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Abstract: The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic
acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through
NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling
pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor
cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which
functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1
have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for
the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk
between the two metabolic pathways and raising fundamental questions about their assembly. Here
we reviewed the recent findings and advances in understanding of protein-protein interactions in
OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a
scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction
of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural
approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to
provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function
and regulation.

Keywords: neurodegeneration; glucose metabolism; enzyme catalysis; protein-protein interaction;
hydrogen exchange mass spectrometry; protein cross-linking; protein assembly; molecular modeling

1. Introduction

The human 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in
the tricarboxylic acid (TCA) cycle, which is a common pathway for oxidation of fuel
molecules, including carbohydrates, fatty acids, and amino acids. Diminished OGDHc
activity and mitochondrial abnormalities have been correlated with numerous neurodegen-
erative disorders, including Alzheimer’s disease, however, a link between reductions in
the mitochondrial TCA cycle enzymes and (neuro) degeneration has not been established
so far [1–4]. Recently, a biallelic pathogenic variant in OGDH gene leading to deficient
2-oxoglutarate dehydrogenase (E1o, the first component of the OGDHc, also known as
OGDH) was reported in individuals with a neurological disorder resembling mitochondrial
disease [5]. While rare in OGDH, whole-exome sequencing and rare variant burden analysis
determined an overabundance of putative, potentially damaging mutations in the OGDHL
(OGDH-like) and DHTKD1 genes across multiple patients with eosinophilic esophagitis (EoE),
a chronic allergic disorder that presents in infancy and in adulthood [6]. The OGDHL en-
codes a putative 2-oxoglutarate dehydrogenase-like protein (E1o-like) in the TCA cycle that
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is tissue-specific and is mainly expressed in brain and liver (Scheme 1) [7]. Furthermore,
a homozygous deleterious variant (c.2333C > T; p. Ser778Leu) was recently identified
in OGDHL and was associated with neuro-degenerative phenotype in patients [8]. The
DHTKD1 gene encodes a less-known homologue of E1o, the enzyme 2-oxoadipate dehydroge-
nase (E1a, also known as DHTKD1) in the L-lysine degradation pathway (Scheme 1). Genetic
studies have linked variants in DHTKD1 to the (neuro) pathogenesis of several metabolic
disorders: α-aminoadipic and α-ketoadipic aciduria (AMOXAD: MIM 204750) [9–11], Charcot-
Marie-Tooth disease type 2Q (CMT2Q: MIM 615025) [12–14] and eosinophilic esophagitis
(EoE), a chronic allergic disorder [6].

Pharmacological inhibition of E1a has been proposed as a strategy for substrate reduc-
tion therapy to treat glutaric aciduria type 1 (GA1: MIM 231670), a metabolic disorder that
is caused by mutations in the GCDH gene encoding the mitochondrial protein glutaryl-CoA
dehydrogenase (GCDH; EC 1.3.8.6) located downstream of E1a in the L-lysine degradation
pathway (Scheme 1) [15].
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Despite the reported genetic findings, no pathophysiologic mechanism has been re-
ported for the disease-associated OGDH, OGDHL and DHTKD1 variants and their impact 
on E1o, E1o-like and E1a protein structure and function. 

Diverse functions of the E1o have been shown to be associated with cancer. As the 
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Scheme 1. Role of the OGDHc in the TCA cycle and of the E1a in the L-lysine degradation pathway
in health and diseases. AASS, 2-aminoadipate-6-semialdehyde synthase; AASDH, 2-amino-adipate-6-
semialdehyde dehydrogenase; AADAT, 2-aminoadipate transaminase; GCDH, glutaryl-CoA dehydro-
genase; E1o-like, E2o, E3-components of the OGDHc; E1a, 2-oxoadipate dehydrogenase; AMOXAD,
α-aminoadipic and α-ketoadipic aciduria; CMT2Q, Charcot–Marie-Tooth disease type 2Q; EoE,
eosinophilic esophagitis; GA1, glutaric aciduria 1.

Despite the reported genetic findings, no pathophysiologic mechanism has been
reported for the disease-associated OGDH, OGDHL and DHTKD1 variants and their impact
on E1o, E1o-like and E1a protein structure and function.

Diverse functions of the E1o have been shown to be associated with cancer. As the
OGDHc is integrated within mitochondrial functions and represents one of the major
regulators of mitochondrial metabolism, it was suggested that it is pivotal in the adapta-
tion of cancer cells to a demanding environment in vivo [16]. Two mitochondrial genes
OGDH and LIAS (encoding lipoic acid synthase) were identified that are involved in the
mechanism of regulation in hypoxia-inducible transcription factors (HIFs) under aerobic
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conditions [17]. Lu et al. suggested that OGDHc mediates SIRT5 (sirtuin 5, an NAD+-de-
pendent protein deacylase) function, a potential suppressor of cell growth and migration
in gastric cancer [18]. The direct interaction between SIRT5 and OGDHc was shown and
it was reported that desuccinylation of OGDHc by SIRT5 inhibits OGDHc activity [18].
The authors suggested that SIRT5 suppressed gastric cancer cell growth and migration by
inhibiting mitochondrial function and by increasing ROS production via down-regulation
of OGDHc activity. Thus, both SIRT5 and OGDHc could be novel therapeutic targets
for gastric cancer treatment [18,19]. Several recent studies support the rationale to target
individual components of the OGDHc, specifically E1o [20] or E2o [21], or possibly all
three components of the OGDHc [22] for cancer treatment [23].

Recent findings suggested that post-translational modifications (PTMs) by succinyla-
tion and glutarylation could be one of the mechanisms by which cells adapt to dynamic
environmental changes to maintain metabolic homeostasis including regulation of energy
production [24–28]. The significance of lysine succinylation and glutarylation has begun
to be revealed for nuclear proteins, while its significance for cytosolic and mitochondrial
proteins has been examined in only a few proteins [25,29,30]. Thus, glutarylation of the
Lys91 in histone H4 in mammalian cells was reported [31]. According to a suggested
mechanism, a known histone acetyltransferase KAT2A when coupled with the OADHc,
acts as a histone glutaryltransferase in cells, while SIRT7 acts as an “eraser” of the glu-
tarylated Lys91 at histone H4 [31]. On the flip side, when KAT2A is coupled with the
OGDHc, it could recognize succinyl-CoA and transfer the succinyl group to the Lys79 of
histone H3 [32]. These findings provided evidence for a tight link between metabolism and
epigenetic regulation of gene expression by succinylation and glutarylation [31].

Earlier evidence suggested that OGDHc and its E2o component could function as a
succinyltransferase for modification of cytosolic and mitochondrial proteins in cultured
neurons and in neuronal cell lines and could provide an efficient mechanism to coordinate
metabolic pathways at the cellular level [3,27]. Recent findings in vitro suggested that the
E2o could also serve as a glutaryltransferase, in addition to functioning as a succinyltrans-
ferase, thus providing an efficient mechanism to coordinate the TCA cycle and the L-lysine
metabolic pathway at the cellular level in normal state and in disease [33]. Increased lysine
glutarylation of mitochondrial proteins in the brain and liver was observed in a GA1 mouse
model [25,30]. However, the molecular mechanisms underlying the pathogenesis of GA1
are still poorly understood.

