019). They are by far the major source of serotonin in
mammals (Erspamer, 1937), and their afferent signals are carried
mainly by vagus nerve fibers (Hagbom et al., 2011). They release
serotonin in response to glucose and evoke a reflex diminution
in gastric motility and subsequent emptying (Raybould et al.,
2003). Enterochromaffin cells can sense multiple metabolic and
homeostatic parameters of the intestinal lumen, for example,
glucose and free fatty acids from microbiota (Reigstad et al.,
2015) and relay them to the nerve cells (Bellono et al., 2017).
In this way, they can monitor energy substrates’ availability
in the intestinal lumen through glucose and free fatty acids
receptors, activate afferent fibers, and regulate storage and the
use of nutrients; hence they take part in controlling body
metabolism and energy expenditure. These cells can detect
luminal antigens and modulate the immune response to intestinal
microbiota by activating the mucosal immune system. Moreover,
they are sensitive to mechanical stimuli and hence regulate
gastrointestinal motility (Martin et al., 2017). Enterochromaffin
cells are a subset of enteroendocrine cells (Gunawardene et al.,
2011), which sense long-chain fatty acids through CD36, GPR40,
and GPR120; short-chain fatty acids through GPR41 and GPR43;
endogenous lipid metabolites with GPR119; glucose through
SGLT1; aminoacids through umami taste receptor, CaSR, and
GPRC6A; and peptides through PepT1, leading to GLP1 and
cholecystokinin release (Raka et al., 2019; Burman and Kaji,
2021; Duca et al., 2021). They are innervated by the vagus nerve
(Kaelberer et al., 2018), depicting a neural pathway for direct
nutrient sensing.

CHEMOSENSORY CENTRAL
CONNECTIONS

Afferent pathways from the peripheral chemosensory cells to the
central nervous system can be structured in two sections, one
entering from the brainstem and one from the olfactory bulb, but
notably, inside the brain, they largely converge on the same areas
(see Table 2 for a summary).

Chemosensory systems, including taste and olfaction, have
many intricated subcortical connections also in the primate brain
and, regardless of sensory information they convey, they are
in a position to take part in shaping the integrated responses
to external and internal stress conditions, under almost every
instance. These responses involve cardiovascular, respiratory,
endocrine, and immunologic functions that are essential for
coping effectively with stress, and hence for survival. A brief
outline of chemosensory central nervous pathways will highlight
their complex connections.

Humans have higher olfactory thresholds than macrosmatic
mammals, although not so poor as commonly thought. Yet, when
it comes to olfactory pathways, human subcortical connections
are extensively developed, similar to other mammals. In other
mammals, different sensory organs are hosted in the nasal
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TABLE 2 | Summary of the main projection areas of the different peripheral chemosensory systems.

Primary afferents First relay station within the
brain

Subcortical projection areas Cortical integrative area

Main Olfactory epithelium Olfactory nerve Main olfactory bulb Amygdala, hypothalamus Olfactory cortex
Orbitofrontal cortex

Trigeminal nerve Trigeminal nerve Nucleus of the solitary tract,
trigeminal spinal nucleus

Hypothalamus Gustatory cortex
Orbitofrontal, cortex

Taste buds Facial, glossopharyngeal,
and vagus nerves

Nucleus of the solitary tract,
trigeminal spinal nucleus

Hypothalamus Gustatory cortex
Orbitofrontal cortex

Carotid bodies Glossopharyngeal nerve Nucleus of the solitary tract Retrotrapezoid nucleus -
Brainstem respiratory centers

*

Aortic bodies Vagus nerve Nucleus of the solitary tract Brainstem cardiovascular
control centers

*

Solitary chemosensory cells Trigeminal nerve (lung) Nucleus of the solitary tract Brainstem nuclei, hypothalamus *

*Integration can be achieved through additional passages so that stimulation can in some cases become conscious and lead to conscious responses. See text for
details and references.

