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Quorum sensing (QS) is a cell-to-cell communication system based on the exchange

of small intercellular signal molecules, such as N-Acyl homoserine lactones (AHLs),

which act as cell-density mediators of QS gene expression, and are highly variable

both in types and amounts in most Gram-negative Proteobacteria. Understanding

the regulation of AHLs may contribute to the elucidation of cell density-dependent

phenomena, such as biofilm formation. Vibrio alginolyticus is among the most frequently

observed marine opportunistic Vibrio pathogens. However, AHL production of this

species and its effects on biofilm formation remain to be understood. Here, our study

reported the diverse AHL profiles of 47 marine-isolated V. alginolyticus strains and the

effects of exogenous 3-oxo-C10-HSL on biofilm formation under different temperature

conditions (16◦C and 28◦C). A total of 11 detected AHLs were produced by the isolates,

of which 3-OH-C4-HSL, 3-oxo-C10-HSL and 3-oxo-C14-HSL comprised the largest

proportions. We also observed that moderate levels of exogenous 3-oxo-C10-HSL (10

and 20 µM) could induce or enhance biofilm formation and alter its structure, while

high levels (40 and 100 µM) did not significantly improve and even inhibited biofilm

formation in V. alginolyticus. Further, regulation by exogenous 3-oxo-C10-HSL was both

concentration- and temperature-dependent in V. alginolyticus.

Keywords: N-acyl homoserine lactones, quorum sensing, Vibrio alginolyticus, 3-oxo-C10-HSL, biofilm formation,

biofilm matrix, CLSM

INTRODUCTION

Quorum Sensing (QS) is an important communication system used by bacterial cells, which
allows monitoring of cell density and regulation of functions within the population. This process
depends on the production, secretion, accumulation and recognition of signaling autoinducers
(AIs; Bassler, 1999). The initial regulation of QS provides a cascade of controls that propels the
bacterial community to express an advantageous phenotype and ensure their survival (Williams
et al., 2007; Hawver et al., 2016). Further studies revealed that QS could also receive feedback
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from its components, allowing the cells to adjust their regulation
in real-time (Reuter et al., 2016). Efficiency in changing the
bacterial phenotype controlled by QS during proliferation is a key
factor to effectively coordinate the behavior of the entire bacterial
population, such as the biofilm formation in response to hostile
conditions, thus, enhancing the survival of Proteobacteria.

N-acyl homoserine lactones (AHLs) are a typical group of
small AI molecules that mediate the QS phenomenon in gram-
negative Proteobacteria especially in responding to changes in the
environment (Williams et al., 2007; Garcia-Aljaro et al., 2008).
AHLs are amphiphilic chemical compounds that share the same
structure including a hydrophilic homoserine lactone ring and
a hydrophobic acyl side chain (O’Connor et al., 2015). The
diversity of AHLs is based on the number of carbon atoms (4,
6, 7, 8, 10, 12, 14, 16, or 18) on the acyl side chain and substituent
(hydrogen, oxhydryl or carbonyl; Kumari et al., 2006) present
on the 3rd carbon atom, which are also the basis for distinction
and important in regulating specificity. As an essential part of the
QS system, AHL molecules are synthesized by certain synthases
(e.g., LuxI type synthases) and bind to transcripts (e.g., LuxR
type regulators), followed by the binding of the AHL-receptor
complex to DNA, initiating the downstream regulation of QS-
controlled genes (Swift et al., 2001). The N-(β-ketocaproyl)-
homoserine lactone (3-oxo-C6-HSL) in Vibrio fischeri was the
first AHL to be described (Eberhard et al., 1981), and subsequent
studies have uncovered more AHLs produced by other Gram-
negative Proteobacteria. These include N-butyryl-homoserine
lactone (C4-HSL), N-(3-hydroxybutyryl)-homoserine lactone (3-
OH-C4-HSL), N-hexanoyl-homoserine lactone (C6-HSL), N-
(3-oxodecanoyl)-homoserine lactone (3-oxo-C10-HSL), among
others (Valiente et al., 2009; Wang et al., 2013; Tan W. S.
et al., 2014; Jamuna and Ravishankar, 2016). AHLs are vital
in the capacity of pathogenic Proteobacteria to invade surfaces,
and are also involved in multiple physiological processes such
as bioluminescence, production of virulence factors, biofilm
formation and drug resistance (Horng et al., 2002; Lumjiaktase
et al., 2006; Garcia-Aljaro et al., 2012) as summarized in Table 1.

Biofilm formation is an important characteristic of bacterial
communities that enhances invasion leading to infection, drug
resistance, and pathogenicity (Soto et al., 2007; Naves et al.,
2008). Thus, it is critical to elucidate the underlying mechanisms
involved in QS system to further understand biofilm formation.
Recent studies showed that QS controls the transformation of
bacteria from being free-living or planktonic to colonial or
biofilm-forming state, and further regulates and coordinates
the behavior of the entire community, allowing synchronized
response to environmental challenges to enhance viability
(Mireille Aye et al., 2015; Okutsu et al., 2015). QS further
regulates the construction of biofilm matrix and speeds up the
process of biofilm formation (Tseng et al., 2016). It could also
indirectly upregulate biofilm thickness by increasing bacterial
motility (Yang et al., 2014). QS also increases dispersal of
detached bacteria from the matured biofilm to trigger a new
developmental cycle of biofilm formation (Emerenini et al.,
2015).

Increasing reports of characterized AHLs in different
bacterial species have provided valuable insights into how

AHLs regulate bacterial biofilm formation. For example,
Vinoj et al. (2014) showed that AHLs produced by Vibrio
parahaemolyticus could regulate formation of biofilm and
enhancement of colonization. Meanwhile, N-octanoyl-
homoserine lactone (C8-HSL) and 3-oxo-C12-HSL were also
found to be responsible for biofilm formation in Pseudomonas
aeruginosa and Aeromonas hydrophila, respectively (Abbas
et al., 2007; Khajanchi et al., 2009). N-dodecanoyl-homoserine
lactone (C12-HSL) positively regulated biofilm formation in
Salmonella enteritidis (Campos-Galvao et al., 2016). Huang
et al. (2009) further showed that AHLs changed in the course
of biofilm formation, first being dominated by short side-
chain AHLs followed by an increase in long side-chain AHLs,
indicating a feedback regulation mechanism. However, bacterial
growth, QS molecules and biofilm formation could also be
inhibited by key abiotic variables, such as temperature and
composition of the culture medium (Yates et al., 2002; Sheng
et al., 2013; Turner et al., 2014; Lamas et al., 2016). Hare
et al. (1981) for example, observed that the production of
extracellular collagenase and alkaline protease needed for biofilm
formation were inhibited when the temperature increased from
30◦C to 37◦C.