Finally, a novel function of E1o in host cell metabolic adaptation to viral infection
was suggested [34]. It was found that in response to viral infection, host cells impair the
activity of the N6-methyladenosine (m6A) RNA demethylase leading to increased m6A
methylation on the E1o mRNA and to reduced mRNA stability. The reduced E1o protein
expression led to reduced production of the itaconate intermediate in the TCA cycle, an
intermediate which is required for viral replication, thus providing a crosstalk between
m6A RNA modification and metabolic reprogramming via the E1o-itaconate pathway [34].
The E1o-itaconate metabolic response was suggested as a potential therapeutic target for
the control of viral infection [34]. In view of the accumulated data on the physiological
importance of the OGDHc and OADHc in human health and disease, and their role
as potential therapeutic targets, we first review OGDHc function and discuss a novel
alternative mechanism of transthiolacylation catalysis in the active centers of the E. coli
E2o that would be applicable to all E2 components. Next, we discuss protein-protein
interactions identified in the human E1o-E2o, E1o-E3 and E3-E2o binary sub-complexes
by hydrogen-deuterium exchange MS (HDX-MS) and chemical cross-linking MS (CL-MS),
leading to the remarkable conclusion that the N-terminal region of E1o may constitute
a unique dual-subunit-binding domain (DSBD) in human OGDHc, which is recognized
by both the E2o and E3 components. Of special interest is recognition of the formation
of a hybrid complex between OGDHc and OADHc. In the second half of this review, we
discuss the structural insight into the architecture of the human E1a active site during
catalysis, of which two independent X-ray structures have been reported recently [35,36].
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Taking into consideration both in vitro and in vivo evidence for the interaction between
E1a and E2o from two distinct metabolic pathways, we next present the models constructed
for the E1o-E2o and E1a-E2o assembly to advance our understanding of protein-protein
interactions in human OGDHc and OADHc in the absence of X-ray crystallographic or
cryo-EM-based atomic structure of intact OGDHc or OADHc.

2. The 2-Oxoglutarate Dehydrogenase Complex
2.1. Overview of the Molecular Mechanism of the OGDHc

The canonical human OGDHc is a key enzyme in the TCA cycle, comprising multiple
copies of three components, E1o, E2o, and E3. The five principal chemical steps involved
in the reactions yielding succinyl-CoA are shown in Figure 1A. The ThDP-dependent E1o
catalyzes the decarboxylation of 2-oxoglutarate (OG) (k2, k3), followed by reductive suc-
cinylation of the E2o (k4, k5). The reductive acylation is the important coupling mechanism
of the reactions of the E1 and E2 components in 2-oxoacid dehydrogenase complexes, some-
times called substrate channeling. It is generally accepted that lipoyllysyl-E2 (lipoic acid
is covalently amidated onto the ε-amino group of a lysine residue of E2 in its N-terminal
region, the so called lipoyl domain or LDo) is the oxidizing agent for the enamine product
of OG decarboxylation, which is non-covalently assembled with the E1 component [37].
Below we will focus on mechanism for the reductive acylation reaction between the E1 and
E2o components and on the synthesis of the acyl-CoA in the active centers of E2o which is
a controversial topic.

2.1.1. Mechanism for the Reductive Acylation Reaction

Over the years two mechanisms have been proposed for the reductive acylation re-
action: (a) A stepwise mechanism, in which the redox process, i.e., electron transfer, the
oxidation of the enamine to the acyl-ThDP with concomitant reduction of the lipoyllysyl-E2
to dihydrolipoyllysyl-E2 is the first step, followed by group transfer [38]; (b) A concerted
mechanism, in which the enamine C2α-carbon as a nucleophile attacks the S8 atom of
the lipoyllysyl-E2, opening the dithiolane ring momentarily and forming a tetrahedral
intermediate, thereby transiently linking the two components, the reaction being com-
pleted by cleavage of the C2α-C2 bond thus regenerating the ThDP ylide and generating
the acyl-S8-dihydrolipoate (see Scheme 2 for a concerted mechanism of the OADHc with
2-oxoadipate) [37,39]. According to the second mechanism, electron and group transfer are
synchronized, necessitating approach of the lipoyllysyl-E2 to within C-S bond distance to
the C2α-carbon of the substrate in the first post-decarboxylation step. Yet, even according
to the first mechanism, any plausible transfer of the acyl group to the S8-thiolate would
require close approach of the lipoyllysyl group to the carbonyl group of the C2-acylThDP.
A chemical model developed at Rutgers earlier was more consistent with the second mech-
anism, proceeding via a tetrahedral intermediate [39]. An appropriate model reaction to
determine the rate of reductive acyl transfer from E1 to the lipoyllysyl-E2 has been devel-
oped (Figure 1C) [40–43], which maintains both the chemistry and the inter-component
communication due to its specific recognition of E1 [44–46]. The full-length E2o is a highly
segmented protein, comprising from the N-terminal end, a single lipoyl domain (LDo),
linker region and an acyltransferase catalytic domain or E2o core domain (Figure 2A). By
using the independently expressed LDo in place of intact E2o, the mass of the acylated and
unacylated lipoyl domain could be measured by mass-spectrometry (FT-MS) with high
precision, an experiment that at the same time enabled calculation of the rate constant (k4
in Figure 1A) for acyl transfer between the E1 and E2 components [43].
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conjugate base thiolate anion of CoASH assuming a low pKa for the CoASH, or by the thiol form itself. Pathway B: initial
proton transfer from CoASH to His375 forming the conjugate base CoAS-, which is the attacking agent. Both pathways then
proceed by an oxyanionic tetrahedral intermediate [41].