cavity, including vomeronasal, septal organ, and Grueneberg
ganglion, all projecting to the (main or accessory) olfactory bulbs
(Weiler and Farbman, 2003; Matsuo et al., 2012; Mucignat-
Caretta, 2021), while in humans, olfactory fibers originate almost
exclusively from main olfactory mucosa and run through the
first cranial nerve, the olfactory nerve, and contact olfactory bulb
mitral cells, the main collector of afferents. From here, olfactory
projections radiate mainly, yet not exclusively, to three amygdala
subregions, possibly involved in the setup of motor response
to olfactory stimuli (medial amygdala), reward and memory
processes (cortical amygdala), and multisensory integration
(periamygdaloid complex; Noto et al., 2021). Notably, amygdala
expresses the acid-sensing ion channel ASIC1a, which centrally
senses hypercapnia and acidosis and drives the subsequent fear
responses in mice (Ziemann et al., 2009), while the human
hortolog ACCN2 is associated with amygdala structure and
function in panic disorders (Smoller et al., 2014). The human
orbitofrontal cortex is the final recipient of sensory information
and is involved in reward and emotional value of sensory
stimuli, including olfaction and taste (Rolls, 2021), and decision-
making in olfactory-driven food intake (Seabrook and Borgland,
2020). Other projections reach the olfactory nucleus, taenia
tecta, entorhinal and piriform cortex, the so-called olfactory
cortices, and olfactory tubercle, which appears to modulate
odor-guided eating (Murata, 2020). Interestingly, also trigeminal
stimuli can activate the piriform cortex, converging on the
same chemosensory integrative center after entering the brain
from the hindbrain (Hummel and Frasnelli, 2019). Moreover,
all these areas receive modulatory dopaminergic inputs from
the midbrain ventral tegmental area involved in reward (Oades
and Halliday, 1987; Deutch et al., 1988). From the entorhinal
cortex, olfactory information then reaches the hippocampus,
while subsequent projections from the amygdala run to the
hypothalamus (premammillary nuclei, medial preoptic area, and
ventromedial nucleus) and bed nuclei of stria terminalis, thus
involving, according to old terminology, the limbic system, well
known for controlling emotional behavior. Interestingly, the bed
nuclei of the stria terminalis are involved in anxiety behavior
triggered by hypercapnia and acidosis (Taugher et al., 2014).

The bed nuclei of stria terminalis and hypothalamus are in
turn both connected to many other brain areas, including the
brainstem nuclei (Mucignat-Caretta, 2021), and are involved in
linking inflammation to complex homeostatic behaviors, like
feeding and its dysregulation (Guillemot-Legris and Muccioli,
2017; Wang Y. et al., 2019). The hypothalamus appears thus as
a chemosensory hub that regulates not only emotional and social,
often competing, behavior but also visceral homeostatic functions
like glycemia, appetite, energy expenditure, blood pressure,
heart function, respiration, and immune system through
neurohormonal and sympathetic activation to downstream
hindbrain targets (Henderson and Macefield, 2021; Khodai and
Luckman, 2021; Nakamura et al., 2022).

At variance to olfaction, most other chemosensory afferent
fibers enter into the brainstem through the 5th (trigeminus),
7th (facial), 9th (glossopharyngeal), and 10th (vagus) cranial
nerves. From the middle of the XIX century, brainstem is known
to regulate mammalian metabolism, after Claude Bernard’s so-
called piqûre diabétique, actually transient hyperglycaemia and
glycosuria, triggered by the puncture of the floor of the fourth
ventricle (Li, 1952; Feldberg et al., 1985); hence it is not surprising
that the center that orchestrates visceral output according to
sensory inputs resides in the brainstem. This center is the nucleus
of the solitary tract.

Gustatory afferents converge in a rostro-caudal topographic
way through facial, glossopharyngeal, and vagus nerves on the
nucleus of the solitary tract and then relay (in rodents) to the
pontine parabrachial nuclei, and the motor nuclei of cranial
nerves to mediate taste-induced reflex responses (Rolls, 2019).
Noteworthy, there is a large anatomical overlap between visceral
chemosensory afferent fibers and taste afferents in peripheral
nerves. Most afferent fibers from the carotid body and tongue
posterior taste bud are already intermixed, both running through
glossopharyngeal nerve and petrosal ganglion (Leonard et al.,
2018). Afferent vagal fibers carry sensory information from
pulmonary neuroendocrine cells (van Lommel et al., 1998) and
express the purinergic receptor P2RY1, while other vagal sensory
afferents from the lung express both NPY2 receptor and the
capsaicin receptor TRPV1 (Chang R. B. et al., 2015). Afferent
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TABLE 3 | List of the diseases in which olfactory and/or taste impairments are most frequently detected (see text for additional information).

