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Abstract: Melanoma, as a tumor cell derived from melanocyte transformation, has the characteristics
of malignant proliferation, high metastasis, rapid recurrence, and a low survival rate. Traditional
therapy has many shortcomings, including drug side effects and poor patient compliance, and so on.
Therefore, the development of an effective treatment is necessary. Currently, nanotechnologies are a
promising oncology treatment strategy because of their ability to effectively deliver drugs and other
bioactive molecules to targeted tissues with low toxicity, thereby improving the clinical efficacy of
cancer therapy. In this review, the application of nanotechnology in the treatment of melanoma is
reviewed and discussed. First, the pathogenesis and molecular targets of melanoma are elucidated,
and the current clinical treatment strategies and deficiencies of melanoma are then introduced.
Following this, we discuss the main features of developing efficient nanosystems and introduce the
latest reports in the literature on nanoparticles for the treatment of melanoma. Subsequently, we
review and discuss the application of nanoparticles in chemotherapeutic agents, immunotherapy,
mRNA vaccines, and photothermal therapy, as well as the potential of nanotechnology in the early
diagnosis of melanoma.

Keywords: melanoma; drug delivery systems; immunotherapy; gene therapy; photodynamic ther-
apy; combination therapy

1. Introduction

Cutaneous melanoma is a type of skin cancer whose incidence is increasing signifi-
cantly worldwide [1–3]. Although melanoma occurs infrequently, accounting for less than
5% of skin cancer, it is highly aggressive and accounts for more than 75% of all skin cancer
deaths [4–8]. Furthermore, melanoma is the third most common source of brain metastases
after lung and breast cancer, with more than 60% of patients with metastatic melanoma
having or developing brain metastases during their onset [9]. The early detection of
melanoma is a key factor for melanoma therapy [10,11]. Although an earlier diagnosis
has been documented with better outcomes, one-fifth of deaths counterintuitively occur
in patients who are initially presenting with early disease [12]. Melanoma is a complex
disease with a poor prognosis. In clinical cases, melanoma is diagnosed in the last stages
and metastatic forms, and it is known that individual cells can switch from a proliferative
state to an invasive state [13–15]. These can lead to patients with melanoma exhibiting a
hard response to the current therapeutic approaches.

The continuous progress in science technology and understanding of cell and tumor bi-
ology has improved cancer treatment. However, the treatment results for melanoma are still
disappointing because, in most cases, the treatment is ineffective [16]. Drug resistance is an
important characteristic of melanoma, resulting in the lack of effectiveness of current drug
treatments [17–21]. Surgery [22,23], chemotherapy [24,25], and immunotherapy [26,27]
are the most commonly approaches. However, these treatments are largely limited by an
advanced cancer diagnosis, off-target drug delivery and concentration, systemic toxicity,
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and drug-induced undesirable side effects. When melanoma is detected at an early stage
(stage I and II), it can be cured by surgical removal of the tumor [28]. This treatment method
can effectively prevent the early metastasis of melanoma [29]. However, in most advanced
melanomas, surgical treatment still fails to achieve the expected value. Chemotherapy
is currently the most commonly used cancer treatment as a single or drug combination
therapy, increasing the survival time for cancer patients [30–32]. However, the application
of anticancer drugs still have serious limitations that often compromise the effectiveness
and continuity of treatment. Common chemotherapeutic agents trigger the cell breakdown
by inducing DNA damage and strand breaks, interfering with DNA repair and microtubule
function (especially taxanes) [33,34]. These chemotherapy drugs can not only kill tumor
cells but also damage normal tissue cells. At the same time, another worrying obstacle
related to cancer treatment is tumor cell resistance. Such resistances may due to internal
factors, including mutations [35,36], gene amplification [37,38], deletions [39,40], and chro-
mosomal rearrangements [41,42], or external factors, such as pH [43], hypoxia [44], and
paracrine signaling interactions with stromal cells [45,46]. Currently, the main clinical drugs
employed for melanoma treatment include doxorubicin (DOX) [47], vemurafenib [48], and
paclitaxel (PTX) [49], but these drugs lack specificity for tumor sites, and melanoma cells
often develop drug resistance to these drugs. Furthermore, these drugs seem to have no
obvious therapeutic effect and even have serious side effects. Moreover, melanoma is one
of the most sensitive malignant tumors to immune regulation [48]. Despite decades of
trials of vaccines, cytokines, and cell therapies, it has been shown to be meaningful in a
small proportion of patients with metastatic disease. To date, the metastasis probability of
melanoma is still high, and this effect is partly due to tumor-driven immunosuppression.
At present, most patients encounter multiple challenges in treatment, including severe
side effects and drug resistance. To overcome these challenges, there is an urgent need
to develop new treatment methods that can be combined with current therapies to help
improve clinical treatment. Nanomedicine is a promising strategy that can improve the
efficacy of drugs by increasing the concentration of drugs at tumor sites, thereby improving
the clinical effects of cancer treatment [50–52].