2.1.2. Synthesis of Succinyl-CoA

The reductive succinylation reaction is followed by trans-thiolesterification of the
succinyl group onto CoA in the active centers of hE2o (i.e., in the catalytic domain, CDo),
generating succinyl-CoA (Figure 1A). The enzymatic mechanism responsible for synthesis
of succinyl-CoA has been elucidated for the E. coli E2o (Figure 1D) [41], a mechanism that
is applicable to all E2o components due to highly conserved structure of the reported E2o
active centers [47–52]. There are two likely mechanisms to account for the transfer of an
acyl group between two thiols in Figure 1D. A general acid-base mechanism would suggest
that the catalytically important His375 of the E. coli E2o catalytic domain converts the
thiol group of the attacking nucleophile (CoASH) to a thiolate anion (CoAS−) as depicted
on pathway B in Figure 1D. The activated thiolate then attacks the carbonyl atom of the
succinyldihydrolipoyl-E2o to form a tetrahedral intermediate, which is stabilized by the
hydroxyl side chain of Thr323 [48]. This mechanism was suggested based on analogy
with a mechanism developed for chloramphenicol acetyltransferase [53–55]. However, the
catalytic efficiency (kcat/Km) of the His375Ala substituted E. coli E2o was reduced by only
54-fold compared to unsubstituted E. coli E2o, while a 9 × 105-fold reduction in catalytic
efficiency was determined for the analogous His195Ala substitution in chloramphenicol
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acetyltransferase, suggesting different functions for the highly conserved histidine residues
on the two enzymes [41]. As an alternative to acid-base catalysis, a direct attack by a thiolate
anion on the thiol ester carbon had been suggested, forming a symmetrical tetrahedral
oxyanionic intermediate, in which the central carbon atom is flanked by two C-S bonds with
nearly equal probability for cleavage [41]. Evidence was provided that His375 and Asp374
play a role in the stabilization of this symmetrical tetrahedral oxyanionic intermediate
by formation of two hydrogen bonds, rather than in acid-base catalysis (pathway A in
Figure 1D). An important conclusion from these studies is that succinyl transfer to CoA
and release of succinyl-CoA, rather than the reductive succinylation reaction, is the rate-
limiting step [41]. Next, the E3 re-oxidizes dihydrolipoyllysyl E2o with concomitant
reduction of NAD+ to NADH (Figure 1A). The E3 is shared by all members of the 2-oxo
acid dehydrogenase complex family in mammalian cells.
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The human OGDHc is also recognized as a significant source of superoxide radical
anion and H2O2 (reactive oxygen species, ROS) that could lead to oxidative stress in mito-
chondria [56–64]. While earlier this function was assigned to the E3 component in the reverse
direction [56,57,59,61], formation of the ThDP-enamine radical species in the active centers of
E1o from 2-oxoglutarate and 2-oxoadipate in the physiological direction was demonstrated by
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electron paramagnetic resonance spectroscopy and represents an “off-pathway” side reaction
comprising less than 1% of “on-pathway” reactivity (Figure 1B) [43,60,63,64], as suggested
earlier for the E. coli E1o [65].

2.2. Protein-Protein Interactions in OGDHc
2.2.1. Interactions in Binary E1o-E2o, E1o-E3 and E2o-E3 Subcomplexes

A typical approach to define protein-protein interactions in multi-enzyme complexes,
is to first determine the structure of the individual components. Currently, there is no
X-ray structure of the human E1o. There are, however, X-ray structures available for
the N-terminally truncated E. coli E1o∆77 (39% identity, missing the N-terminal 77 amino
acids) [66], the N-terminally truncated Mycobacterium smegmatis α-ketoglutarate decarbo-
xylase (MsKGD∆115, 41% identities, missing the N-terminal 115 amino acids) [67], the
MsKGD∆360 catalytic domain, which showed overall structural similarity to the E. coli
E1o [68], and the MsKGD∆360 catalytic domain in complex with phosphonate analogues of
OG [69]. X-ray structures were recently reported for the N-terminally truncated human
E1a (residues 45-919, missing the N-terminal 44 residues) at 1.9 Å [35] and for human
E1a (residues 25-919, missing the N-terminal 24 residues) at 2.25 Å resolution (38.5%
identities between E1o and E1a) [36]. Single-particle cryo-EM reconstruction of the E2o
inner core domain at 4.7 Å global resolution [35] has been reported showing 24 E2o catalytic
domains assembled as eight trimers and positioned at each of the eight vertices of the
cubic core with octahedral symmetry (Figure 2B). However, there is no atomic resolution
structure reported for any of the 2-oxo acid dehydrogenase complexes. In the absence of
the direct insight into assembly of the components into OGDHc, a multipronged approach
has been employed including fluorescence, HDX-MS and CL-MS studies which allowed
evaluation of the strength and loci of interaction in binary E1o-E2o, E1o-E3 and E2o-E3
sub-complexes [70]. Among the remarkable findings is that in the binary sub-complexes,
strong interactions (Kd in the 0.04–0.14 µM range) were demonstrated between the E1o
and E2o components, but not between the E2o and E3. Importantly, two peptides from the
N-terminal region of E1o comprising residues 18YVEEM22 and 27LENPKSVHKSWDIF40

were identified that represent the most likely candidates for the interaction of E1o with
both E2o and E3 [70]. The important role of the E2o region comprising residues from both
the E2o core domain and the linker region was identified for the first time as critical for
E1o-E2o interactions (Figure 2C,D) and represents a unique E2o-binding mode in human
OGDHc [70]. In contrast, there was no evidence for E2o-E3 interaction indicating that there
was only a transient interaction between these two components, too weak to be captured by
the methods applied. These findings are in accord with the accepted OGDHc mechanism
in Figure 1A, where with each turnover, the reduced lipoyl domain (dihydrolipoyllysilyl-
group on E2o) must be re-oxidized by the FAD on E3 [71] In summary, the N-terminal region
of E1o (residues 18–40) could constitute a unique dual-subunit-binding domain (DSBD) in
human OGDHc, which is recognized by both the E2o and E3 components, suggesting that
an initial formation of the uniquely strong E1o-E2o interaction could facilitate assembly
with E3 into OGDHc, a hypothesis that needs to be confirmed in further studies.
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Figure 2. (A) Domain structure of the human E2o showing the lipoyl domain (LDo) and the E2o core or catalytic domain
(CDo) connected by a linker region. (B) Electron micrograph reconstruction of the human E2o core domain structure at 4.7 Å
resolution [35]. Figure reproduced with permission of the International Union of Crystallography). The trimer building
blocks (the individual subunits are shown in blue, green and orange) are assembled into the 24-meric core via four-fold (left),
two-fold (middle) and three-fold symmetry axes, respectively. Insert shows the first residue 219 (red spheres) from each
subunit of the 24-mer E2o core which is exposed to the surface of the E2o core. (C) On human E2o, the region comprising
residues from the core domain (in bold) and E2o linker region (144AEAGAGKGLRSEHREKMNRMRQRIAQRLKE174)
displayed a significant decrease in the level of the deuterium uptake during the first 3 min upon E1o binding, suggesting a
unique subunit-binding mode in human OGDHc assembly, where the E2o core domain also participates in the interaction
with E1o. (D) Sequence alignment of the human E2o linker-core region involved in interaction with E1o with some
known E1-binding domains in E2 components identified conserved residues, indicating that E2o shares some but not all
sequence features of other subunit-binding domains involved in E1o binding. The abbreviations are denoted: human (h),
Escherichia coli (Ec), Bacillus stearothermophilus (Bst), Pseudomonas putida (Pp), and Azotobacter vinelandii (Av), 2-oxoglutarate
dehydrogenase complex (o), pyruvate dehydrogenase complex (p), and branched chain 2-oxoacid dehydrogenase complex
(b). Alignment of multiple sequences was carried out using the Clustal Omega program with default settings [70].