Process/organ Disease Relevant references

Physiological process Aging Landis et al., 2004; Bhattacharyya and Kepnes, 2015; Seubert et al.,
2017

Poisoning (acute or chronic) Peripheral or central degeneration Genter and Doty, 2019

Infectious diseases COVID-19 Karamali et al., 2022

Different viruses, bacteria, fungi, and protozoa Doty, 2019

Neurodegenerative diseases Parkinson’s disease Marin et al., 2018

Multiple sclerosis Fleiner et al., 2010; Goverover et al., 2020

Alzheimer’s disease and dementia Lang et al., 2006

Neuropsychiatric diseases Psychosis Catalan et al., 2021

Anorexia nervosa Mai et al., 2020

Depression Athanassi et al., 2021

Dysmetabolic diseases Obesity Holinski et al., 2015

Metabolic syndrome-type 2 diabetes Rasmussen et al., 2018; Zhang et al., 2019; Catamo et al., 2021; Faour
et al., 2022

Type 1 diabetes Falkowski et al., 2020

Cachexia Hutton et al., 2007; Zhou et al., 2017

Anorexia of elderly Wysokiński et al., 2015

Cancer Lung cancer Spencer et al., 2021

Metastatic cancer Landis et al., 2004; Spotten et al., 2017

Autoimmune disorders Fibromyalgia Amital et al., 2014

Systemic lupus erythematosus Bombini et al., 2018

Autoimmune involvement in neuropsychiatric disorders Moscavitch et al., 2009

Cardiovascular diseases Cardiovascular disease Roh et al., 2021

Coronary heart disease Seubert et al., 2017

Hypertension Liu et al., 2018

Kidney diseases Chronic kidney disease Griep et al., 1997; Nigwekar et al., 2017; Robles-Osorio et al., 2020;
Iacono et al., 2021

Liver diseases Liver disease, cirrhosis Landis et al., 2004; Heiser et al., 2018

Gastrointestinal disorders inflammatory bowel diseases Steinbach et al., 2013; Sikander et al., 2015

Lung diseases COPD Chapman-Novakofski et al., 1999

Cystic fibrosis Di Lullo et al., 2020

Sporadic reports of chemosensory disturbances in other rarer diseases are also present in the literature.

vagal fibers also carry information from some taste buds in the
palate and epiglottis, solitary chemosensory cells in the lower
airways (Krasteva et al., 2011), enterochromaffin cells (Hagbom
et al., 2011), and glucose-sensing neurons (Browning, 2010;
Grabauskas et al., 2010), and also from the aortic bodies (Piskuric
and Nurse, 2013). Some afferent vagal fibers from the gut express
olfactory receptors and may participate in the control of feeding
with mechanosensitive vagal afferents (Bai et al., 2019). Notably,
astrocytes within the nucleus of the solitary tract respond to
glucoprivation and participate in increasing the gastrointestinal
motility (McDougal et al., 2013). Afferent trigeminal fibers carry
information from oral and nasal solitary chemosensory cells
(Carey et al., 2016). Of note, the trigeminal spinal nucleus receives
inputs from cranial nerves 5, 7, 9, and 10.

Then, from the nucleus of the solitary tract, through
the ventroposteromedial (VPM) nucleus of the thalamus,
taste inputs reach the gustatory cortex, namely the anterior
insula in the temporal lobe and the frontal operculum
(Rolls, 2019), and terminate in the orbitofrontal cortex, which
integrates multiple sensory inputs, including olfactory (see
above, Rolls, 2021), and ultimately affects food intake and

visceral modulation, besides memory (Vincis and Fontanini,
2019). However, a second bidirectional connection originates
from the nucleus of the solitary tract to subcortical targets:
the lateral hypothalamus, central nuclei of amygdala, and
bed nuclei of the stria terminalis, and areas involved in
feeding, autonomic modulation and emotional control, as
mentioned above.

Also, the carotid bodies project to the nucleus of the solitary
tract, which is bidirectionally connected with the retrotrapezoid
nucleus in the rostroventral medulla oblongata: this nucleus also
contains central chemoreceptors to detect local hypercapnia or
acidification, including the proton-modulated TASK-2 potassium
channels and the proton-activated GPCR GPR4 that drive the
respiratory reflexes. Also, in these responses astrocytes are
involved to modulate neuronal activation (Guyenet et al., 2016).
Connexin 26 hemichannels are present in astrocytes within this
nucleus: they are gated by CO2 and participate in the centrally-
driven ventilatory response to hypercapnia (van de Wiel et al.,
2020). Electrical coupling driven by connexins was also found in
the nucleus of the solitary tract under hypercapnic acidosis (Reyes
et al., 2014).
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The nucleus of the solitary tract, which is embedded in
brainstem reticular formation, receives an astonishing number
of different, not only chemosensory, afferents from basically the
entire body through facial, glossopharyngeal, and vagus nerves.
From a physiological point of view, it is a crucial hub, integrating
incoming sensory signals with hypothalamic outflow, and being
potentially connected to the whole brain and body, it is the
ideal anatomical center to drive autonomic, neurohormonal,
and behavioral responses to stress (Holt, 2021), both acute and
chronic (Herman, 2018).