In this review, we discuss the challenges of treating metastatic melanoma and the latest
advances in nanoparticles in overcoming these challenges. A special focus is placed on the
latest treatments for primary melanoma and metastases, including the nanocarrier-based
target delivery of chemotherapeutic drugs, antibodies, and mRNA; nanocarrier-induced
immune regulation to activate anticancer immune responses; and nanocarrier-activated
photothermal and radiotherapy for in-situ/metastatic melanoma (Figure 1). Finally, we
provide insights on the design and use of nanoparticles to further promote the clinical
application of melanoma imaging and treatment.
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Figure 1. Nanoparticle-based drug delivery for melanoma therapeutics. Factors that are considered
in a sensible design strategy should include the composition of the nanocarrier core, targeting ligands,
stimulation–responsive triggers for specific site release of cargo, and expected therapeutic outcomes.
Latest therapies for primary melanoma and metastases include the nanocarrier-based target delivery
of chemotherapeutic drugs, antibodies, and mRNA; nanocarrier-induced immune regulation to
activate anticancer immune responses; and nanocarrier-activated photothermal and radiotherapy for
in-situ/metastatic melanoma, NPs: nanoparticles; MTM: core-shell MnO2@TiO2.
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2. Medical Nanomaterials in Tumor Therapy

The application of nanotechnology has greatly improved clinical practice in the diag-
nosis, treatment, and management of cancer. Nanotechnology also provides strategies for
targeted delivery of drugs, genes, and proteins to tumors, thereby reducing their nonspe-
cific accumulation in peripheral tissues [53–55]. Currently, the major medical nanomaterials
include organic (e.g., liposome, polymeric nanoparticles, and dendrimer) and inorganic
(e.g., magnetic nanoparticles, carbon nanoparticles, gold nanoparticles, and silica nanopar-
ticles) nanomaterials [56–58], which are used in the diagnosis and treatment of various
cancers. Liposomes are amphoteric lipid bilayers with a hydrophilic core and a hydropho-
bic outer shell [59]. Because of such a unique structure, liposomes can encapsulate not
only hydrophilic drugs but also encapsulate hydrophobic drugs [25,60,61]. Liposomes are
more biocompatible than other synthetic materials due to their similar composition to cell
membranes [62]. Liposomes protect drugs from degradation and prevent premature expo-
sure to the environment, thereby preventing drug enrichment in non-target organs [60].
However, the challenge for the development of liposomes as drug carriers is how to control
the specific distribution and clearance of liposomes in vivo. Polymer nanoparticles are
particles with a diameter of less than 1 µm prepared from natural (proteins, chitosan,
cyclodextrin, and starch) [61,63–65] and synthetic (polyethylene glycol, PEG and Poly (D,
L-lactic-coglycolic acid), PLGA) [66] polymers. Polymer nanoparticles can be obtained
with different properties and different release characteristics by forming matrix-type or
reservoir-type structures according to different preparation methods. Polymer nanoparti-
cles can also improve the specificity of drug action by altering the tissue distribution and
pharmacokinetics of drugs in the patient and are, therefore, considered as promising drug
carriers. At present, the research of polymer nanocarriers mainly focuses on the elucidation
of the mechanism of action, environmental reaction, activity localization, and composite
materials. Importantly, the key feature of polymer nanoparticles as drug carriers is that
they can be surface functionalized to target tumor tissues or cells actively and stimulate
responsiveness and control the release of drugs [67]. Actively targeting nanoparticles to
the site of action is based on tumors. Li et al. successfully synthesized chitosan-based
polymer nanoparticles by ion gel method, which has a high capacity to loaded DOX and
human thrombin [68]. At the same time, the tumor homing pentapeptide with sequence
CREKA was grafted onto the surface of nanoparticles to produce nanoparticles with an
active tumor tissue targeting ability [69].

