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Editorial on the Research Topic

Management of pancreatic cancer: Defining the targets for therapy

Despite advances in diagnosis and management, pancreatic ductal adenocarcinoma

(PDAC) is still lethal with a 5-year survival rate varies between 9 and 11% (1, 2). More

importantly, the incidence of pancreatic cancer is increasing and is projected to be the

secondmost cause of cancer-related death by 2030 (1), prompting a need for high clinical

impact research in this cancer. The combination of aggressive tumor behavior, late

presentation and poor response to chemotherapy are responsible for its poor outcomes,

with only 20% of patients deemed “resectable” at the time of diagnosis. Even then, the

rate of cancer recurrence at the resection site or distance metastases is high (up to 80%),

with a 5-year survival rate of only 20–30%. One reason for such disappointing results

is the occurrence of occult metastasis in the early stage of the disease, too small to

be detected by any form of imaging, including endoscopic ultrasound, MRI and PET

scans. This is best shown by the presence of circulating tumor cells in the portal vein

of all patients who are deemed to have “resectable” cancer (3), reflecting the aggressive

tumor behavior of pancreatic cancer. In fact, whole genome evaluation of 100 pancreatic

cancers confirmed that it is a highly complex cancer with over 5,000 mutations (4),

multiple oncogenic pathways (5) and chromosomal anomalies (6). With these insights, it

is more logical to characterize and prognosticate the cancer based on its tumor behaviors,

which can clinically reflect by biomarkers, or more recently, a panel of mutations

using next-generation sequencing (NGS) or whole genome sequencing (WGS) (4–6).

Understanding the role of these biomarkers and mutations is key to facilitate early-stage

diagnosis, prognosticate and guide treatment in pancreatic cancer. The combination of

accurate imaging techniques and identification of novel biomarkers, therefore, is crucial

to improve prognostication and treatment outcomes of PDAC. In this issue, two of the

potential novel biomarkers and models for developing targeted treatments of PDAC

are discussed.
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Immune checkpoints have been increasingly used as target

for precision oncological treatment for many cancers, including

PDAC. Checkpoint with forkhead-associated and ring finger

domains (CHFR) gene encodes a protein implicated in mitosis

entry checkpoint. Although CHFR has been explored in various

cancers, data on its role in PDAC remains limited. In the first

article of this issue, González-Borja et al. prospectively examine

the impacts of CHFR expression and promoter methylation on

the outcome of patients with borderline and resectable PDAC.

In both groups, the progression free survival was significantly

longer in patients with stronger intensity CHFR expression

(12.74 months vs. not reached; p = 0.025). Lower methylation

levels were associated with longer overall survival (HR = 0.32;

p = 0.042). Up to date, there are 4 studies that have explore the

role of CHFR in PDAC, with conflicting data (7–9). Increased

CHFR promoter methylation was found to be associated with

higher lymph node metastasis, supporting Borja’s findings (7).

Based on immunohistochemical expression of CHFR, high level

expressions were associated with decreased proliferative rate,

early T-stage disease and improved prognosis in patients with

resectable PDAC (8, 9). The only study that did not show any

correlation between CHFR expression and overall survival was

by Wei et al., in which the study sample size was small (n

= 27) and adjuvant chemotherapy was with docetaxel rather

than FOLFIRINOX (9). Although available data, including

those from González-Borja et al., support the use of CHFR

expression or its methylation as a prognostic marker in patients

with resectable PDAC, the evaluation of its prognostic role

should be extended to non-resectable PDAC, which account

for 80% of all PDAC. In addition, future research should

focus on the correlation of CHFR expression with responses

to chemotherapeutic agents in PDAC, allowing identification of

potential targeted therapies for CHFR-expressed PDACs.

Tumor suppressors are well-known oncological regulators,

and in this issue, the role of high mobility group box

1 (HMGB1), a protein involved in inflammation and

intracellularly suppresses oncogenic pathways, in response

to radiation therapy, was assessed in PDAC (10). In pancreatic

cancer mouse models, the impact of HMGB1 expression on

tumorigenesis depends on its cellular location. The intra-

cellular levels of HMGB1 regulate its growth, with depleted

levels accelerating K-Ras-driven carcinogenesis (10, 11).