CHEMOSENSATION IN HUMAN
PATHOPHYSIOLOGY

Dysfunction of carotid body/glossopharyngeal nerve has
also been postulated in the potential pathogenesis of non-
respiratory diseases like metabolic syndrome-type 2 diabetes and
hypertension (Kim and Polotsky, 2020; Sacramento et al., 2020).
In the past, vagal dysfunction has been hypothesized in luetic pain
(Mylona et al., 2010; Klein and Ridley, 2014), gastroduodenal
ulcer (Szabo et al., 2016; Zalecki et al., 2020), and more recently
in obesity-metabolic syndrome (Berthoud and Neuhuber, 2019),
but on the whole, in clinical practice, little attention is currently
paid to the involvement of chemosensory systems in these
diseases. A possible explanation is that chemosensory systems
are not considered essential for human life, and hence have a
minor position in medical training. Impairments in taste and
olfaction in some cases are not even perceived by the patients
themselves and do not affect body survival. With the exception
of a few professionals, loss of olfaction or taste is rated very low
by health insurance companies also.

Notwithstanding their importance, bilateral therapeutic
ablation of carotid bodies in humans leads to apparently
negligible side effects (Iturriaga et al., 2021). Therapeutic
vagotomies have been performed in humans with only
minor side effects (Szabo et al., 2016). The same is true for
afferent trigeminal signals generated in the oral and nasal
chemoreceptors (Barham et al., 2013), and a perturbation of this
pathway seems to bear minor consequences. In mice, ablation of
pulmonary neuroendocrine cells is apparently harmless (Song
et al., 2012). These puzzling data suggest that the lack of a
single chemosensory input is dispensable, or at least may be
compensated by other inputs.

OLFACTION AND TASTE ON THE STAGE
WITH COVID-19

Interest in taste and olfaction as diagnostic and/or prognostic
tools has been fuelled by the recent COVID-19 pandemic, during
which many persons developed chemosensory symptoms. The
loss of sense of smell apparently had a prevalence of 47%, ranging
from 11 to 84%, due to differences in symptom detection (for
a discussion see Karamali et al., 2022), with psychophysical
testing being more reliable than self-report (Bordin et al., 2021).
The actual prevalence of these disorders is hardly estimated

because patients may not report paucisymptomatic disease or
may not be aware of their disturbances. Actually, psychophysical
testing detects more subjects with impaired sensitivity than
subjectively reported (Hummel and Podlesek, 2021). In addition,
with the spreading of vaccination, a difference in prevalence
between pandemic waves could not be attributed to differences
in virus variants since the appearance of symptoms in vaccinated
people may depend on their immunological state. Moreover,
virus sequencing requires expansion in cell cultures to obtain
enough viruses for sequencing, which may introduce variations
in genomic sequence, an issue rarely taken into account in the
literature (World Health Organization [WHO], 2021, p. 18).
Another critical point is the process of recovery, which may
benefit from olfactory training (Addison et al., 2021; Denis
et al., 2021), yet may be not smooth, since some olfactory
symptoms like parosmias and phantosmias may emerge well after
the end of the infection, and in some cases, olfactory recovery
does not take place (Cecchetto et al., 2021; Ohla et al., 2022).
The different chemosensory systems (taste, olfaction, carotid
body, solitary chemosensory cells, pulmonary neuroendocrine
cells) share common molecular characteristics, including some
receptors and integrative centers (see above). Hence, it is
conceivable that, in addition to taste, olfaction, and trigeminal
chemesthesis (Parma et al., 2020), other chemosensory systems
may also be affected by SARS-CoV2 virus. As a matter of
fact, the virus has been detected in autoptical carotid bodies of
patients with COVID-19 (Lambermont et al., 2021). Notably,
ACE2, TMPRSS2, and Neuropilin-1, the three entry sites for
SARS-CoV2, have been recently found in the glossopharyngeal
and vagus nerves near the medulla (Vitale-Cross et al.,
2022). Apparently, SARS-CoV2 enters the sustentacular cells
in olfactory mucosa and destroys it (Bryche et al., 2020),
opening its way to the endothelial and nervous tissues up to
the central nervous system (Meinhardt et al., 2021), even if
the direct involvement of the olfactory nerve seems implausible
(Butowt et al., 2021).

