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Abstract: Liquid biopsy has been adapted as a diagnostic test for EGFR mutations in patients with
advanced or metastatic non-small cell lung cancer (NSCLC). Loop-mediated isothermal amplification
(LAMP) has been widely used for the rapid detection of pathogens through DNA amplification.
This study investigated the efficacy of an EGFR-LAMP assay using plasma samples of patients with
resected NSCLC tumors. The EGFR status was investigated using both LAMP and next-generation
sequencing (NGS) assays in cases that met the following criteria: (1) pulmonary adenocarcinoma
with EGFR mutation detected by the Therascreen EGFR PCR Kit and (2) preoperative plasma samples
contained enough DNA for the LAMP and NGS experiments. Among 51 specimens from patients
with EGFR-mutated tumors or metastatic lymph nodes, the LAMP assay detected 1 EGFR mutation
that was also detected in the NGS assay. However, a plasma sample that demonstrated EGFR
wild type in the LAMP assay showed an EGFR mutant status in NGS. The detection rates (1.9%
in LAMP and 3.9% in NGS) were very low in both assays, demonstrating a similar performance
in detecting EGFR mutations in NSCLC tumors; therefore, it could be a more suitable test for the
advanced stage, not the early stage. Notably, the LAMP assay was more time-saving, cost-effective,
and straightforward. However, further investigation is required to develop a more sensitive assay.

Keywords: lung cancer; liquid biopsy; epidermal growth factor receptor; loop-mediated isothermal
amplification; polymerase chain reaction; point-of-care testing

1. Introduction

Lung cancer remained the leading cause of cancer death and the second most fre-
quently diagnosed cancer in the GLOBOCAN 2020 database [1]. The 5-year survival rate
after lung cancer diagnosis was only 10% to 20% in most countries from 2010 to 2014,
although these rates were higher in Japan (33%), Israel (27%), and Korea (25%) [2]. In
the last two decades, advances in lung cancer therapeutics have led to the adaptation of
comprehensive molecular profiling of novel driver mutations, and the epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have been shown to improve
overall response rate and median progression-free survival when compared with platinum-
based chemotherapy in patients with advanced or metastatic non-small cell lung cancer
(NSCLC) harboring activating EGFR mutations [3–10]. Thus, EGFR TKIs are established
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effective therapies in patients with activating and sensitizing mutation in exons 18–21 of
EGFR [11–14].

Recently, NCCN guidelines noted that osimertinib, a third-generation TKI, should
be considered an adjuvant treatment even after complete resection of NSCLC [14]. Until
recently, osimertinib was used only as a second-line treatment for those with T790M
mutations [12,13]. However, Wu et al. reported that osimertinib demonstrated statistically
longer disease-free survival in patients with stage IB to IIIA EGFR-mutated NSCLC than in
those who received a placebo [15]. Based on published evidence regarding osimertinib use
in the double-blind, phase III ADAURA clinical trials, routine molecular biomarker testing
of EGFR mutation is now recommended not only for patients with advanced or metastatic
NSCLC but also for patients with completely resected stage IB-IIIA NSCLC according to
the NCCN guidelines [14].

These clinical trials have called for new or revised recommendations in the molec-
ular testing guidelines for patients with NSCLC [16–21]. Currently, several assays are
accepted as EGFR testing methods based on the technologies of real-time polymerase chain
reaction (RT-PCR) or next-generation sequencing (NGS). The cobas® EGFR Mutation Test
v2 (Hoffman-La Roche Ltd., Basel, Switzerland) and the Therascreen EGFR Rotor-Gene
Q (RGQ) PCR Kit® (Qiagen, K.K., Tokyo, Japan) were approved as companion diagnos-
tics with TKIs by the United States Food and Drug Administration and the Ministry of
Health, Labour and Welfare in Japan [18]. Similarly, FoundationOne® CDx (Foundation
Medicine Inc., Cambridge, MA, USA) and OncomineTM Dx Target Test (Thermo Fisher
Scientific Inc., Waltham, MA, USA) were adapted for EGFR screening for patients with
advanced or metastatic NSCLC. However, these methods have been notably complicated,
time-consuming, and expensive in clinical practice.