In addition, due to the specific physical and chemical properties of inorganic nanopar-
ticles, which include non-metal and metal nanoparticles, such as carbon nanotubes [70],
gold nanoparticles [71], magnetic nanoparticles [72], and silicon nanoparticles [73], can
improve the delivery efficiency of drugs and the early diagnosis of tumors. In the drug
delivery field, carbon nanotubes are cylinders composed of several coaxial graphite lay-
ers with a diameter of nanometers [74]. Due to their thermal conductivity and optical
properties, they have become a popular candidate material for killing cancer cells through
local hyperthermia [75]. Furthermore, carbon nanotubes can be specifically taken up by
tumor cells through the functional modification of tumor-specific ligands (folate, FA) [76]
or antibodies (monoclonal antibodies) [77]. In the bioimaging field, due to the high electron
density of metal nanoparticles, these particles are now used to evaluate the interaction
of different bio-specific molecules and detect their specific membrane antigens for the
early diagnosis of tumors [78]. In addition, in this review, we also summarized the rele-
vant research on medical nanomaterials with different properties used in the treatment
of melanoma in the last three years (Table 1). However, early experimental results show
that inorganic nanomaterials, including gold nanoparticles and silicon nanoparticles, have
toxic side effects [79–81]. In summary, different nanomaterials play different roles in the
treatment of melanoma. Next, we will summarize the application of nanomaterials from
the perspectives of drugs, vaccines, cellular immunity, and so on.
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Table 1. Multifunctional nanoparticles-based treatment of melanoma reported in the last three years
(2018–2020).

Nanocarrier Anticancer Agent Functionalization Ref

Liposome

Anacardic acid,
Mitoxantrone, Ammonium

ascorbate, PTX, TRAIL,
Vemurafenib,

Hypericin,
n-Butylidenephthalide,

Hydroxychloroquine, eIF3i
shRNA, Hispolon, and

5-fluorouracil.

Stearyl chain (C18)
fused pH-sensitive

cell-penetrating
peptide (C18-TR),

Peptide: TD
(ACSSSPSKHCG),

DPPC, R8-dGR
peptide, iRGD.

[82–88]

Polymeric
nanoparticles

Indocyanine green,
Pyrazoline, Dox,

Gadopentetic acid, PTX,
Ellagic acid,

Curcumin, Antigenic
peptide (hgp10025-33), and

TLR 4 agonist.

Proteins, Chitosan,
Cyclodextrin and

Starch, PLGA, RBC.
[89–92]

Dendrimer
Cytosine–phosphate–

guanine oligonucleotides
and DOX.

PEG-PAMAM,
LMWH. [93,94]

Carbon nanoparticles -
Fluorescent nitrogen–
phosphorous-doped

carbon dots.
[95]

Metal nanoparticles
Dacarbazine, Mesilato de

imatiniband siRNA STAT-3
and Cas9-sgPlk-1 plasmids.

Magnetic
nanoparticles, Gold
nanoparticles, and

Silica nanoparticles.

[96–98]

PTX, Paclitaxel; TRAIL: Tumor necrosis factor (tnf)-related apoptosis inducing ligand; eIF3i: Eukaryotic translation
initiation factors 3i; DOX: Doxorubicin; TLR: Toll-like receptor; STAT-3: Signal Transducer and Activation of
Transcription 3 factor; DPPC: Dipalmitoylphosphatidylcholine; iRGD: internalizing RGD peptide; PLGA: Poly
(D, L-lactic-coglycolic acid); RBC: Erythrocyte (RBC); PAMAM: Poly(ethylene glycol)-polyamidoamine; LMWH:
Low-molecular-weight heparin.