It can be suggested that some peculiar symptoms of
COVID-19 patients may be explained by the impairment of
chemosensory systems. The “silent hypoxia,” that is the absence
of dyspnea in the presence of life-threatening hypoxemia,
may depend on the damage of carotid bodies; moreover,
the impairment of other oxygen sensor systems like the
pulmonary neuroendocrine cells may be involved, causing
a lack of hypoxic pulmonary vasoconstriction (Caretta and
Mucignat-Caretta, 2021). The gastrointestinal symptoms of
COVID-19 patients are related to an increase in serotonin
levels (Ha et al., 2021; Jin et al., 2021), presumably dependent
on the dysregulation of enterochromaffin cell function, which
usually produces the vast majority, roughly 90%, of gut
serotonin (Koopman et al., 2021). An increase in blood
serotonin concentration, again linked to impairment of
enterochromaffin cell function, is reported in inflammatory
bowel disease (El-Salhy et al., 1997) and in rotavirus diarrhea
(Hagbom et al., 2011).

Also, the so-called cytokine storm, that is the dysregulation
of innate immune response leading to COVID-19 ARDS
catastrophic outcome (Hue et al., 2020), may be related to
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the impairment of vagal immune reflexes (De Virgiliis and Di
Giovanni, 2020). The brain fine-tunes the anti-inflammatory
pathway via cholinergic vagal efferents, whose stimulation may
prevent fatal endotoxemia (Tracey et al., 2001; Andersson,
2005; Chavan et al., 2017). This is in addition to the
extensive regulation of respiration and lung defensive reflexes
constantly operated via mechano- and chemosensory vagal
inputs (Mazzone and Undem, 2016).

Lastly, solitary chemosensory cells (Saunders et al., 2014)
and enterochromaffin-pulmonary neuroendocrine cells may
be involved in the inflammatory pathway or the immune
modulation (Koopman et al., 2021; Pavón-Romero et al., 2021).

CHEMOSENSORY DISTURBANCES IN
HUMAN PATHOLOGY

Loss of taste and olfaction are easily and non-invasively
tested in vivo. It is not specific of COVID-19 disease, since
it may be caused by many different chemicals, infections,
traumatic, or neurodegenerative processes. However, also during
physiological aging, a decrease in chemosensory performance
is well-documented (Landis et al., 2004; Seubert et al., 2017),
and increasing age is associated with the rising prevalence
of smell disturbances (Bhattacharyya and Kepnes, 2015).
Notably, dysfunction of olfaction correlates with increased
mortality and with patient frailty in the general population,
possibly mediated by inflammation (Liu et al., 2019; Laudisio
et al., 2019). Conversely, dysfunction of olfaction and/or
taste has been reported in many diseases encompassing
dysregulation of multiple visceral functions. In addition to head
trauma (Howell et al., 2018), tumors affecting the olfactory
areas and epilepsy of the temporal lobe affecting olfactory
areas, for which olfactory involvement is apparent, given
below is a non-exhaustive list of diseases and conditions
in which an impairment in olfaction (most often), taste,
or both, has been demonstrated in human patients (see
Table 3):

- Chemical insults from different sources, including many
compounds used in agriculture (Genter and Doty, 2019).

- Infections, mostly from viruses, but also from bacteria,
fungi, and protozoa (reviewed in Doty, 2019).

- Neurodegeneration (Marin et al., 2018): Parkinson’s
disease, multiple sclerosis (Fleiner et al., 2010; Goverover
et al., 2020), Alzheimer’s disease, and dementia
(Lang et al., 2006).

- Neuropsychiatric illnesses: psychosis (Catalan et al., 2021),
anorexia nervosa (Mai et al., 2020), and depression
(Athanassi et al., 2021)-noteworthy, a long-known model
of depression is the olfactory-bulbectomized rodent, in
which the increase of pro-inflammatory cytokines may alter
monoamine neurotransmission (Leonard and Song, 2002).