Loop-mediated isothermal amplification (LAMP) is an alternative PCR-based tech-
nology that has been widely used globally in bacteriology [22–25] and virology, including
for SARS-CoV-2 [26–31]. For instance, TB-LAMP has been used extensively, with multiple
meta-analyses reporting sensitivity and specificity in the range of 89–93% and 94–95%,
respectively [25,32,33]. In contrast to RT-PCR, LAMP uses 4–6 primers, does not require an
expensive thermocycler, and has the potential to decrease testing cost and time to diagnosis
in laboratory or community settings. Thus, the LAMP assay has been recommended in
guidelines [34,35], and point-of-care diagnostics for tuberculosis have been developed
with a turnaround time of about 30 min and a cost of about 7 euros per test [36]. In our
previous study, 117 NSCLC tumor tissues were investigated to compare the results of the
EGFR-LAMP and Therascreen assays. The receiver operating characteristics curve analysis
of the EGFR-LAMP assay for LAMP values demonstrated 0.973 (95% CI: 0.929–1.00) in exon
19 deletion, and 0.952 (95% CI: 0.885–1.00) in L858R [37]. The sensitivity and specificity
were 89.3% and 98.9%, respectively. Although the LAMP assay is not yet widely used
in clinical oncology, it could provide a more rapid, simple, and inexpensive method for
detecting oncogenes than conventional methods.

Recently, many researchers have been investigating liquid biopsy as a promising non-
invasive technology for the early detection of cancer as well as continuous monitoring of
disease progression and/or treatment efficacy [38–41]. In this study, we aimed to develop a
new liquid biopsy system using EGFR-LAMP primers for NSCLC. We compared findings
between the LAMP and NGS assays and evaluated their sensitivity and specificity.

2. Materials and Methods
2.1. Study Design

This study was a prospective study without interventions to investigate the sensi-
tivity and specificity of the EGFR-LAMP liquid biopsy compared with those of the NGS
assay. The objects of this study were patients who had surgical biopsy or treatment for
NSCLC suspected at Saitama Cardiovascular and Respiratory Center (Saitama, Japan) from
January 2019 to September 2020. Clinical data and plasma samples were collected from
patients preoperatively and consecutively, and tumor tissue samples were obtained through
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surgery or surgical biopsy (Figure 1). Any other pulmonary diseases without NSCLC were
excluded from this study. Only EGFR-mutated pulmonary adenocarcinomas detected using
the Therascreen assay were selected for further investigation for liquid biopsy. The present
study was approved by The Institutional Review Board of the Saitama Cardiovascular and
Respiratory Center (approval no. 2018033). Written informed consent was provided by
all patients. The study was conducted in accordance with the Declaration of Helsinki (as
revised in 2013). There were 3 primary endpoints for the study: (i) confirmation of the
detection of EGFR mutations in NSCLC using the EGFR-LAMP primers, (ii) calculation of
sensitivity and specificity, and (iii) comparison with results of the NGS assay. We planned
to collect 50 EGFR-mutated tumors to increase the probability of detecting at least one
EGFR mutation in the LAMP assay.
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Figure 1. Experimental schema of this study. Plasma samples were obtained from patients with
a strong suspicion of primary lung cancer and stored in a freezing chamber preoperatively. After
surgery or surgical biopsy, all tissue samples were fixed with 10% buffer formalin at 20–25 ◦C (24–36 h)
to create formalin-fixed, paraffin-embedded tumor blocks. Afterward, hematoxylin–eosin-stained
slides were prepared for pathological diagnosis. The Therascreen assay was performed to investigate
the EGFR status of resected tumor tissues from select cases with EGFR-mutated adenocarcinoma.
DNA extraction was performed from plasma samples for both the LAMP and NGS assays.