2.2.2. The Assembly of E3 into OGDHc

Related to the assembly of E3 into OGDHc, a novel structural component of the mito-
chondrial OGDHc named as Kgd4 (Ymr31) was identified in yeast, previously described as
a part of the mitochondrial ribosome with a role in recruiting the E3 subunits to OGDHc [72].
A Kgd4 homologue was also identified as part of the murine OGDHc (MRPS36) [72]. A
model was suggested for organization of the mitochondrial OGDHc where Kgd4 binds to
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the preformed E1-E2 core to recruit the E3 subunit into the complex while in the absence
of Kgd4 the binding of E3 to the core is dramatically reduced [72]. However, in recently
reported studies by Houten’s group, the transient transfection of MRPS36 encoded protein
together with the E1o (E1a), E2o and E3, did not increase the activity of the OGDHc or of
OADHc in HEK-293 cell lysates with OG and OA as substrates [73], indicating a different
assembly of the E3 in these human complexes. Notably, the human E3 which is shared by
all members of the 2-oxoacid dehydrogenase complex family in mammalian cells has a
different binding mode in the human pyruvate dehydrogenase complex (PDHc), where
the pyruvate dehydrogenase component (E1p) binds to the E1p-binding domain on E2p
(peripheral subunit-binding domain, PSBD), while the E3 binds to the E3-binding protein
(E3BP, formerly known as Protein X), a component with no known catalytic function [74].
The E2p and E3BP (typically co-expressed) form the inner core of the mammalian PDHc
according to two distinct “substitution” models proposed: 48 subunits of E2p + 12 subunits
of E3BP or 40 subunits of E2p + 20 subunits of E3BP in the 60-meric inner core [75–80].
Structure determination of the human E2p inner core at 3.1 Å atomic resolution [79], and
of the full-length human E2p-E3BP assembly at 6.3 Å resolution [80] have been reported
recently by using cryo-EM and single particle reconstruction (see below). More questions
have been raised and need to be answered regarding the E1o-E2o interaction in human
OGDHc since the recent finding that the human 2-oxoadipate dehydrogenase (E1a) of the
L-lysine, L-hydroxylysine and L-tryptophan catabolic pathway and the E1o of the OGDHc
in the TCA cycle share the same E2o component and can utilize the recycling universally
used E3 component for their function, while earlier the formation of hybrid complexes
between OGDHc and PDHc had been reported.

2.3. The Newly Revealed Feature of the OGDHc in the TCA Cycle, the Propensity to Form a
Hybrid Complex with E1a Ftom the L-Lysine Degradation Pathway

The first evidence for the formation of a hybrid 2-oxo acid dehydrogenase complex
involving the E1o, E2o and E3 components of the OGDHc and the E1p component of the
PDHc had been reported more than three decades ago for E. coli cells, with no physio-
logical importance attributed to such a hybrid complex [81]. Later, the unique properties
with respect to their protein components and three-dimensional organization of the PDHc
and OGDHc from Gram-positive bacteria such as Mycobacterium tuberculosis (Mtb) and
Corynebacterium glutamicum were reported [82,83]. There is an E2p component in these
bacteria, which on assembly with E1p and E3 converts pyruvate to acetyl-CoA in the
overall PDHc reaction, while there has been no such E2o component identified for OGDHc.
Instead, the OdhA from Corynebacterium glutamicum and MtbKgd assemble as a single
fusion protein with two major domains, the N-terminal acyltransferase-like domain and
the E1 domain [83]. It was demonstrated that OdhA from Corynebacterium glutamicum
catalyzes both the E1 and E2 reactions and could convert 2-oxoglutarate to succinyl-CoA.
However, it is totally dependent on the E2p component of the PDHc as a source of its
lipoyl groups. These findings suggested that E1p and OdhA shared the E2p component, in
addition to sharing E3, and could form a hybrid complex consisting of E1p, E2p, E3, along
with OdhA, in accord with earlier evidence from co-purification experiments [82]. Later, the
presence of a hybrid OGDHc/PDHc was also suggested for the Mycobacterium smegmatis α-
ketoglutarate decarboxylase (MsKGD, E1o) which on reconstitution with dihydrolipoamide
acyltransferase (DlaT, the Rv2215 gene product) and E3 revealed OGDHc activity according
to formation of succinyl-CoA from OG and CoA [67]. It was proposed that formation of
a hybrid OGDHc/PDHc assembly is relevant to stimulation of the MsKGD activity by
acetyl-CoA, which is produced by PDHc, and may be important for coordination of the
OGDHc/PDHc activities [67,84].

Recently evidence was obtained for a unique property of the human E1a in the L-lysine
degradation pathway, where in the absence of a cognate dihydrolipoamide glutaryltrans-
ferase component (E2a, no candidate gene has been identified to date), the E1a recruits the
E2o and E3 components of the OGDHc for its function in vitro [42,43] and forms a hybrid
2-oxo acid dehydrogenase complex in vivo containing the E1o, E2o and E3 components
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along with E1a [73]. There is also experimental evidence of a direct interaction between
the E1a and E2o components: (i) On co-expression of human E1a and E2o in E. coli and in
insect Sf9 cells, the E1a45-919 was co-purified with the E2o68-453 protein, signaling formation
of a high-affinity sub-complex [35]. (ii) Indeed, on titration of the fluorescent N-(1-pyrene)
maleimide labeled truncated human E2o (E2o1-173 di-domain and E2o144-386 inner core do-
main) by E1a, dissociation constants in the 1–4 µM range were determined, comparable to
that for E1o-E2o sub-complex indicating a strong interaction between the E1a and E2o pro-
teins [35,85]. (iii) It was further demonstrated that human E1a was co-immunoprecipitated
from DBA/2J mouse liver and from control HEK-293 cells with the human E2o, E3 and
E1o component as well, supporting the existence of a hybrid 2-oxo acid dehydrogenase
complex [73]. The crosstalk between the OGDHc in the TCA cycle and OADHc in L-lysine
catabolism is of potential functional relevance since OGDHc can serve as an alternative
source of glutaryl-CoA formation in GA1 when E1a function is abolished, which limits
the use of E1a-specific inhibitors for substrate-reduction therapy [15,73]. It could further-
more offer a likely explanation for the rather mild or absent phenotype in patients with
AMOXAD due to DHTKD1 mutations [9–11]. In addition, the crosstalk may provide a
mechanism that could compensate for defects in mitochondrial energy metabolism due to
the DHTKD1Y486* mutation in CMT2Q [86] and explain an association between DHTKD1
and OGDHL encoded variants and mitochondrial dysfunction related to EoE [6].

3. Structural Insight into the E1a Active Center

The idea that a specific lipoyl domain of E2 is recognized by its cognate E1, was
generally accepted for a long time. A major recent advance in the field has been the
realization that the E1a in the L-lysine degradation pathway could share the same E2o and
E3 components with the E1o from the TCA cycle for their function in two distinct metabolic
pathways [42,43,64]. Next, it was shown that the E1a has about 40-fold preference in
catalytic efficiency with OA versus OG [43], suggesting that the E1a active center has
evolved to accommodate the slightly longer OA compared to OG (one additional CH2
group) substrate. These are important determinants for the rational design of E1a inhibitors
that could be useful for diseases such as GA1 [36].