Vibrio alginolyticus is one of the most abundant aquatic
pathogenic Vibrio (Mechri et al., 2013), proliferating well in a
wide range of environments including offshore and coastal areas,
rivers, sediments, and saline waters (Narracci et al., 2014). It
also has a wide geographic distribution, with recorded presence
in several marine environments, such as east (He et al., 2016)
and south China Sea (Wu et al., 2016), west Korea sea (Kang
et al., 2016), and Indian Ocean (Gauzere et al., 2016). This
environmental opportunistic pathogen has long been a threat to
fishing industry, and has been reported to cause human diseases
worldwide. Human V. alginolyticus infections include several
acute and even deadly conditions like diarrhea, septicemia, and
the inflammation of multiple tissues (Caccamese and Rastegar,
1999; Sganga et al., 2009; Gauzere et al., 2016). So far, there
are relatively fewer studies on biofilms of V. alginolyticus, and
mostly concentrated on virulence-related genes in correlation
with biofilm formation. Despite evidence that biofilm forming
V. alginolyticus strains activate stronger immune response in
juvenile tiger shrimp than planktonic strains, and that the former
were superior to the latter in stimulating non-specific immune
response (Sharma et al., 2010), studies on biofilm effects in
human infection remain limited.

Recent studies on genetic basis of QS regulation in V.
alginolyticus mostly focused on the possible effects of LuxR
type genes (i.e., virulence related gene Hfq) and QS signaling
transcriptional regulators, e.g., motility regulated extracellular
protein Pep and the colony phenotype intermediated protein
valR (Chang et al., 2010; Cao et al., 2011; Liu et al., 2011).
Although the LuxR type homolog of V. alginolyticus could
induce the alteration of colony phenotype and regulate flagellar
biosynthesis relating to its biofilm formation (Chang et al.,
2010), the direct QS signaling control on V. alginolyticus biofilm
formation has not yet been well explored, which might be
partly attributed to the less understood production of AHLs
in V. alginolyticus. To our knowledge, no detailed profiling of
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TABLE 1 | Biological and physiological functions of AHL molecules.

AHL molecules Biological and physiological functions Bacteria/host References

C4-HSL Tissue infection; biofilm formation Vibrio vulnificus; Vibrio sinaloensis Valiente et al., 2009; Tan P. W. et al., 2014

C6-HSL Biofouling; bacterial cells attachment; multidrug

resistance; carpospore liberation; pili assembly

Bosea massiliensis; Escherichia coli;

Bacteroides fragilis; Shewanella algae;

Acinetobacter baumannii

Pumbwe et al., 2008; Luo et al., 2015;

Okutsu et al., 2015; Singh et al., 2015;

Jamuna and Ravishankar, 2016

3-OH-C6-HSL Phenazine production Pseudomonas chlororaphis subsp.

aurantiaca

Morohoshi et al., 2017

3-oxo-C6-HSL Bioluminescence; pigmentation; prodigiosin

production; biofouling

V. fischeri; Serratia marcescens; B.

massiliensis

Eberhard et al., 1981; Horng et al., 2002;

Okutsu et al., 2015

C8-HSL Sliding motility; biofilm formation; oxidative stress

protection

S. marcescens; P. aeruginosa;

Burkholderia pseudomallei

Horng et al., 2002; Lumjiaktase et al.,

2006; Abbas et al., 2007

3-oxo-C8-HSL Violacein production; biofouling Pseudoalteromonas ulvae; B. massiliensis Mireille Aye et al., 2015; Okutsu et al.,

2015

C10-HSL Biofouling; extracellular hydrolytic enzymes

production; plant virulence and pathogenicity;

biofilm formation; primary root length inhibition

Lysobacter sp.; Pantoea ananatis;

Pseudomonas fuscovaginae; Serratia

liquefaciens; Aeromonas sobria;

Arabidopsis thaliana (host)

Mattiuzzo et al., 2011; Zhao et al., 2014;

Jatt et al., 2015; Okutsu et al., 2015;

Zhang et al., 2016

3-oxo-C10-HSL Mupirocin resistance; biofouling; extracellular

protease activation; hemolysin activation

Pseudomonas fluorescens; Lysobacter

sp.; Vibrio fluvialis

El-Sayed et al., 2001; Wang et al., 2013;

Okutsu et al., 2015

C12-HSL Biofilm formation; plant virulence factor activation;

bacterial pathogenicity

S. enteritidis; P. fuscovaginae Mattiuzzo et al., 2011; Campos-Galvao

et al., 2016

3-OH-C12-HSL Biofilm formation; bacterial pathogenicity Vibrio scophthalmi Garcia-Aljaro et al., 2012

3-oxo-C12-HSL Inflammation; immune response activation; host

immune response activation; swimming and

adhesion inhibition; biofilm formation

P. aeruginosa; P. ulvae; A. hydrophila Khajanchi et al., 2009; Vikstrom et al.,

2009; Davis et al., 2010; Mireille Aye et al.,

2015

3-oxo-C14-HSL Callose deposition; accumulation of phenolic

compounds; lignification of cell walls enhancement;

modulation of membrane dipole potential

P. aeruginosa; Arabidopsis thaliana (host) Davis et al., 2010; Schenk et al., 2014

3-OH-C14-HSL Plant pigmentation Rhodospirillum rubrum Mastroleo et al., 2013

AHL signals and their effects on biofilm formation have yet
been carried out in V. alginolyticus. Therefore, the elucidation
of AHL profiles in V. alginolyticus and their relationship with
biofilm formation is of interest to the control of V. alginolyticus
infections.