2.2. Plasma Samples and DNA Extraction

Blood samples were obtained preoperatively and consecutively from patients with a
strong suspicion of primary lung cancer. Through normal centrifugation (4 ◦C, 3000 rpm,
15 min) within 8 h from blood sampling, plasma separation was performed by sampling
from the center of the plasma supernatant. Among these, postoperative pathology demon-
strated 57 EGFR-mutated primary adenocarcinomas considered eligible for this study.
After excluding 6 patients who did not provide written informed consent, cell-free DNA
(cfDNA) from plasma samples was extracted using the cobas® cfDNA Sample Preparation
Kit (Roche Diagnostics, Hague Road, IN, USA) according to the manufacturer’s protocol.

2.3. Pathological Diagnosis and Therascreen qPCR Mutation Analysis

All tumor tissues were obtained through surgery or surgical biopsy and fixed with
10% buffer formalin at 20–25 ◦C (24–36 h) to create formalin-fixed, paraffin-embedded
tumor blocks according to the recommendation of The Japanese Society of Pathology [42].
Hematoxylin–eosin (HE) staining was performed by the standard methods using Tissue-Tek
Prisma® (Sakura Finetek Japan Co., Ltd., Tokyo, Japan) according to the manufacturer’s
protocol. All pathological diagnoses were made based on the WHO classification version
8 by an expert pulmonary pathologist who examined HE-stained slides in low and high
magnification using an ECLIPSE Ni-u light microscope (Nikon Co., Ltd., Tokyo, Japan).
The presence of EGFR mutations was determined using a Therascreen EGFR PCR kit®

(Qiagen, K.K.) [43].
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2.4. LAMP Mutation Analysis

The LAMP assay was performed according to the standard protocol described in our
previous studies [37,44]. Briefly, the LAMP assay was conducted at 65 ◦C for 120 min
using the LightCycler 480® (Roche Diagnostics KK, Tokyo, Japan) and a primer set that
was developed in our laboratory (Figure 2). After denaturing the amplicon at 95 ◦C for
5 min followed by hybridization at 37 ◦C for 5 min, the temperature was gradually raised
to 80 ◦C, and the fluorescence intensity was measured 7 times per 1 ◦C increment., The data
were analyzed using the LightCycler 480 software® (version 1.5.1.62; Roche Diagnostics
KK) to calculate the melting peak.
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Figure 2. Schematic diagram of loop-mediated isothermal amplification. (A) Scheme of dumbbell-like
structure formation. Target DNA is firstly denatured into single-stranded DNA. Then, the forward
inner primer (FIP) initiates DNA synthesis from the F2c region. The following extension from the
forward outer primer (F3) displaces the strand that was generated by the FIP extension. The replaced
strand plays the role of a template of the backward inner primer (BIP) and backward outer primer
(B3) in the same manner as sense strand amplification. Consequently, the dumbbell-like structure
harboring hairpin structure on both of 5′- and 3′-terminus is generated. (B) Scheme of isothermal
amplification. The dumbbell-like structure exposing F2c or B2c regions where FIP or BIP hybridizes
initiates cycling amplification. The cycling amplification regenerates dumbbell-like structures and
generates various amplicons, which are exponentially increased in length.

2.5. Next-Generation Sequencing

Amplicon-based NGS was performed using the MiSeq system (Illumina KK, Tokyo,
Japan), and the primer sets for amplification of EGFR exons 18, 19, 20, and 21 were used
as previously reported [37,40]. The resulting FASTQ files were mapped to the GRCh38
human reference sequence using BWA-MEM (http://bio-bwa.sourceforge.net/ (accessed
on 5 June 2022)). The variant data was extracted from the mapped data using Samtools
ver. 1.9 (http://www.htslib.org/ (accessed on 5 June 2022)) and GATK4 (https://gatk.
broadinstitute.org/hc/en-us (accessed on 5 June 2022)).