However, the effects of HMGB1 is reversed once the protein

is outside of the cells, with high extracellular HMGB1 levels

found to stimulate pancreatic cancer cell growth (12). Using

pancreatic cancer cell lines (PANC-1 and SW1990), Zhu et

al. explored the impact of radiotherapy on the supernatant

HMGB1 levels. Compared to control (no radiation exposure),

a 4Gy (PANC-1) to 10Gy (SW1990) exposure increased

release of HMGB1 into the extracellular space, resulting in

significantly higher extracellular HMGB1 levels in irradiated

cell lines. These findings are similar to those from 2 previous

studies, demonstrating that HMGB1 is released from apoptotic

cells after irradiation (13, 14), and the elevated extra-cellular

HMGB1 levels were associated with higher proliferation rate of

pancreatic cancer (61.4 vs. 45.9% in SW1990 cell line, p < 0.05;

47.5 vs. 38.4% in PANC-1 cell line, p < 0.05). More importantly,

when a HMGB1 inhibitor was added, proliferation rates fell

to near control levels. In humans, high serum HMGB1 levels

have been shown to associated with advanced-stage PDAC

(15). These results are highly relevant as they may explain the

discrepancies in the benefits of radiation therapy in PDAC over

the last 3–4 decades. In fact, a RCT has shown that combined

broad-beam radiotherapy with chemotherapy are harmful for

PDAC (11). The survival benefits of radiation therapy in PDAC

have only been found with focused high dose (40 to 50Gy)

radiation in the form of stereo-static body radiation therapy

(SBRT) (16). It is a priority for more research to look at the

impact of high dose radiation on extra-cellular HMGB1 levels

in PDAC, as well as potential therapeutic targets to inhibit

extracellular HMGB1 in the management of PDAC.

Even with the tremendous efforts over the last decade

to define the genomic anomalies and appropriate biomarkers

or mutations to guide chemotherapy, only a small number

of patients with PDAC have been found to have actionable

mutations (26–30%) in clinical practice. The real-life success

of biomarker driven chemotherapy, therefore, has been very

limited (17). The alternative approach is generation of

patient-derived preclinical cancer models to identify effective

treatments. Patient-derived xenografts allows for vascularisation

of the engrafted cell/tissue with cells resembling true tumor

structure and can reveal a response specific to the patient.

However, xenograft models are time consuming (up to 6 months

to grow), costly, and involves many animals (18). Pancreatic

cancer patient-derived-organoids (PDOs), as described by PIro

et al., can overcome the weaknesses of xenografts, being cheaper,

having a shorter generation duration (2–4 weeks), and does

not require animal experimentation. More importantly, the

generated organoids can retain the original pancreatic cancer

genomic signatures and heterogeneity, simulating patient-

specific cancer and allowing reliable drug-specific testing. Thus

far, most studies reported on PDOs are typically developed from

resected human pancreatic tumors, which poses a significant

limitation in that less than 20% patients with PDAC are

resectable. EUS-guided sampling has provided a less invasive

approach and allows organoids to be developed in all patients

with PDAC. Recent data indicated that an EUS-guided approach

can be feasible in up to 87% of cases (19). To have this

concept integrated into routine clinical care, further studies are

needed to standardize protocols for EUS-guided sampling and

techniques of PDO generation and identify an appropriate panel

of chemotherapeutic agents.

Given EUS core biopsy can provide adequate tissue for

both biomarker/genomics analysis and generating PDO for drug

testing, it likely that both techniques will be utilized in parallel

to optimize the management of PDAC in the near future. The

ability to characterize the cancer biology rapidly by either WGS

or NGS will not only allow the physician to prognosticate the
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disease but also identify any targeted therapy. However, if there

is no “actionable” mutation found, drug testing from PDO can

help to identify the most effective chemotherapy.
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