To fill in some of these knowledge gaps, with the aim of
gaining further understanding of mechanisms involved in QS,
our study focused on the identification of different AHLs in
V. alginolyticus strains, which were also used to investigate
the detailed relationship between biofilm formation and AHLs
under different temperature conditions. The acquired knowledge
provides interesting perspectives regarding the roles of QS
signaling molecules in aquatic pathogens.

MATERIALS AND METHODS

Bacterial Isolation and Growth Conditions
A total of 47 strains of marine V. alginolyticus (hereafter referred
to as strains N◦01–N◦47) were isolated from Bohai, China and
cultured in 2216E broth (BD Biosciences, USA) at 28◦C and
180 rpm of shaking. Biochemical identification was performed
using the VITEK 2 compact system (Biomérieux, France),
following the manufacturer’s instructions. For the cross-feeding
assay, the transformed biosensor strain Chromobacterium
violaceum CV026 was used for short side-chain AHLs detection
(C4-HSL–C8-HSL; McClean et al., 1997; Ravn et al., 2001),
and was cultured in Luria Bertani (LB) broth with 40 µg/mL

kanamycin (Sigma, USA) at 28◦C and 180 rpm of shaking for 16
h. The transformed biosensor strain Agrobacterium tumefaciens
KYC55 (JZA1-1) was used for long side-chain AHLs (C8-HSL–
C14-HSL) detection (Zhu and Mekalanos, 2003; Golberg et al.,
2011), and was cultured in LB broth with 1 µg/mL tetracycline,
100 µg/mL spectinomycin and 100 µg/mL gentamycin (Sigma,
USA) at 28◦C and 180 rpm of shaking for 16 h. The positive
control strains Erwinia carotovora GS101 (Chhabra et al.,
1993) and P. aeruginosa PAO1 (Tateda et al., 2003) were
cultured in LB broth for 24 h and 16 h, respectively. All
bacterial strains used in this study were listed in Supplementary
Table 1.

AHL Detection of V. alginolyticus
Cross-Feeding Assay for AHL Production
To determine the range of AHLs produced by strains N◦01–
N◦47, the bacterial suspension was cross-fed with 2 biosensor
strains (C. violaceum CV026 and A. tumefaciens KYC55)
following the methods reported by Han-Jen et al. (2013) with
modifications. Briefly, strains were cultured for 36 h and pelleted
by centrifugation at 10,000 rpm for 15 min. Bacterial suspension
was adjusted to a concentration of approximately 5 × 106

Colony Forming Units per milliliter (CFU/mL; OD570 = 0.03),
incubated with the reporter strains for 36 h at 28◦C. Before
using A. tumefaciens KYC55 as the reporter strain, a new layer of
5-bromo-4-chloro-3-indolyl-β-D-galactoside (X-Gal, Amresco,
USA) was added on the agar plate.
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AHLs Profiling through High-Performance Liquid

Chromatography Tandem Mass Spectrometry

(HPLC-MS/MS) Assay
The HPLC-MS/MS method was used to quantify the AHLs
produced by all V. alginolyticus strains (N◦01–N◦47). The
47 strains were adjusted to approximately 3 × 105 CFU/mL
and were cultured for 36 h. After incubation, each culture
was centrifuged at 10,000 rpm for 10 min and AHLs in
supernatants were extracted with ethyl acetate with 0.1% (v/v)
formic acid. Extracts were freeze-dried using an ALPHA 1-2LD
plus lyophiliser (CHRIST, Germany) as previously described in
Tan W. S. et al. (2014). The extract was resuspended in 80 µL
of 99.9% HPLC-grade methanol (Thermo Fisher, USA) and was
analyzed by HPLC-MS/MS.

The Prominence UFLC-XR (SHIMADZU, Japan) system
was utilized for HPLC analysis with a Symmetry C18

reverse-phase column (3.5 µm, 2.1 × 100 mm; Waters,
USA). Subsequently, MS analysis was performed on a Q-
trap 5500 (AB SCIEX, USA) system using MRM mode
with positive ion scanning. C4-HSL, N-(3-hydroxybutyryl)-
homoserine lactone (3-OH-C4-HSL), C6-HSL, 3-oxo-C6-HSL,
C8-HSL, N-(3-hydroxyoctanoyl)-homoserine lactone (3-
OH-C8-HSL), N-(3-oxooctanoyl)-homoserine lactone
(3-oxo-C8-HSL), N-decanoyl-homoserine lactone (C10-HSL),
3-oxo-C10-HSL, C12-HSL, N-(3-hydroxydodecanoyl)-
homoserine lactone (3-OH-C12-HSL), 3-oxo-C12-HSL,
N-(3-hydroxytetradecanoyl)-homoserine lactone (3-OH-
C14-HSL), and N-(3-oxotetradecanoyl)-homoserine lactone
(3-oxo-C14-HSL) were selected as the standards purchased
from Sigma (USA). Two mmol/L ammonium acetate and 0.1%
(v/v) formic acid were diluted in water as mobile phase A or
in methanol as mobile phase B. The flow rate (0.2 mL/min),
analysis time (40 min/sample), and mobile gradient profile
were optimized (Supplementary Table 2), and 20 µL of each
sample was analyzed. The following conditions were used
for MS: electron spray ionization (ESI) was set at 4.5 kV, the
curtain gas (CUR) at 20 Psi, collision gas (CAD) at medium,
temperature (TEM) at 650◦C, ion source gas 1 (GS1) at 40 Psi,
and ion source gas 2 (GS2) was set at 45 Psi. Also, optimum
quantitative ion pairs (m/z) were determined under Multiple
Reaction Monitoring (MRM) mode following McLafferty and
Turecek (1993) rearrangement (Supplementary Table 3), with a
linear correlation coefficient greater than 0.99 for each standard
compound (Supplementary Table 4). Standard curves were
drawn with the peak area on the Y-axis and the corresponding
concentration on the X-axis from which the slope was
calculated.