2.6. Statistical Analysis

Descriptive statistics and categorical variables were calculated using standard for-
mulae with Excel 2019 ver. 16.0.12527.20260® (Microsoft Corp, Tokyo, Japan) and SPSS
Statistics® version 28 (IBM Corp., Armonk, NY, USA). The sensitivity and specificity of
the LAMP and the NGS assays were obtained, and figures were created using Excel 2019
and the statistical software R version 3.6.3 (R Foundation for Statistical Computing, Vienna,

http://bio-bwa.sourceforge.net/
http://www.htslib.org/
https://gatk.broadinstitute.org/hc/en-us
https://gatk.broadinstitute.org/hc/en-us


Micromachines 2022, 13, 897 5 of 11

Austria) with the ggplot2 package. Clinical and pathological findings were extracted from
the electronic medical records of the patients. p < 0.05 was considered significant.

3. Results
3.1. Examination of the Efficacy of EGFR-LAMP Liquid Biopsy

To investigate the performance of EGFR-LAMP liquid biopsy in detecting EGFR
mutations, four kinds of solutions with different concentrations of mutated EGFR copies
(0%, 5%, and 100% in 10,000 copies and 5% in 1000 copies) were prepared in the preliminary
study (Figure 3). The detection of EGFR mutations was marked by 29 EGFR-LAMP primers
in a solution of 5% in 10,000 copies. Detection was achieved in 26 primers but not in three
primers. Thus, a concentration of at least 5% in 10,000 copies may be required to detect
EGFR mutations using the LAMP assay.
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Figure 3. The relationship between results of the LAMP assay and DNA concentrations. The x-axis
shows 4 concentrations, and Y-axis presents 29 subtypes of EGFR mutations. The LAMP assay
detected all EGFR mutations over 5% in 10,000 copies.

3.2. Characteristics of Patients with EGFR-Mutated Adenocarcinoma

A total of 264 plasma sampling and surgical procedures were performed as a biopsy or
treatment for patients with highly suspicious lung cancer. Among them, 57 resected tumors
demonstrated primary lung cancer with EGFR mutations, which was confirmed by the
Therascreen assay using tumor tissues. After excluding patients without informed consent,
51 patients were enrolled in this study. The mean age of the 51 patients was 68.7 years
(49–85 years), and most patients were female (n = 31, 70.8%) (Table 1). There were 22 never-
smokers (43.1%), 23 former-smokers (45.1%), and 6 current smokers (11.8%). In terms
of histologic subtype of adenocarcinoma, there were 45 papillary predominant (88.0%),
4 lepidic (8.0%), 1 micropapillary (2.0%), and solid predominant (2.0%) adenocarcinomas.
Most cases were pathological stage I, consisting of 12 p-IA1 (24.0%), 21 p-IA2 (41.0%), and
6 p-IA3 tumors (12.0%).

Table 1. Clinical characteristics of patients in the study.

Characteristic N (%)

Age, years 68.7 ± 8.4

Sex
Male 20 (29.2)
Female 31 (70.8)
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Table 1. Cont.

Characteristic N (%)

Smoking Status
Never smoker 22 (43.1)
Former smoker 23 (45.1)
Current smoker 6 (11.8)

Subtype of adenocarcinoma
Papillary predominant 45 (88.0)
Lepidic predominant 4 (8.0)
Micropapillary predominant 1 (2.0)
Solid predominant 1 (2.0)

Pathological stage
pIA1 12 (24.0)
pIA2 21 (41.0)
pIA3 6 (12.0)
pIB 2 (4.0)
pIIB 3 (6.0)
pIIIA 4 (8.0)
pIIIB 1 (2.0)
pIVA 1 (2.0)
pIVB 1 (2.0)

Data on age: mean ± SD.

3.3. Amount of cfDNA Extracted from Plasma Samples

The cfDNA was obtained from clinical plasma samples using the QIAamp DNA Blood
Mini Kit® (Qiagen, K.K.). Figure 4 illustrates the amount of cfDNA extracted from each
specimen. In extracted cfDNA, the average value was 50.89 ng (25.76–110.24), and over
0.162 ng/µL cfDNA was available for use in most cases (Supplementary table). Among
them, the quantity of cfDNA that we actually used was 1.59 ng (0.81–3.45) on average for
the LAMP assay and 5.54 ng (2.83–10.00) for the NGS assay. Therefore, the cfDNA volume
was considered enough for both the LAMP and NGS assays.
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concentration was 25.76 ng/µL, and the maximum concentration was 110.24 ng/µL.