3. Nanoparticle-Based Drug Delivery for Melanoma Therapeutics
3.1. Nanoparticle-Mediated Chemotherapy Delivery for Melanoma Therapy

A variety of antitumor drugs have been approved by the Food and Drug Admin-
istration (FDA), including DOX, ipilimumab, dabrafenib, trametinib, vemurafenib, and
PTX, which have been shown to be effective against melanoma. However, the half-life
of most drugs in physiological media is very short—only 1–5 h [99]. Meanwhile, it is
often accompanied by severe side effects, such as allergic reactions, hypersensitivity, and
severe pain. The overwhelming majority of chemotherapeutic drugs are not soluble in
water or other aqueous solutions [100,101], which severely limits their efficacy in clinical
applications. Considering that these chemotherapeutic drugs cannot meet the requirement
of an effective drug concentration at the tumor site, researchers have used the drug delivery
system (DDS) to supplement the advantages of drug utilization. In recent years, researchers
have found that the nano drug delivery system can improve the bioavailability of a drug
through the sustained release of the drug and prevent it from being removed by the retic-
uloendothelial system [102]. In addition, nano drugs can passively target tumors based
on their enhanced permeability and retention effect (EPR) [103] and enhance the efficacy
of chemotherapeutic drugs while reducing the systemic toxicity (Figure 2) [103]. PLGA
and PEG are both FDA approved pharmaceutical excipients that are extensively used
in the pharmaceutical industry. The block copolymer PEG-PLGA has long been used to
fabricate PEGylated nanoparticles to overcome protein adsorption and achieve prolonged
circulation following systemic administration [104]. In recent years, an increasing number
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of new nanocarriers has been prepared for the targeted delivery of chemotherapy drugs.
For example, Nausicaa et al. demonstrated that loading PTX into a high-temperature
nanosponge produced a response to several important issues associated with PTX therapy,
such as solubility and toxicity [105]. The addition of PTX to nanoparticles may reduce its
antitumor dose and increase the effectiveness [106]. In addition, the novel nanoparticles
as PTX nanocarrier also shows a high drug loading rate, which can store and release
PTX slowly and for a long time. Moreover, Zhou et al. reported PLGA nanoparticles
coated with the membranes of neutrophils provided a biomimetic drug delivery system
and achieved the target specificity for malignant melanoma [107]. As the most abundant
leukocytes in the systemic circulation, neutrophils can be recruited at inflammatory sites
under the action of the granulocyte colony stimulating factor in the tumor inflammatory
microenvironment [108]. Therefore, the presence of neutrophil membranes on the surface
of nanoparticles significantly improved the cell uptake efficiency of B16F10 cells, with-
out changing the main internalization pathways. At the same time, the existence of the
neutrophil cell membrane showed stronger specific aggregation at the tumor site, and the
antitumor effect was stronger.

Int. J. Mol. Sci. 2021, 22, x  5 of 19 
 

 

achieved the target specificity for malignant melanoma [107]. As the most abundant leu-
kocytes in the systemic circulation, neutrophils can be recruited at inflammatory sites un-
der the action of the granulocyte colony stimulating factor in the tumor inflammatory mi-
croenvironment [108]. Therefore, the presence of neutrophil membranes on the surface of 
nanoparticles significantly improved the cell uptake efficiency of B16F10 cells, without 
changing the main internalization pathways. At the same time, the existence of the neu-
trophil cell membrane showed stronger specific aggregation at the tumor site, and the 
antitumor effect was stronger. 

 
Figure 2. Step-wise illustration of EPR effect-based “smart” nanosystems for cancer therapy. EPR, 
enhanced permeability and retention effect. 