Detection of V. alginolyticus Biofilms
Biofilm Formation
The 47 strains (adjusted to 3 × 105 CFU/mL) were incubated
in 96-well polystyrene microplates (Corning, USA) at 28◦C
for 36 h from which biofilm formation was monitored.
A semi-quantitative adhesion test modified from Stepanovic
et al. (2000) was used. The CFU of suspended cultures were
counted. The microplates were first rinsed with phosphate-
buffered saline (PBS) solution and fixed with Bouin’s fluid

(LEAGENE, China) for 20 min, and then stained with crystal
violet (0.1%, w/v solution; LEAGENE, China) for 30 min, after
which the excess crystal violet was washed off. The biofilms
were dissolved in 95% (v/v) ethanol and quantified at OD570

with a microplate reader (Model 680, BIO-RAD, USA). The
standardized biofilm (BF) was calculated using the following
formula: Standardized OD570, sample = (original OD570, sample −

OD570, control)/logCFU/mL).
Effect of temperature on biofilm formation was then

investigated by subjecting the strains to a gradient of
temperature. Temperature regimes used were based on
those previously described by De Oliveira et al. (2014) and
Miller et al. (2016). Specifically, 3 temperatures (16, 28, and
40◦C) were selected, hereafter referred to as low, moderate
and high temperature conditions, respectively. Strain N◦24 (no
3-oxo-C10-HSL production and weak biofilm formation) and
strain N◦40 (high level of 3-oxo-C10-HSL production and strong
biofilm formation) were selected from the 47 strains for this
particular part of the study. Cultures were adjusted to 3 × 105

CFU/mL before being used.
To explore the effects of exogenous AHLs, specifically 3-

oxo-C10-HSL, on biofilm formation under different temperature
conditions, strains N◦24 and N◦40 were separately supplemented
with exogenous 3-oxo-C10-HSL at final concentrations of 1, 2, 5,
10, 20, 40, or 100 µmol/L. For biofilm formation detection, 200
µL of 3-oxo-C10-HSL treated strains were incubated in 96-well
polystyrene microplates at 16◦C or 28◦C for 36 h, and a culture
prepared with DMSO (AppliChem, Germany) was used as the
negative control. Finally, 1 mL of these cultures were incubated
in a two-chamber cell imaging cover glass system (Eppendorf,
Germany) while inclined to approximately 45◦ to form a clear
liquid-air interface, and was placed in a moist sterile incubation
box for 36 h at 16◦C or 28◦C before being used for confocal laser
scanning microscopy (CLSM) imaging. All treatments and assays
were performed in triplicates.

Fluorescence Labeling Microscopy (FLM)
Assay
Strains N◦24 and N◦40 were incubated in a 4-well glass Lab-
Tek R©II Chamber Slide System (NUNC, Denmark) while inclined
at approximately 45◦ to form a clear liquid-air interface, and
placed in a moist sterile incubation box. The FLM assay was
performed in the same cultures after 12, 24, 36, 48, 60, 72,
84, 96, 108, and 120 h incubation period. Treatments for each
strain were in triplicates. The wells were rinsed with PBS and
fixed with 4% paraformaldehyde (LEAGENE, China) for 30
min. Then, the wells were labeled by FITC-ConA (Sigma, USA)
for exopolysaccharides (EPS) and propidium iodide (PI; Sigma,
USA) for bacterial nucleic acid, before rinsed finally with PBS.
The slide was sealed with antifade mounting medium (Beyotime,
China).

The pictures were taken with a Nikon ECLIPSE Ti-S
Inverted Fluorescence Microscope (Nikon, Japan) equipped with
33 mm ND4/ND8 filters employing green filter detecting PI
fluorescence (500–550/615 nm excitation/emission wavelengths)
and blue filter to detect FITC fluorescence (400–490/525 nm
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excitation/emission wavelengths). The pictures were processed
with NIS-Elements BR 3.0 software (Nikon, Japan).

CLSM Assay of the Biofilm Matrix
The biofilms were treated in the same manner as described
in Section CLSM Assay of the Biofilm Matrix. Z-scans of the
images were taken using LSM710 3-channel Zeiss confocal laser
scanning microscope (Zeiss, Germany) equipped with TwinGate
main beamsplitter employing 543/576–718 nm and 488/493–542
nm excitation/emission wavelengths. Scans were processed and
reconstructed into 3D images using Zen v. 2.3 (Zeiss, Germany).

Five specific morphological traits were used as indices of
biofilm structure as obtained from CLSM images, namely
biomass, average and maximum thickness, roughness coefficient,
and microcolonies at the substrate (Derlon et al., 2010), which
were quantified and analyzed using the COMSTAT 2.1 software
following Heydorn et al. (2000) and Vorregaard (2008).

Analysis of variance (ANOVA) and detection of significant
differences (Dunnett’s test) were carried out using the
standardized OD570 data in SPSS 19 (IBM Statistics, USA).
All P-values were two-tailed, and the threshold for statistical
significance was set at 0.05. All results were presented as the

mean values ± standard deviations (SD) for all independent
experiments in each group.

RESULTS

AHL Profiling of V. alginolyticus
Cross-feeding results showed that no bacterial suspension
induced visible violacein production in C. violaceum CV026,
indicating a lack of short side-chain AHL production by the
tested V. alginolyticus strains. However, 43 out of the 47 strain
suspensions (Figure 1) showed distinct blue color change in A.
tumefaciens KYC55 with varying color intensities. In addition,
traces of diffusing blue color on reporter strain was observed
next to strain N◦25, which could indicate a strong long side-
chain AHL production by adjacent strain N◦27. The bioassay
results confirmed that most of the V. alginolyticus strains we
tested produced long side-chain AHLs.

HPLC-MS/MS results further showed that the V. alginolyticus
strains produced a total of 11 different AHLs, with each
strain producing more than 6 AHL types. Table 2 lists
all the detailed information about the detected AHLs and

FIGURE 1 | Detection of long side-chain AHL production in V. alginolyticus. Strain suspensions cross fed with biosensor A. tumefaciens KYC55. The “JZA1-1”

represents biosensor A. tumefaciens KYC55; the “P.C” (positive control) represents P. aeruginosa PAO1; the “N.C” (negative control) represents A. tumefaciens

KYC55; the “arrow” symbol represents the visible color change induced from the proximal end to the distal end of the inducer; the “dashed oval” symbol represents

the surface diffusion of the color change from the adjacent inducer.
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TABLE 2 | AHL profiling of the 47 V. alginolyticus strains by HPLC-MS/MS.