Below we discuss the structural insight into the architecture of the human E1a active
site during catalysis, as it is a less studied enzyme in the family of 2-oxoacid dehydro-
genase complexes. The thiamin diphosphate (ThDP) dependent E1a is the first component
of the OADHc [7,9–13], the totality of which carries out the reactions forming glutaryl-CoA
according to the overall reaction in Equation (1) and with detailed chemistry in Equations
(2)–(5) and Schemes 1 and 2:

2-oxoadipate +NAD+ + CoA→ glutaryl-CoA + NADH + H++ CO2 (1)

2-oxoadipate + E1a→ C2-(α-hydroxy)-γ-carboxybutylidene-ThDP-E1a (the enamine intermediate) + CO2 (2)

(C2-(α-hydroxy)-γ-carboxybutylidene-ThDP-E1a + lipoyl-E2o→ S8-glutaryl-dihydrolipoyl-E2o (reductive glutarylation) (3)

S8-glutaryldihydrolipoyl-E2o + CoA→ glutaryl-CoA + dihydrolipoyl-E2o (4)

dihydrolipoyl-E2o + E3 + NAD+ → lipoyl-E2o + NADH (5)

The recently solved X-ray structures of the human E1a at 1.9 Å (PDB code 6sy1) [35]
and at 2.25 Å resolution (PDB code 6U3J) [36] revealed its structural homology to MsKGD
(MsKGD∆115; PDB code 2XT6; 38% identity) and to E. coli E1o (PDB code 2jgd; 38% sequence
identity) [66]. The E1a forms a tight homodimer of over 200 kDa, common to all ThDP-
dependent enzymes, burying a more than 5000 Å2 area of monomeric accessible surface
at the dimer interface (Figure 3A) [36]. Each E1a subunit is structurally composed of four
distinct domains displaying the common fold of ThDP-dependent enzymes (Figure 3,
top) [35]. The ThDP cofactor is bound between the two subunits and is supported by highly
conserved hydrogen bonds and hydrophobic interactions, including Asp333 and Asn366
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from the known ThDP-binding fold (Figure 3B) [87,88]. From the reported structural
studies several amino acid residues in the E1a active center have been suggested to interact
with OA, residues which are not conserved with those involved in OG binding in E1o’s:
more polar residues including Tyr190 (Phe506 in MsKGD; Phe227 in E. coli E1o), Tyr370
(Phe682 in MsKGD; Phe394 in E. coli E1o), a less bulky Ser263 (Tyr578 in MsKGD; Tyr297 in
E. coli E1o), and a conserved Asp707 (Asp1019 in MsKGD; Asp688 in E. coli E1o) [35,36]. To
gain further structural insight into the E1a active center, models have been built of its active
center with covalent reaction intermediates derived from OA based on the reported X-ray
structures of human E1a [35,36] and MsKGD [68], as well as the mechanism of OGDHc
with OA presented in Scheme 2. According to the model studies, the pre-decarboxylation
covalent adduct at the thiazolium C2 position of ThDP is stabilized by the salt bridge
between its leaving carboxylate group and the imidazole group of His223 (His539 in
MsKGD) and by a hydrogen-bonding interaction between the 2-oxo group of OA and the
imidazole group of His708 (His1020 in MsKGD) (Figure 3C). The ε-carboxyl group of the
OA in the pre-decarboxylation intermediate is sandwiched between Tyr190 and Tyr370 to
form polar interactions in accord with structural findings (Figure 3C) [35]. Interestingly, the
Tyr190Phe E1a substitution reduced the catalytic efficiency of the human E1a measured in
the model reaction with OA by ~5.7-fold with no activity detected with OG, indicating that
Tyr190 is not crucial for OA binding [36]. In comparison, the ThDP-enamine covalent post-
decarboxylation intermediate in Figure 3D engaged new hydrogen-bonding interactions
where the substrate ε-carboxyl group now interacts with imidazole groups of His264 and
His708 and a side chain hydroxyl group of Ser288, suggesting possible rearrangement of
the active site environment (Figure 3D). Earlier, two distinct conformations of the post-
decarboxylation intermediate were identified by X-ray crystallography for the MsKGD [68],
however, no such information was available for other homologues of E1o so far. Next, on
modeling of the E1a active site with the lipoyllysyl-arm of E2o (see Figure 3E for reductive
acyl transfer mechanism and Figure 3F), the residues His708 and His 435 are sufficiently
proximal to the incoming lipoyllysyl-arm of E2o to act as a general acid catalyst during
the reductive glutarylation of E2o, as suggested by the Pan-Jordan model in Scheme 2 [39].
This is also in agreement with findings in P. putida E1b [89], where His312α and H131β
would serve as potential proton donors to the two sulfur atoms of the lipoyllysyl group of
E2 during the reductive acyl transfer step. Through amino acid sequence alignment, the
P. putida E1b His312α and H131β residues align well with His435 and His708 in human
E1a. An understanding of the possible interactions in the E1o-E2o and E1a-E2o binary
sub-complexes at the atomic level remains challenging so far.
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region surrounding the ThDP- and Mg2+- binding site, including peptides 485–505, 506–
518 and 646–664 in E1a displayed a lower relative deuterium incorporation, suggesting 
less accessibility to the deuterium on interaction with E2o. However, the peptide compris-
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Figure 3. Structure of the human E1a component. (A) Overall fold of the E1a (α2 homodimer) as
follows from X-ray structures of the human E1a [35,36]. One monomer is shown in green and the
other in cyan and the ThDP cofactor in two active cites is shown in yellow. (B) Active site of E1a with
ThDP bound which is stabilized by highly conserved hydrogen bonds and hydrophobic interactions
(A,B) reprinted in part with permission from [36]. (C) Modeling of the E1a active site with pre-
decarboxylation intermediate generated from the nucleophilic attack by the ylide carbanion of ThDP
on C2 atom of 2-oxoadipate. (D) Modeling of the E1a active site with the post-decarboxylation
intermediate formed after the release of CO2. (E) Schematic representation of acyl transferase reaction
between the E1a and E2o components. (F) Modeling of the E1a active site with lipoyllysyl-E2o
showing two sulfur atoms of the lipoyllysyl-E2o interacting with His435 and His708 in the active
center of E1a. Modeling of the E1a active site in panels (C–F) were built by using the X-ray structure
of E1a (PDB: 6sy1) [35] and MsKGD (PDB: 3zht) [68] and the PyMOL visualization system (v 2.2.1).