- Obesity (Holinski et al., 2015), metabolic syndrome-type 2
diabetes (Rasmussen et al., 2018; Zhang et al., 2019; Catamo
et al., 2021; Faour et al., 2022) and to a lesser extent type 1
diabetes (Falkowski et al., 2020).

- Cachexia, not only in cancer patients (Hutton et al.,
2007; Zhou et al., 2017), anorexia of the elderly
(Wysokiński et al., 2015).

- Lung cancer (Spencer et al., 2021).
- Metastatic cancer (also not undergoing chemotherapy)

(Landis et al., 2004; Spotten et al., 2017).
- Different autoimmune disorders, like fibromyalgia (Amital

et al., 2014) and systemic lupus erythematosus (Bombini
et al., 2018). A link between smell impairment and
autoimmune dysregulation has been devised also for
neuropsychiatric disorders (Moscavitch et al., 2009).

- Coronary heart disease is associated with olfactory
dysfunction (Seubert et al., 2017), cardiovascular disease in
general is more likely associated with olfactory dysfunction
in men (Roh et al., 2021), while alteration of smell and
taste are prospectively associated with a larger increase
in blood pressure (Liu et al., 2018). It may be recalled
that epithelial sodium channels participate in salty taste
transduction but also in blood pressure regulation, like the
olfactory receptors located in the kidney.

- Hemodialyzed, peritoneal dialysis patients or untreated
chronic kidney disease patients (Griep et al., 1997;
Nigwekar et al., 2017; Robles-Osorio et al., 2020; Iacono
et al., 2021).

- Liver disease (Landis et al., 2004) and cirrhosis
(Heiser et al., 2018).

- Inflammatory bowel diseases (Steinbach et al., 2013),
including Crohn’s disease and ulcerative colitis. The latter
patients show also increased peripheral serotonin levels
(Sikander et al., 2015).

- Taste thresholds are altered in COPD
(Chapman-Novakofski et al., 1999).

- Cystic fibrosis (Di Lullo et al., 2020).

Of note, some of the above-mentioned diseases that may
correlate with taste/olfaction impairment are risk factors for a
fatal outcome of the SARS-CoV2 virus infection, for example,
obesity (Khan et al., 2020), older age, heart disease, dementia,
diabetes, and chronic liver or kidney disease (Singh et al., 2020;
Kim et al., 2021; CDC, 2022, and references therein).1

With few exceptions, only a minor diagnostic value has been
attributed to taste/olfaction alterations. At best, a role has been
recognized in modifications of food intake because of changes
in food hedonic value. As a matter of fact, this variegated list of
supposedly unrelated diseases might suggest that chemosensory
impairment is an uninteresting side effect potentially caused by
many vaguely defined agents.

Conceivably, it makes sense to reverse this interpretation:
alterations of taste and olfaction may signal impairment also
of other chemosensory systems, and hence have a causal part
in worsening the clinical course of diseases because of (up
or down) dysregulation of homeostatic mechanisms, which
commonly rely on chemosensory inputs. As an example, it
may be worth considering two strikingly opposite diseases,

1https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-
with-medical-conditions.html
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cachexia (which includes increased resting energy expenditure
and anorexia) and obesity.

These multifactorial syndromes share common biochemical
characteristics. In addition to alteration of food intake,
similar metabolic changes are present as insulin resistance,
wasting of muscle tissue, altered energy expenditure (in both
diseases, elevated or reduced depending on the patient),
increased lipolysis, unregulated excess protein catabolism,
chronic inflammation (Mantovani et al., 1997; Zwickl
et al., 2019), deregulated activation of the innate immune
system (Tisdale, 2001; Laviano et al., 2017; Antuna-Puente
et al., 2021); in most patients similar multiple endocrine
dysfunctions are present and, notably, the elevation of
peripheral serotonin levels (Crane et al., 2015; Minami
et al., 2003). Both central and peripheral serotonin, from
the enterochromaffin cells, appear as a major player in
the regulation of metabolism (Yabut et al., 2019). All these
parameters are, to a large extent, under control of chemosensory
systems. A causal relationship is not yet established, but is
worth considering.