Strain

number

AHLs concentration level Detectable

AHL numbers

C4 3-OH-C4 C6 3-oxo-C6 C8 3-OH-C8 3-oxo-C8 C10 3-oxo-C10 C12 3-OH-C12 3-oxo-C12 3-OH-C14 3-oxo-C14

N◦01 + ++++ − + − + − ++ +++ ++ + ++ − +++++ 10

N◦02 + +++ − + − + − ++ +++ ++ + + − +++++ 10

N◦03 + +++++ + + − + − ++ +++++ ++ ++ ++ − ++++ 12

N◦04 + +++ − + − + − + + − + + − +++ 9

N◦05 + ++++ − + − + − ++ +++ − + + − +++ 9

N◦06 + +++ − + − + − + +++ − + + − +++ 9

N◦07 − +++++ − + − + − +++ ++ − − + − ++ 7

N◦08 + +++ − + − + − ++ +++ ++ + + − +++ 10

N◦09 − +++++ − + − + − ++ +++++ ++ ++ ++ − +++ 9

N◦10 + +++ − + − + − ++ +++ ++ + + − +++++ 10

N◦11 + ++++ − + + ++ ++++ + ++ ++ ++++ 11

N◦12 + +++ − + − + − ++ ++ ++ + + − +++ 10

N◦13 + +++ − + − + − ++ +++ − + + − +++ 9

N◦14 + ++++ − + − + − ++ +++++ + ++ + − ++++ 10

N◦15 + +++ − + − + − + +++++ ++ + + − ++++ 10

N◦16 + +++ − + − + − ++ +++ − + ++ − +++ 9

N◦17 + +++ − + − + − ++ +++ + + + − +++ 10

N◦18 + ++++ − + − + − ++ +++ − + + − +++ 9

N◦19 + +++ − + − + − ++ +++ − + ++ − ++++ 9

N◦20 + +++ − + − + − + ++ ++ + + − ++++ 10

N◦21 + +++ − + − + − ++ +++ − + ++ − ++++ 9

N◦22 + ++++ − + − + − ++ ++ − + ++ − ++++ 9

N◦23 + ++++ − + − + − ++ +++ − + + − ++++ 9

N◦24 − +++++ − + − + − ++ − − − + − +++ 6

N◦25 + ++++ − + − + − ++ +++ ++ + + − +++ 10

N◦26 − +++ − − − + − ++ +++ + + + − ++++ 10

N◦27 + +++ − − − + − ++ +++ + + + − ++++ 10

N◦28 + ++++ − + − + − ++ +++ − + ++ − ++++ 9

N◦29 + ++++ − + − + − ++ +++ ++ + ++ − ++++ 10

N◦30 + ++++ − + − + − + ++++ − + ++ − +++ 9

N◦31 + +++ − + − + − ++ +++ − + + − ++++ 9

N◦32 + +++ − + − + − ++ +++ + + + − ++++ 10

N◦33 + ++++ − + − + − +++ +++ − + + − ++++ 9

N◦34 + +++ − + − + − ++ +++ − + ++ − ++++ 9

N◦35 − ++++ − + − + − +++ +++ − − ++ − ++++ 7

N◦36 − ++++ − + − + − ++ +++ + ++ + − + 9

N◦37 + +++ − + − + − + +++ ++ + + − +++ 10

N◦38 + +++ − + − + − ++ +++ − + ++ − +++ 9

N◦39 + ++++ − + − + − ++ +++ ++ ++ + − ++++ 11

N◦40 + ++++ − + − + − +++ +++++ − + ++ − ++++ 9

N◦41 + +++ − + − + − ++ +++ − + ++ − +++++ 9

N◦42 + +++ − + − + − ++ +++ ++ + + − ++++ 10

N◦43 + +++ − + − + − ++ +++ ++ + + − ++++ 10

N◦44 + +++ − + − + − ++ +++ + + + − ++++ 10

N◦45 + ++++ − + − + − +++ +++ − + + − ++++ 9

N◦46 + +++ − + − + − ++ +++ ++ + + − ++++ 10

N◦47 + ++++ − + − + − ++ ++++ + ++ + − +++ 10

AHL levels produced by the marine-isolated V. alginolyticus strains were calculated and classified according to their concentrations. The “−” represents for not detected; the “+”

represents that AHL concentrations< 10 nmol/L; the “++” represents that 10 nmol/L< AHL concentrations< 100 nmol/L; the “+++” represents that 100 nmol/L< AHL concentrations

< 1 µmol/L; the “++++” represents that 1 µmol/L < AHL concentrations <5 µmol/L; the “+++++” represents that AHL concentrations > 5 µmol/L.
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concentration classification of 47 strains, the results showed
that the concentrations of short side-chain AHLs were all very
low except for 3-OH-C4-HSL, while those of the long side-
chain AHLs were in a large scale and varied in between strains.
The AHLs 3-oxo-C10-HSL, 3-OH-C4-HSL, and 3-oxo-C14-HSL
were the most dominant and were produced by all the tested
strains except for strain N◦24 (no 3-oxo-C10-HSL production).
C6-HSL was detected only in trace concentrations and only
produced by strain N◦03. Lastly, 3 AHLs including C8-HSL, 3-
oxo-C8-HSL and 3-OH-C14-HSL were not detected in all tested
strains.

Biofilms Formed by V. alginolyticus Strains
Semi-quantitative adhesion test revealed that the 47 strains
exhibited diverse biofilm-forming abilities after 36 hrs of
incubation (Figure 2). We further grouped the 47 strains based
on their level of biofilm formation namely, no biofilm (12 strains;
standardized biofilm:<0.01), weak biofilm producers (32 strains,
standardized biofilm: 0.01–0.05), moderate producers (2 strains;
standardized biofilm: 0.05–0.15), and a strain that had the highest
biofilm production (standardized biofilm: >0.15).