3.4. Therascreen EGFR PCR Mutation Analysis for Resected or Biopsied Tumors

Among the 51 adenocarcinomas, there were 27 tumors with exon 19 deletion (52.9%),
18 tumors with exon 21 L858R point mutations (35.3%), 2 tumors with exon 20 in-frame
insertion (3.9%), 2 tumors with exon 19 deletion/exon 20 in-frame insertion (double muta-
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tion) (3.9%), and 2 uncommon EGFR mutations (exon 19 deletion/G719X point mutation
and G719X/exon 18 point mutation) (Table 2).

Table 2. EGFR status of resected tumor tissue as determined using the Therascreen assay.

Number Percentage (%)

Del 19 27 52.9
L858R 18 35.3
Ins 20 2 3.9

Ex 19 del + Ins 20 2 3.9
Del 19 + G719X 1 2.0
G719X + Ex 18 1 2.0

Total 51 100
EGFR, epidermal growth factor receptor; Del 19, Exon 19 deletion; Ex 18, Exon 18 point mutation; Ins 20, Exon 20
insertion; L858R, Exon 21 L858R point mutation.

3.5. Comparison of Results of the LAMP and the NGS Assays

Among the 51 tumors, there was one tumor with EGFR mutations in both the LAMP
and the NGS assays, another one with EGFR wild type in the LAMP assay but EGFR
mutations in the NGS assay, and the others with EGFR wild type in both assays. Both the
LAMP and the NGS assays were not able to detect EGFR mutations in 49 plasma samples,
even though the mutation was confirmed through the Therascreen assay in the resected
or biopsied tumors. Among two cases with EGFR mutations in the NGS assay, one case
had p-stage IVB adenocarcinoma with an L858R point mutation in the LAMP assay, while
the other had p-stage IIIA adenocarcinoma with an L858R point mutation only in the NGS
assay (Table 3). In the supplementary table, the amount of cfDNA was 1.44 ng in the LAMP
assay detecting EGFR mutation (average 1.59 ng in all LAMP experiments), and it was
5.04 ng and 6.58 ng in the NGS assay resulting in EGFR mutations (average 5.54 ng in all
NGS experiments). A relationship was not found between the amount of cf DNA and the
detection of EGFR mutation in both assays. The positivity rate of the EGFR-LAMP liquid
biopsy was 2.0%, and that of the NGS assay was 3.9%.

Table 3. Comparison of EGFR status between resected tumor and preoperative plasma samples.

Tumor Plasma

p-Stage Therascreen LAMP LAMP NGS

Case 1 IVB L858R L858R L858R L858R
Case 2 IIIA L858R negative negative L858R

EGFR, epidermal growth factor receptor; L858R, Exon 21 L858R point mutation; NGS, next-generation sequencing;
LAMP, loop-mediated isothermal amplification.

4. Discussion

The identification of EGFR mutations is necessary for decision-making in the treatment
of patients with advanced or metastatic NSCLC. Furthermore, the latest NCCN guidelines
recommend testing EGFR status even after complete resection for patients with early-stage
NSCLC to consider the administration of adjuvant chemotherapy [16–18,45]. Due to the
expanded indications for EGFR examination, the demand for a rapid and cheap approach
to identifying EGFR status has been steadily increasing. However, health insurance only
allows testing through conventional PCR-based or NGS-based methods in most countries.
Since the latter method is time-consuming, expensive, and highly complex, there is an
urgent need to develop a more convenient approach for molecular testing of oncogenes.