4. Similarities and Differences between the E1o-E2o and E1a-E2o Assembly According
to Mass Spectrometric Studies

To identify the similarities and differences between the E1o-E2o and E1a-E2o sub-
complex assembly, protein-protein interactions in the binary E1a-E2o sub-complex were
analyzed by HDX-MS. Importantly, the N-terminal region of E1a comprising residues
24–47 experienced significant reduction in deuterium uptake in the E1a-E2o sub-complex
(Figure 4A) [85] similar to that observed with the E1o-E2o sub-complex [70]. Also, the
region surrounding the ThDP- and Mg2+-binding site, including peptides 485–505, 506–518
and 646–664 in E1a displayed a lower relative deuterium incorporation, suggesting less
accessibility to the deuterium on interaction with E2o. However, the peptide comprising
residues 407–415 in the same region of E1o displayed modestly increased deuterium
uptake [70,85]. In Figure 4B, peptides that become less open for deuterium uptake on
interaction with E2o are color-coded in red on the modeled E1 structure. More differences
were detected in the interaction of E1a with E2o in the E1a C-terminal region, where peptide
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847–874 was protected from deuterium uptake [85], while peptide comprising residues
865–887 in E1o was exposed to deuterium exchange and displayed a significant increase
(>1 Da) in deuterium uptake [70]. These HDX-MS studies led to a major conclusion that,
the N-terminal region of both E1o and E1a is a candidate for binding with E2o.
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To further elucidate potential loci of interaction in the binary E1a-E2o sub-complex,
chemical cross-linking MS (CL-MS) experiments were carried out by using two cross-
linkers: 1,1′-carbonyldiimidazole, a zero-length cross-linker (CDI, a spacer length of 2.6 Å
and Cα-Cα distance of ~16 Å to be bridged) and disuccinimidyl dibutyric urea (DSBU,
Cα-Cα distance of ~27 Å to be bridged). The majority of cross-linked residues identified
in E1a are located in the N-terminal region (Lys37, Lys148 and Lys188), in the ThDP-Mg2+-
binding region (Lys300 and Lys450), and in the C-terminal region (Lys818, Lys826/827, and
Lys852/854) (Figure 5). Lysine residues from those regions were mostly cross-linked to E2o
lysine residues from the lipoyl domain (Lys24, Lys43, Lys66, Lys78, and Lys85), from the
linker region (Lys150, Lys159), and from the inner core domain (Lys240, Lys286, Lys342, Lys371)
(Figure 5 lower panel). It was notable that a great number of interactions between the
C-terminal region of E1a and the lipoyl domain of the E2o have been formed suggesting
that the C-terminal region of E1a may play an important role in E1a-E2o interactions,
particularly, in the glutaryl transfer from the E1a active center to the E2o. This conclusion
was confirmed by studies with the G729R E1a variant identified in AMOXAD disease [85].
Thus, the HDX-MS and CL-MS findings provided several layers of information on E1o-
E2o and E1a-E2o assembly in Figure 5. First, the studies strongly support the role of the
N-terminal region of the human E1o and E1a to interact with E2o, which has now become
a general binding mode for E1′s with α2 quaternary structure [90–93]. Second, in the E2o
component, the role of the E2o-core domain in interaction with the E1′s was elucidated for
the first time. Earlier, this function was assigned mainly to the E1 subunit-binding domain.
Third, the role of the C-terminal region of E1a in substrate channeling between the E1a and
E2o was identified.
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by CL-MS by using disuccinimidyl dibutyric urea (DSBU, Cα-Cα distance ~27 Å to be bridged) as a
cross-linker. The bar plots with cross-link network were generated with xiView visualization tool for
xiNET [94].

5. Structural Modeling of E1a-E2o and E1o-E2o Interactions Using Distance
Constraints from

To gain a deeper understanding of the human E1o-E2o and E1a-E2o interactions in
binary sub-complexes, cross-linked guided modeling was performed by using web servers
and structural prediction algorithms reported in the literature [94–103]. In the first stage,
preliminary models were generated for the human E1o, E1a and E2o by using the I-TASSER
algorithm (see Figure 6A for workflow diagram). The E1a structure was built by using
the recently reported X-ray structure of the E1a25-919 [36]. The E1o structure was modeled
by using the reported X-ray structure of the MsKGD (PDB: 2XT6; 41% identity) as the
search template. The E2o structure was built by using multiple templates with I-TASSER
(PDB: 1SCZ; 6H05; 3MAE). In the second stage, the incompatible intra-protein (or intra-
component) cross-links were filtered by using the Xlink Analyzer [98] in visualization
system UCSF Chimera (version 1.11) [99] by applying the distance threshold of 35 Å for
DSBU and of 25 Å for CDI. The Euclidean cut off was calculated as the sum of the length
of the two extended lysine chains (2 × 5.5 Å) plus the spacer length (2.6 Å and 12.5 Å for
CDI and DSBU, respectively) with an additional 7.6–12.6 Å allowed for the conformational
dynamics [100]. The compatible intra-component cross-links were utilized as input with
an initial model for modeling refinement, which is especially important for proteins with
unknown structure, such as human E1o. The utilization of two different cross-linkers
can facilitate these refinement steps. The best models of E1o, E1a and E3 were selected
according to the confidence score (C-score) and by how well the intra-component cross-
links fit to a model [95]. In the third stage, the resulting protein models were used as input for
protein-protein docking by using the HDOCK server [101] and the docking was assisted by the
inter-component cross-links identified for the E1a-E2o and E1o-E2o sub-complexes by CL-MS
(Figure 5; Figure 6B,C). Also, during the docking stage, the DSBU cross-linked residues
were mostly employed as distance restraints since they could provide a broader distance
range for protein dynamics compared to the CDI cross-linker (see insert in Figure 6B,C).
When the same two Lys residues were found to be cross-linked by both CDI and DSBU,
the CDI’s distance restraints were employed. The best model was selected from the top
10 solutions by taking into consideration the previous HDX-MS findings and keeping in
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mind the current understanding of the catalytic mechanism of the OGDHc and E1a. First,
according to HDX-MS studies, the N-terminal region of E1o (residues 27–40) and of E1a
(residues 24–47) displayed significant deuterium uptake decrease upon interaction with
E2o, suggesting that the N-terminal region of both proteins may be involved in interaction
with E2o. Second, the lipoyl domain of the E2o should be near the E1o/E1a active center at
a position such that it can transfer the succinyl/glutaryl group from the E1o/E1a active
center to the E2o, thus providing the substrate channeling pathway in accord with the
catalytic mechanism. It needs to be noted that the resulting models for the E1o-E2o and
E1a-E2o sub-complex assembly in Figure 7 share some similarities.
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the modeling workflow using intra-component and inter-component cross-links as residue distance
constraints. (B) Mapping of the compatible inter-component cross-links into E1a-E2o sub-complex
structure created by protein-protein docking [100]. (C) Mapping of the compatible inter-component
cross-links into the E1o-E2o sub-complex structure. The Lys82 and Lys87 are from different subunits
of the E2o trimer [94,104].

Thus, in the E2o protein the inner core region comprising residues 227–453 binds
on the ‘front side’ of the E1o and E1a proteins providing protection for the N-terminal
region of the E1o (residues 27–40) and E1a (residues 24–47) from H/D exchange in accord
with HDX-MS findings where the N-terminal region of E1o and E1a displayed significant
deuterium uptake decrease on interaction with E2o. Also, the lipoyllysyl-arm of the E2o
comprising residues 68–128 of the lipoyl domain and residues 129–226 of the linker region
preceding the catalytic domain, is swinging around the E1o/E1a ThDP-Mg2+-binding site
to provide the catalytic mechanism for succinyl/glutaryl transfer between the E1o/E1a
and E2 components. On the other hand, three regions of the E2o core domain with α-
helix secondary structure comprising residues 191–208 from the linker region and residues
370–386 from the E2o core are located proximal to E1o, while the region comprising residues
273–289 from the E2o core domain points away from the E1o (Figure 7B, Left). In the E1a-
E2o model, a “clockwise twist” shifts the α-helix from the linker region (residues 191–208)
away from E1a and brings the α-helix from the E2o core domain (residues 273–289) closer
to E1a, while the α-helix from the E2o core (residues 370–386) approaches the N-terminal
region of E1a (Figure 7B, Right). These findings help us to understand how E2o could
differentiate between the E1o and E1a and suggest further even more challenging studies
to obtain an atomic structural model for the OGDHc and its hybrid complex assembly
with E1a.