Furthermore, among these strains two showed remarkably
contrasting responses relative to 3-oxo-C10-HSL production
(Table 2) and biofilm formation (Figure 2). Specifically, strain
N◦24 produced 3-oxo-C10-HSL with weak biofilm formation,
while strain N◦40 produced high levels of 3-oxo-C10-HSL
accompanied by having the strongest biofilm formation. Thus,

the contrasting characteristics of biofilm formation of these 2
strains could suggest the distinct strain specificity in the effects
of exogenous 3-oxo-C10-HSL.

During culturing from 12 to 120 h, strain N◦24 did not
exhibit any bacterial cell adhesion, while strain N◦40 generated a
compact biofilm matrix with attached bacterial cells (Figure 3A).
In addition, the solid biofilm structures of strain N◦40 became
visible after 12 h, reaching a maximum in biovolume in
between 60 and 72 h, followed by a collapse beginning at
84 h. Moreover, the density of adhered bacterial cells reached
highest at the liquid-air interface, where the biofilm was
thought to be constructed in sheets. The structure gradually
changed into a cross-linked network away from the interface,
where the bacterial cells continued to grow and aggregated
(Figure 3B).

Effects of Exogenous 3-oxo-C10-HSL on
Biofilm Formation
Biofilm Formation under Different Temperatures
As shown in Figure 4, biofilm formation of strain N◦24
maintained very weak structure (standardized biofilm: 0.01–0.05)
at 16◦C and 28◦C, and further decreased at 40◦C (standardized
biofilm: <0.01). Biofilm formation of strain N◦40 significantly
increased at 16◦C compared to that at 28◦C but was significantly
weaker (standardized biofilm:<0.01) at 40◦C. These indicate that
to some extent, high temperature could inhibit V. alginolyticus
biofilm formation.

FIGURE 2 | Biofilms formation of 47 marine-isolated V. alginolyticus strains. The ability of 47 marine-isolated V. alginolyticus strains to form biofilms using the

semi-quantitative adhesion test. The “Standardized biofilm” refers to the average value of 3 replicates; the “error bar” represents standard deviation of 3 replicates.
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FIGURE 3 | Determination of biofilm formation in V. alginolyticus by FLM. (A) Representative images of biofilm formed by strain N◦40. Bar: 100 µm. (B) The matrix

and bacterial cells in the biofilm formed by strain N◦40. Bar: 50 µm. The “Solid rectangular box” symbol represents biofilm matrix constructed in sheets; the “dotted

rectangular box” symbol represents biofilm matrix in a network; the “solid circle” symbol represents a bacterial community formed by bacterial cells and matrix; the

“arrow” symbol represents the liquid-air interface.

FIGURE 4 | Biofilm formation of V. alginolyticus at different temperatures. Results of the semi-quantitative test of biofilm formation of strains N◦24 and N◦40 cultured

for 36 h at 16, 28, and 40◦C. The “Standardized biofilm” corresponds to the mean of 3 replicates with error bars for standard deviation; **P < 0.01; ***P < 0.001.

Effects of 3-oxo-C10-HSL on Biofilm Formation at

16◦C
As shown in Figure 5A, the biofilms of strain N◦24
significantly increased when supplemented with 2, 5,
10, and 20 µmol/L 3-oxo-C10-HSL. On the other hand,
biofilm formation of strain N◦40 significantly decreased
when supplemented with 40 and 100 µmol/L 3-oxo-
C10-HSL, but the other concentrations had no significant
effects.

As shown in Figure 5B, strain N◦24 formed a spotted
biofilm in the negative control group but formed a sheet-
like biofilm in groups supplemented with 10 and 20 µmol/L
3-oxo-C10-HSL. Biofilms of the 10 µmol/L 3-oxo-C10-HSL
treated group were more homogeneous and thinner than the
ridge-like biofilms of 20 µmol/L 3-oxo-C10-HSL treated group.
As shown in Figure 5C, strain N◦40 in the negative control
group formed a thick but non-homogeneous biofilm, with
bacterial cells covering the bottom of the matrix. However,
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FIGURE 5 | Biofilm formation of V. alginolyticus upon supplementation with exogenous 3-oxo-C10-HSL at 16◦C. (A) Quantification of biofilms formed by strains N◦24

and N◦40 cultured for 36 h at 16◦C using the semi-quantitative adhesion test. (B) Representative 3D-reconstructed biofilm structure of strain N◦24 using CLSM.

(C) Representative 3D-reconstructed biofilm structure of strain N◦40 using CLSM. The “Standardized biofilm” corresponds to the average value of 3 replicates; the

“error bar” represents standard deviation of 3 replicates; **P < 0.01; ***P < 0.001; the “N.C” (negative control) refers to the strains cultured in 2216E broth without

exogenous 3-oxo-C10-HSL for 36 h.
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in the 40 µmol/L 3-oxo-C10-HSL treated group, it formed a
ridge-like and rougher biofilm with a significantly decreased
matrix. Interestingly, in the 100 µmol/L 3-oxo-C10-HSL treated
group, no biofilms were formed and only few colonies were
observed.

Biofilms were thin and microcolonies were absent in the
negative control of strain N◦24. Compared to this, the biomass
and roughness of the biofilms with added 10 and 20 µmol/L
3-oxo-C10-HSL were significantly enhanced, but the average
thickness of both groups remained thin (5–7 µm) with several
detected microcolonies. For strain N◦40, the biomass and
maximum thickness of the 40 and 100 µmol/L 3-oxo-C10-HSL
treated groups decreased significantly compared to the negative
controls, where microcolony counts decreased especially in the
100 µmol/L 3-oxo-C10-HSL but its roughness was enhanced at
the same time (Table 3).

Effects of 3-oxo-C10-HSL on Biofilm Formation at

28◦C
Addition of 3-oxo-C10-HSL also affected the formation of
biofilms as shown in Figure 6A. For example, the biofilms of
strain N◦24 significantly decreased in 1µmol/L treated group but
became significantly higher in treatments added with 10 and 20
µmol/L. In contrast, biofilm formation in strain N◦40 was only
increased in 1 µmol/L 3-oxo-C10-HSL treated group.