Point-of-care testing (POCT) is a concept where testing for healthcare is provided close
to or near the patients. Although various definitions have been provided in the medical
or scientific field, it was defined as “testing performed near or at the site of a patient with
the result leading to a possible change in the care of the patient” [46]. POCT is being
increasingly used in general practice inside and outside the hospital, such as in the case of
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the reverse transcription LAMP (RT-LAMP) for COVID-19 [47]. The standard for COVID-19
diagnostics are PCR-based tests that are highly sensitive, specific, and remarkably reliable,
but these tests are limited by the requirement for sophisticated laboratories and skilled
personnel, the complex protocol, the long waiting times for results, and an overall high
cost per test. The development of RT-LAMP can be a robust solution for the rapid and
cost-effective diagnosis of COVID-19 in low-resource laboratory settings. Although basic
research into POCT for several diseases has been progressing drastically, there are only a
few reports of POCT in oncology for now.

In 2018, Asaka et al. reported a POCT system for detecting EGFR mutations based on
a droplet-polymerase chain reaction (d-PCR) assay using cfDNA from patients with lung
cancer [48]. The EGFR d-PCR assay was designed to detect three EGFR mutations: L858R
in exon 21, E746_A750del in exon 19, and T790M in exon 20. However, it has not been
adopted in clinical practice yet. In this manner, the development of POCT is just beginning
in oncology, and it is widely expected that POCT will conquer some technical limitations of
conventional methods.

In this pioneering study, the EGFR-LAMP assay successfully detected EGFR mutations
using 29 EGFR-LAMP primers developed and reported in our previous study [37,44].
However, an EGFR mutation was only detected in one case. The low positivity rate
for EGFR mutations is a clinical issue in the development of the EGFR-LAMP liquid
biopsy. The reason for this is likely not the limits of abilities of the LAMP assay but
the low concentration of circulating tumor DNA (ctDNA) because the NGS assay also
demonstrated a low positivity rate. The ctDNA concentration could be below 5% in
1000 copies according to the relationship between the detection rate and DNA concentration
(Figure 3). Consequently, using plasma samples from patients with advanced or metastatic
tumors instead of early-stage tumors is recommended to confirm the positivity rate of EGFR
mutations in EGFR-LAMP liquid biopsy. Another improvement will be the development of
a multiplex platform equipped with multiple EGFR-LAMP primers, allowing us to avoid
the subdivision of plasma samples for each primer. However, it is necessary to elucidate
the optimal combinations of EGFR-LAMP primers to allow accurate gene amplification.

Currently, the cobas EGFR assay® (Roche Molecular Systems Inc., CA, USA) for analy-
sis of plasma samples has been officially validated in NSCLC by authorized organizations.
However, it is inconvenient because of the long waiting time to obtain results. Despite
the limitations of this study (small number of cases and study participants from a single
institute), we were able to demonstrate the potential of EGFR-LAMP liquid biopsy as
POCT in oncology as well as in the general field of molecular testing. In future studies,
we plan to investigate this application by using plasma samples from patients with more
advanced-stage tumors.

This study had several limitations: (1) relatively small sample size, (2) single-institute
nature of the study, (3) data were obtained only from surgery cases, and (4) negative control
groups (tumors with EGFR wild type) were missing. Since ctDNA concentration could
be high in plasma samples from more advanced-stage tumors in theory, further studies
should be planned to clarify the performance of the EGFR-LAMP liquid biopsy system for
advanced cancers through comparisons with negative control groups.

In conclusion, our study was the first to demonstrate that the LAMP assay successfully
detected EGFR mutations in plasma samples, illuminating a direction for the development
of POCT in oncology. POCT of EGFR mutations could dramatically change clinical practice
in the future. For instance, an outpatient’s blood could be examined, and the result of
the oncogene status could be obtained within half a day. This could also be applied to
staging in place of the TNM classification, assessment of the effects of chemoradiation, and
elucidation of resistance to anticancer drugs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/mi13060897/s1, Table S1: Amount of cfDNA.

https://www.mdpi.com/article/10.3390/mi13060897/s1
https://www.mdpi.com/article/10.3390/mi13060897/s1
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