Under ordinary life conditions, chemosensory impairment
of a single system does not seem to be detrimental for
survival. Its malfunctioning presumably is to a large extent
compensated by the other chemosensory mechanisms. However,
under stress conditions, COVID-19 pneumonia for example, and
also altered glucose homeostasis (Bentsen et al., 2019), every
chemosensory system may become vital for enabling the brain
to organize an efficient functional homeostatic response that
could effectively increase the survival rate. As an instructive
example, the lateral parabrachial nuclei respond to hypoglycemia
and are connected to the hypothalamic ventromedial nucleus and
subsequently to the bed nucleus of the stria terminalis (Meek
et al., 2016), all areas involved in chemosensation, and part of the
central autonomic network that orchestrate the body integrated
responses (Benarroch, 1993).

Under this perspective, loss of taste and olfaction may be
considered not only as a diagnostic tool but also as a warning
signal of the impairment of visceral chemosensory systems.
Defective chemosensory information and the subsequent
dysregulation of CNS homeostatic responses should be
considered an important contributor to the higher death rate
of COVID-19 in comparison to other ARDS (Hue et al., 2020).
Similarly, impairment of chemical senses may have a crucial role
in the above-mentioned non-infectious chronic diseases.

CLINICAL TESTING OF
CHEMOSENSORY FUNCTIONS

Smell (both orthonasal and retronasal), taste, and also
chemesthesis can be easily tested in patients with different
techniques, ranging from psychophysical to electrophysiological
(Hummel and Podlesek, 2021), validated in humans (Doty, 2018;
Whitcroft and Hummel, 2019). The most used psychophysical
tests for olfactory function include the Sniffin’ Sticks (Hummel
et al., 1997, 2007) and the University of Pennsylvania Smell
Inventory Test – UPSIT (Doty et al., 1984) and its cross-cultural

version (Doty et al., 1996). More recent tests include the
food-associated olfactory test (Denzer-Lippmann et al., 2017)
and the culturally independent retronasal test of olfactory
function (Croy et al., 2014b). Taste is usually tested with taste
strips (Landis et al., 2009; Doty et al., 2021). Psychophysical
testing is implemented for trigeminal functions, also in an
automated way (Hummel et al., 2016; Huart et al., 2019). The
central processing of chemosensory stimuli has been investigated
with chemosensory event-related potentials for olfactory and
trigeminal stimuli (Kobal and Hummel, 1988) and with the more
recent neuroimaging techniques, including PET and fMRI (Small
et al., 2004; Gottfried and Zald, 2005; Barresi et al., 2012; Mantel
et al., 2019), also using computerized pulse-ejection systems
(Kumazaki et al., 2016; Mazzatenta et al., 2016).

When it comes to visceral chemosensory afferents, non-
invasive validated procedures are largely lacking, perhaps because
their dysfunctions are generally rated low on the list of clinical
symptoms and they are not usually examined in ordinary
clinical practice.

Procedures that may evaluate (not exclusively) carotid
body function are “6 mins walking test” and hypoxic
ventilatory response (Grove et al., 1995; Niewinski et al.,
2021), which are well-validated, and newer tests are being
proposed (Bhattacharyya et al., 2020). In addition, hypoxic
pulmonary vasoconstriction and hypoxic or high-altitude
bronchoconstriction depend (also) on serotonin release
and the activation of pulmonary neuroendocrine cells, for
which a specific test is lacking. For enterochromaffin cells
and other visceral chemosensory systems, no functional
test is available for humans. At present, for visceral
chemosensory systems, examination of bioptical or autoptical
material is the only available option. Nevertheless, putting
chemosensory dysfunction on the clinical spot may help in
understanding the patient’s symptoms and the underlying
pathophysiology of complex diseases, involving multiple systems’
integrated response.

CONCLUSION

The different chemosensory systems should be considered as
sharing common characteristics and being involved in the
regulation of vital functions, also in humans, under physiological
and pathological conditions. Many vital visceral functions
are under the control of multiple, apparently overlapping
mechanisms, as an example, oxygen partial pressure is measured
in the plasma by carotid body cells, in bronchial air by pulmonary
neuroendocrine cells, in extracellular fluid by yet unknown tissue
receptors, while oxygen binding to hemoglobin is sensed by the
aortic bodies. Conversely, none of these sensory systems are
actually redundant, each measuring the same parameter under
different conditions, fostering the proper functional adaptive
responses. Furthermore, these chemosensory systems are not
specific for respiratory gases, they measure also different chemical
parameters acting as polymodal sensors. Further examples may
be quoted from blood pressure control, glucose control, and
food intake. Apparently, all these functions rely on a set of
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chemosensory inputs that are necessary for the brain to properly
implement a coordinated homeostatic response.
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