Strain N◦24 in the negative control group had pinpoint-
like biofilm structure with no bacterial colonies (Figure 6B).
However, sparse biofilms with adhered bacterial cells were
detected in 10 µmol/L 3-oxo-C10-HSL treated group, and
scattered biofilms with small colonies were also detected in 20
µmol/L 3-oxo-C10-HSL treated group. Meanwhile, strain N◦40
in the negative control group formed a solid biofilm matrix
with approximately 100% substratum coverage (Figure 6C). In
1 µmol/L 3-oxo-C10-HSL treated group, thicker biofilms with
multiple layers of bacterial cells adhered to the matrix were
observed.

For strain N◦24, the biomass and roughness of the 10 and
20 µmol/L 3-oxo-C10-HSL treated groups were significantly
enhanced compared to the negative control group. Its thickness
also increased when added with 10 µmol/L of 3-oxo-C10-HSL
but more microcolonies formed after addition of 20 µmol/L.
For strain N◦40, the roughness of the 1 µmol/L 3-oxo-C10-HSL

treated group were the same as those in the negative control
group, while the biomass and average thickness increased with
more microcolonies (Table 4).

DISCUSSION

AHL Profiles of V. alginolyticus
As essential components of QS systems, AHLs have been detected
in many Vibrio species, including V. sinaloensis, V. brasiliensis,
V. ichthyoenteri, V. vulnificus, V. scophthalmi, V. anguillarum
(Buchholtz et al., 2006; Garcia-Aljaro et al., 2008; Valiente et al.,
2009; Li et al., 2010; Tan P. W. et al., 2014; Tan W. S. et al., 2014).
However, to date, no systematic study of AHL distribution in V.
alginolyticus are available, which hinders further understanding
on the mechanisms underlying V. alginolyticus infection controls
associated with QS system. Thus, the first step in our study was to
classify and identify the wide range of AHLs produced by the V.
alginolyticus isolates.

In this study, the negative results seen in C. violaceum CV026
detection suggest that the short side-chain AHLs might not be
produced in V. alginolyticus, or that the AHL concentrations
were below the detectable limit, consistent with those reported by
Nievas et al. (2012) using the same detection assay. In contrast,
the positive detection in A. tumefaciens KYC55 indicated that
most tested V. alginolyticus strains could produce various AHLs
(C4-HSL∼C14-HSL), most of which could be long side-chain
AHLs (C8-HSL∼C14-HSL) with varying level of AHL production
among strains. The HPLC-MS/MS we used to quantify the
AHLs provided more detailed information on their production
(Purohit et al., 2013). Out of the 14 target AHLs, our results
confirmed 11 kinds of AHLs existing in V. alginolyticus,
including both short and long side-chains, mainly dominated
by 3-OH-C4-HSL, 3-oxo-C10-HSL, and 3-oxo-C14-HSL. Despite
the exhaustive methods we used to profile the AHLs, the
other types may also be produced by V. alginolyticus but not
just detected in this study which warrants further studies and
investigations.

Current studies reported a wide range of AHLs produced
by Vibrio including C4-HSL, 3-OH-C4-HSL, C6-HSL, 3-oxo-
C6-HSL, 3-OH-C6-HSL, C8-HSL, 3-OH-C8-HSL, C10-HSL, 3-
OH-C10-HSL, 3-oxo-C10-HSL, 3-OH-C12-HSL, 3-oxo-C12-HSL
(Buchholtz et al., 2006; Garcia-Aljaro et al., 2008; Valiente

TABLE 3 | Quantitative analysis of the biofilm matrices of V. alginolyticus strains at 16◦C.

Strains and culture conditions BioMass (mg/cm3) Average thickness (µm) Max thickness (µm) Roughness

coefficient

Microcolonies at

substrate

N◦24 N.C 0.550 ± 0.072 5.106 ± 1.103 10.000 ± 4.243 0.910 ± 0.090 ND

10 µmol/L 3-oxo-C10-HSL 1.652 ± 1.198* 6.722 ± 1.725 17.000 ± 4.243* 1.543 ± 0.048* 2.500 ± 2.121*

20 µmol/L 3-oxo-C10-HSL 1.543 ± 1.177* 5.438 ± 1.279 13.000 ± 1.414 1.189 ± 0.493* 1.500 ± 2.121*

N◦40 N.C 13.588 ± 3.366 10.475 ± 3.763 26.000 ± 2.828 0.318 ± 0.060 50.000 ± 12.728

40 µmol/L 3-oxo-C10-HSL 3.627 ± 0.408** 6.558 ± 1.190 19.667 ± 0.577* 0.683 ± 0.103 39.667 ± 3.215

100 µmol/L 3-oxo-C10-HSL 0.777 ± 0.022** 7.580 ± 0.511 18.500 ± 2.121* 1.494 ± 0.022* 1.000 ± 0.000*

Biofilm matrix index values were analyzed using COMSTAT software and shown as mean of 3 replicates with standard deviation. The “N.C” (negative control) refers to the strains cultured

in 2216E broth without exogenous 3-oxo-C10-HSL for 36 h; the “ND” - not detected; *P < 0.05; **P < 0.01.
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FIGURE 6 | Biofilm formation of V. alginolyticus supplemented with exogenous 3-oxo-C10-HSL at 28◦C (A) Quantification of biofilm formed by strains N◦24 and N◦40

cultured for 36 h at 28◦C using the semi-quantitative adhesion test. (B) Representative 3D-reconstructed biofilm structure of strain N◦24 using CLSM. (C)

Representative 3D-reconstructed biofilm structure of strain N◦40 using CLSM. The “Standardized biofilm” corresponds to the average value of 3 replicates; the “error

bar” represents standard deviation of 3 replicates; *P < 0.05; **P < 0.01; ***P < 0.001; the “N.C” (negative control) refers to the strains cultured in 2216E broth

without exogenous 3-oxo-C10-HSL for 36 h.

et al., 2009; Li et al., 2010; Purohit et al., 2013; Tan P. W.
et al., 2014; Tan W. S. et al., 2014). In addition to these
AHLs, we report for the first time C12-HSL and 3-oxo-C14-
HSL for the genus Vibrio, suggesting a greater diversity of
AHLs in the genus and this research area is worthy of further
exploration.