Life 2021, 11, 407 16 of 24Life 2021, 11, x FOR PEER REVIEW 16 of 24 
 

 

Figure 7. Modeling of the human E1o-E2o and of E1a-E2o sub-complex structures. (A) The E1o 
(α2) and the E1a (α2) homodimers are colored in yellow and in purple, respectively. The E2o core 
formed by tightly associated trimers is shown in violet. The E2o lipoyl domains are shown in 
dark blue. The N-terminal residues of E1o (residues 27–40) and E1a (residues 24–47) are shown 
in red. The E1o and E1a active centers located between the two subunits are shown in orange. 
(B) View of the E1o-E2o and E1a-E2o sub-complex structures at a different angle. Three regions 
of the E2o with α-helix secondary structure comprising residues 191–208 from the linker region 
(in blue), and residues 273–289 (in cyan) and 370–386 (in purple) both from the E2o core are 
indicated showing their different orientation versus E1o (left) and E1a (right) [94,104]. 

Thus, in the E2o protein the inner core region comprising residues 227–453 binds on 
the ‘front side’ of the E1o and E1a proteins providing protection for the N-terminal region 
of the E1o (residues 27–40) and E1a (residues 24–47) from H/D exchange in accord with 
HDX-MS findings where the N-terminal region of E1o and E1a displayed significant deu-
terium uptake decrease on interaction with E2o. Also, the lipoyllysyl-arm of the E2o com-
prising residues 68–128 of the lipoyl domain and residues 129–226 of the linker region 
preceding the catalytic domain, is swinging around the E1o/E1a ThDP-Mg2+-binding site 
to provide the catalytic mechanism for succinyl/glutaryl transfer between the E1o/E1a and 
E2 components. On the other hand, three regions of the E2o core domain with α-helix 
secondary structure comprising residues 191–208 from the linker region and residues 370–
386 from the E2o core are located proximal to E1o, while the region comprising residues 
273–289 from the E2o core domain points away from the E1o (Figure 7B, Left). In the E1a-
E2o model, a “clockwise twist” shifts the α-helix from the linker region (residues 191–208) 
away from E1a and brings the α-helix from the E2o core domain (residues 273–289) closer 
to E1a, while the α-helix from the E2o core (residues 370–386) approaches the N-terminal 
region of E1a (Figure 7B, Right). These findings help us to understand how E2o could 
differentiate between the E1o and E1a and suggest further even more challenging studies 
to obtain an atomic structural model for the OGDHc and its hybrid complex assembly 
with E1a. 

  

Figure 7. Modeling of the human E1o-E2o and of E1a-E2o sub-complex structures. (A) The E1o (α2)
and the E1a (α2) homodimers are colored in yellow and in purple, respectively. The E2o core formed
by tightly associated trimers is shown in violet. The E2o lipoyl domains are shown in dark blue. The
N-terminal residues of E1o (residues 27–40) and E1a (residues 24–47) are shown in red. The E1o and
E1a active centers located between the two subunits are shown in orange. (B) View of the E1o-E2o and
E1a-E2o sub-complex structures at a different angle. Three regions of the E2o with α-helix secondary
structure comprising residues 191–208 from the linker region (in blue), and residues 273–289 (in cyan)
and 370–386 (in purple) both from the E2o core are indicated showing their different orientation
versus E1o (left) and E1a (right) [94,104].

6. Application of Cryo-EM to Gain Insight into the Architecture of the 2-Oxo Acid
Dehydrogenase Complexes

A thorough identification of protein-protein interactions in the family of the 2-oxo
acid dehydrogenase complexes remains a challenge. Early studies of the architecture of the
2-oxo acid dehydrogenase complexes by analysis of electron cryo-microscopy images of the
E. coli pyruvate dehydrogenase complex (PDHc) and OGDHc were reported three decades
ago [105]. The important observation from these studies was that the E2 components
in both complexes exist as 24-mer cubic assemblies that form the structural cores of the
complexes. Multiple copies (12–24 subunits) of the E1 and E3 bind to the surface of the E2
core and are separated from the core surface by a gap of ~3–5 nm [105]. Some 15 years later,
the molecular organization of the E. coli PDHc and OGDHc was reinvestigated by using
cryo-electron tomography and it was demonstrated that the E1 and E3 components in these
complexes are flexibly tethered ~11 nm away from the E2 core with no significant variations
in the E2 core dimensions [106]. Recently, a 3D reconstruction of the human E2o core at 4.7 Å
resolution was generated by single-particle cryo-EM [35]. The EM reconstruction showed
24 C-terminal core domains grouped as eight trimers and positioned at each of the eight
vertices of the cubic cage with octahedral symmetry [35]. There was no electron density
found for the other parts of the E2o, including the N-terminal lipoyl domain and much
of the linker region, suggesting that those regions are highly flexible and dynamic [35].
The human E2o core structure generated was similar those reported earlier for the E. coli
E2o core [47], the E. coli E2p core [52] and for the A. vinelandii E2p core [49], all obtained
by X-ray crystallography. In the 3D reconstruction of the co-expressed human E1a-E2o
sub-complexes by single-particle cryo-EM, there was no density evident for the E1a protein,



Life 2021, 11, 407 17 of 24

indicating that their interaction could be short lived [35]. A molecular weight of the
human E1a45-919-E2o68-453 sub-complex of 2.45 MDa was derived from small-angle X-ray
scattering (SAXS) experiments, suggesting a stoichiometry of one E1a dimer per one E2o
trimer for their binding [35], similar to that previously deduced for the human E1o-E2o
sub-complex [70].