Biofilm Formation of V. alginolyticus
In our study, only 6.4% V. alginolyticus isolates formed strong
biofilms. Using similar biofilm detection method, our result was
in contrast with the study of Snoussi et al. (2008), who found
that 87.5% of their environmental V. alginolyticus isolates had
strong biofilm forming abilities. This difference was most likely
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TABLE 4 | Quantitative analysis of the biofilm matrices of V. alginolyticus strains at 28◦C.

Strains and culture conditions BioMass (mg/cm3) Average thickness (µm) Max thickness (µm) Roughness

coefficient

Microcolonies at

substrate

N◦24 N.C 0.046 ± 0.024 3.736 ± 1.247 8.500 ± 2.121 0.491 ± 0.358 2.500 ± 0.707

1 µmol/L 3-oxo-C10-HSL ND ND ND ND ND

10 µmol/L 3-oxo-C10-HSL 2.949 ± 0.086** 6.090 ± 2.083* 9.000 ± 1.414 1.842 ± 0.138** 2.500 ± 0.707

20 µmol/L 3-oxo-C10-HSL 3.273 ± 0.127** 4.090 ± 0.628 11.000 ± 1.414 1.297 ± 0.646** 6.000 ± 1.414

N◦40 N.C 9.984 ± 1.677 12.987 ± 2.124 21.000 ± 2.646 0.187 ± 0.025 36.733 ± 4.162

1 µmol/L 3-oxo-C10-HSL 15.167 ± 2.262* 17.808 ± 2.556* 21.500 ± 2.364* 0.234 ± 0.074 43.667 ± 3.786

Biofilm matrix index values were analyzed using COMSTAT software and shown as mean of 3 replicates with standard deviation. The “N.C” (negative control) refers to the strains cultured

in 2216E broth without exogenous 3-oxo-C10-HSL for 36 h; the “ND” for not detected; *P < 0.05; **P < 0.01.

attributed to the origin of the isolates, culture medium and
temperature, and further implies that biofilm formation in V.
alginolyticus is greatly influenced by environmental conditions.

Indeed, our results revealed that temperature affected V.
alginolyticus biofilm formation. Stronger biofilms were formed at
16◦C than at 28◦C, indicating higher biofilm biomass at relatively
lower temperature. Studies onV. cholerae by Townsley and Yildiz
(2015) also revealed a more compact biofilm matrix at lower
temperature, consistent with our findings. In addition, biofilm
structures became smoother with increasing temperature. Similar
observations were reported by Remuzgo-Martinez et al. (2015).
The rougher biofilms could provide larger surface area in favor
of bacterial metabolism, while the smoother biofilms provide a
stable environment to allow dormancy of bacterial cells (Donlan,
2002). Again, biofilm formation was completely inhibited at
higher temperature (40◦C), even though V. alginolyticus strains
were still growing. This response was also found in the biofilm
formation of other bacteria such as Salmonella enteric (Piras et al.,
2015). The inhibition of V. alginolyticus biofilm formation at
high temperature could be associated with the degradation of
the AHLs involved in biofilm formation, resulting to the total
inhibition of production of AHL-controlled EPS (Yates et al.,
2002).

Exogenous 3-oxo-C10-HSL Affects Biofilm
Formation in V. alginolyticus
Various physiological functions of long side-chain AHLs have
been verified in many studies, such as biofilm formation (Nievas
et al., 2012). Previous studies have confirmed that 3-oxo-C10-HSL
was highly correlated to bacterial pathogenicity, and that it could
regulate several bacterial biological processes such as in activating
expression of virulence-related genes (Buchholtz et al., 2006;
Wang et al., 2013). It also participates in the red tide occurrences
by causing the microalgae Ponticoccus sp. to aggregate and form
massive blooms (Chi et al., 2017).

We found that exogenous 3-oxo-C10-HSL differently
affected V. alginolyticus biofilm formation, with apparent strain
specificity. For a strain that did not produce 3-oxo-C10-HSL
as that made weak biofilms, moderate concentration of 3-oxo-
C10-HSL promoted biofilm formation, and the corresponding
morphological changes included increased cell auto-aggregation
and biofilm heterogeneity. The morphological changes provided

a suitable condition for the adhesion of bacterial cells to the
biofilm surface, which was also observed before. For example,
Huang et al. (2009) found that the dominant AHLs changed
from short-chain to long-chain AHLs during subtidal biofilm
development, and this change provided a heterogeneous
environment in favor of more distinct bacterial community
development and even for biofilm formation. The same
effects were reported by Nievas et al. (2012), where moderate
addition of 3-oxo-C10-HSL (10 or 20 µmol/L) also increased
biofilm formation of non-AHL-producing peanut-nodulating
bacteria. For the strain with high level of 3-oxo-C10-HSL and
strong biofilms, low concentration of 3-oxo-C10-HSL still
promoted biofilm formation but further addition inhibited the
activity. Decreased cell auto-aggregation and biofilm integrity
were associated with this inhibition. We presumed that in
AHL-producing V. alginolyticus strains, both exogenous and
endogenous 3-oxo-C10-HSL had possible cumulative effects
on biofilm formation. This hypothesis however needs further
validation and verification. In addition, the effects of exogenous
3-oxo-C10-HSL on the same V. alginolyticus strain varied under
different temperature regimes, implying that 3-oxo-C10-HSL
effects could be influenced by changes in temperature.

CONCLUSION

Our study characterized 11 different AHLs produced by 47
V. alginolyticus strains, and further explored the production
and the effect of AHLs on the regulation of V. alginolyticus
biofilm formation. We confirmed the presence of AHLs, and
the dominant kinds of AHL signals produced by the 47 V.
alginolyticus strains, and proposed a functional role of 3-oxo-
C10-HSL on biofilm formation.We also showed that temperature
played an apparent role in regulating the said processes. Our
results provide new insights for future studies.
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