In contrast to 2-oxoglutarate dehydrogenase complexes, cryo-EM studies of the pyruvate
dehydrogenase complexes (PDHc’s) from Gram-positive bacteria such as Bacillus stearother-
mophilus [107], yeast [108–110], bovine PDHc [111,112], and human PDHc [51,79,80] revealed
a 60-mer E2p core with the morphology of a pentagonal dodecahedron and icosahedral
symmetry. The first reconstruction of a three-dimensional structure of E2p was reported
for the icosahedral truncated E2p (tE2p) core from Saccharomyces cerevisiae (S. cerevisiae)
which lacks the lipoyl domain and the E1-binding domain [108,109]. The cryo-EM structure
of the S. cerevisiae tE2p core generated at 25 Å resolution revealed that the E2p catalytic
domains are arranged in cone-shaped trimers at each of the 20 vertices of the dodecahedron
structure which are interconnected by 30 bridges [108,109]. The cryo-EM studies also
revealed flexibility (size variability) in the arrangement of the S. cerevisiae E2p core that
is due to conformational changes in the trimers and in the bridges that connect adjacent
trimers suggesting a flexible “breathing” core, which may be important for multienzyme
complex function, such as channeling of intermediates between the active centers of the
individual components [112]. Next, a 3-D reconstruction of the S. cerevisiae E2p core in
sub-complex with E1p’s generated by cryo-EM at ~30 Å resolution suggested that the
length of the E2p inner linkers that anchors the E1p tetramers from the outer shell to the
E2p core also may vary from ~50–75 Å depending on the occupancy of the outer shell
by E1p’s, contributing to the overall dynamics of the S. cereviciae PDHc [110]. The ~70 Å
resolution structure generated for the E1p outer shell was significantly lower compared
to the E2p core and was less reliable for interpretation of the E1p’s arrangement around
the E2p core [110]. The high resolution cryo-EM and single-particle reconstruction enabled
definition of 3D structures of the human full-length E2p at 15 Å resolution and of the tE2p
core (devoid of lipoyl domains and E1p-binding domains) at 8.8 Å and 3.1 Å resolution
that also enabled visualization of the secondary structure elements within the tE2p core,
including the α helices and β sheets [51,79]. The reconstructed structures were similar and
consisted of 60 inner core domains arranged as 20 trimers into pentagonal dodecahedron.
However, the E2p linker region that connects E1p’s to the E2p core domain was invisible
due to its high flexibility [79]. The human E2p core similar to that for S. cerevisiae E2p core,
exhibited variation in particle size suggesting its flexibility [51].

In eukaryotes, the complexity of the E2p core is increased, being formed by the E2p
and E3-binding protein (E3BP) components, which assemble into a 60-mer central core with
icosahedral symmetry [113]. Two alternative models have been suggested for assembly
of E2/E3BP: 48 copies of E2 and 12 copies of E3BP or 40 copies of E2 and 20 copies of
E3BP, where the E3BP substitutes for E2 within trimers [79]. The homology model of the
E3BP inner core supports the structure of the preformed heterotrimer with one copy of
E3BP and two copies of E2 [79]. Recently, the structure of the recombinant human E2-E3BP
core was determined by cryo-EM at 6.3 Å resolution [80]. The final 3D map showed the
E2-E3BP inner core where the E2 and E3BP subunits remained undistinguished. The
N-terminal lipoyl domains, E1 binding domain and linker regions were invisible due to
their high conformational flexibility. The negative stain electron microscopy, native and
cross-linking MS gave evidence of the possible structural asymmetry in distribution of the
E1p and E3p components at the periphery of the E2p core that suggested a “division-of-
labor”mechanism that could be modulated by the presence of substrate [80]. Currently,
it is evident that even high-resolution structures of human E2p core and E2p-E3BP core
assembly obtained by cryo-EM cannot provide an ultimate answer to protein-protein
interactions in 2-oxo acid dehydrogenase complexes. To address these issues, integrative
structural approaches will be required.
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7. Conclusions and Perspectives

The 2-oxoacid dehydrogenase complexes are macromolecular assemblies function-
ing in different metabolic pathways. These assemblies provide high catalytic efficiency
and high-level of regulation to the metabolic pathways in the cell and the regulation of
gene expression in the nucleus. Recent experimental findings in vitro and in vivo have
identified the formation of hybrid complexes between the OGDHc and E1a, suggest-
ing functional crosstalk between the two distinct metabolic pathways and an additional
layer of regulation that needs to be thoroughly established. The direct association of the
OGDHc and/or OADHc with known histone acetyltransferase KAT2 and histone H3/H4
has recently been discovered, suggesting a functional crosstalk between the KAT2 and
OGDHc/OADHc in nuclei for the purpose of posttranslational modification of histones by
succinylation/glutarylation and regulation of gene expression, tumor cell proliferation, and
tumor formation [31,32]. However, direct involvement of the OGDH and OADHc in suc-
cinylation/glutarylation of mitochondrial and nuclear proteins needs to be explored. While
over the past several years the importance of the OGDHc and OADHc in human health and
disease, and their role as potential therapeutic targets have been increasingly emphasized,
recent studies defining their structural organization and assembly into macromolecular
machines are limited by cryo-EM reconstruction of the E2o inner core. In the absence
of atomic resolution structure of any of the 2-oxo acid dehydrogenase complexes, recent
advances in chemical cross-linking coupled with mass spectrometry, and in computational
data processing have emerged as powerful tools to elucidate the potential interactions in
binary E1o-E2o and E1a-E2o assemblies, and to identify their binding surfaces as well as
their relative orientation via molecular modeling. Recent advances in negative stain EM
and in single particle cryo-EM are promising to determine the pseudo-atomic structural
models for assembly in 2-oxoacid dehydrogenase complexes. The combination of biochemi-
cal, biophysical and structural approaches by using cross-linking MS and cryo-EM structural
biology is particularly promising to provide vital information for the assembly of 2-oxoacid
dehydrogenase complexes, their function and regulation. At the same time, such studies will
create a scaffold onto which novel inhibitors could be designed to mitigate the consequences
of diseases associated with dysfunction of the TCA cycle or lysine degradation.
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Abbreviations

OGDHc, 2-oxoglutarate dehydrogenase complex; PDHc, pyruvate dehydrogenase complex;
OADHc, 2-oxoadipate dehydrogenase complex; E1o, 2-oxoglutarate dehydrogenase, the first compo-
nent of the OGDHc; E1a, 2-oxoadipate dehydrogenase; E2o, dihydrolipoamide succinyltransferase,
the second component of the OGDHc; E3, dihydrolipoamide dehydrogenase, the third component
of the OGDHc; LDo, lipoyl domain; CDo, E2o catalytic domain; PSBD, peripheral subunit binding
domain; E3BP, E3-binding protein; DHTKD1, gene encoding the E1a; h, human; E. coli, Escherichia coli;
S. cerevisiae, Saccharomyces cerevisiae; Mtb, Mycobacterium tuberculosis; B. stearothermophilus, Bacillus
stearothermophilus; Ms, Mycobacterium smegmatis; SIRT5, sirtuin 5; PTMs, post-translational modifica-
tions; TCA cycle, tricarboxylic acid cycle; ThDP, thiamin diphosphate; AMOXAD, alpha-aminoadipic
and alpha-ketoadipic aciduria; CMT2Q, Charcot-Marie-Tooth disease type 2Q; GA1, glutaric aciduria
type 1; EoE, eosinophilic esophagitis; HDX-MS, hydrogen-deuterium exchange mass spectrometry;
CL-MS, chemical cross-linking mass spectrometry; FT-MS, Fourier transform mass spectrometry;
cryo-EM, cryogenic electron microscopy; CDI, 1,1′-carbonyldiimidazole cross-linker; DSBU or Bu-
UrBu, disuccinimidyl dibutyric urea; PDB, Protein Data Bank.
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