According to a recent report, the most common site of metastatic primary cancers of 
all types is in the lung, owing to its high vascular density [109,110]. Lung metastases can 
be fatal if left untreated, and there is currently no specific treatment. Systemic chemother-
apy is one of the standard treatments employed for pulmonary metastasis, but its efficacy 
is not ideal due to its weak targeting and poor accumulation in the lung. To address this 
issue, Zhao et al. reported an efficient erythrocyte leveraged chemotherapy (ELeCt) plat-
form, which is composed of biodegradable drug nanoparticles assembled on the surface 
of erythrocytes and can be used for chemotherapy for melanoma lung metastasis treat-
ment. Compared with free nanoparticles, the ELeCt platform significantly prolongs the 
circulation time of drug nanoparticles and increases the drug content by 10-fold. In early- 
and late-stage melanoma lung metastasis models, the ELeCt platform can significantly 
inhibit tumor growth, thereby significantly improving survival [111]. In addition, various 
commonly used chemotherapeutic agents (e.g., DOX) can be loaded into biodegradable 
nanoparticles, which can be further manufactured and successfully assembled onto eryth-
rocytes [112,113]. In summary, these studies indicate that the ELeCt platform provides a 
universal strategy that increases the effectiveness of chemotherapy in treating the lung 
metastases of melanoma. 

In addition, a novel multifunctional self-transfer polymer nanoparticle was prepared 
to deliver the drugs that inhibit melanoma metastasis effectively. The hydrophilic portion 
(low molecular weight heparin (LMWH)) inhibits the last stage of the metastatic cascade 
by inhibiting P-selectin on activated platelets, thereby inhibiting platelet adhesion to tu-
mor cells [114]. The hydrophobic fragment (D-α-tocopherol succinate (TOS)) can inhibit 
tumor resistance and increase the apoptosis of many cancer cell types, including B16F10 
melanoma cells [115]. Moreover, overexpressed FA receptors on the tumor cell membrane 
are associated with malignant and metastatic cancer phenotypes [116,117]. Therefore, 
these FA-modified nanocarriers provide an effective method for the treatment of solid 

Figure 2. Step-wise illustration of EPR effect-based “smart” nanosystems for cancer therapy. EPR,
enhanced permeability and retention effect.

According to a recent report, the most common site of metastatic primary cancers of
all types is in the lung, owing to its high vascular density [109,110]. Lung metastases can be
fatal if left untreated, and there is currently no specific treatment. Systemic chemotherapy
is one of the standard treatments employed for pulmonary metastasis, but its efficacy
is not ideal due to its weak targeting and poor accumulation in the lung. To address
this issue, Zhao et al. reported an efficient erythrocyte leveraged chemotherapy (ELeCt)
platform, which is composed of biodegradable drug nanoparticles assembled on the sur-
face of erythrocytes and can be used for chemotherapy for melanoma lung metastasis
treatment. Compared with free nanoparticles, the ELeCt platform significantly prolongs
the circulation time of drug nanoparticles and increases the drug content by 10-fold. In
early- and late-stage melanoma lung metastasis models, the ELeCt platform can signifi-
cantly inhibit tumor growth, thereby significantly improving survival [111]. In addition,
various commonly used chemotherapeutic agents (e.g., DOX) can be loaded into biodegrad-
able nanoparticles, which can be further manufactured and successfully assembled onto
erythrocytes [112,113]. In summary, these studies indicate that the ELeCt platform pro-
vides a universal strategy that increases the effectiveness of chemotherapy in treating the
lung metastases of melanoma.

In addition, a novel multifunctional self-transfer polymer nanoparticle was prepared
to deliver the drugs that inhibit melanoma metastasis effectively. The hydrophilic portion
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(low molecular weight heparin (LMWH)) inhibits the last stage of the metastatic cascade
by inhibiting P-selectin on activated platelets, thereby inhibiting platelet adhesion to tu-
mor cells [114]. The hydrophobic fragment (D-α-tocopherol succinate (TOS)) can inhibit
tumor resistance and increase the apoptosis of many cancer cell types, including B16F10
melanoma cells [115]. Moreover, overexpressed FA receptors on the tumor cell membrane
are associated with malignant and metastatic cancer phenotypes [116,117]. Therefore, these
FA-modified nanocarriers provide an effective method for the treatment of solid melanoma
and metastatic tumor. In vitro and in vivo results showed that FA-modified nanoparticles
with DOX significantly reduced the number of metastatic nodules without systemic tox-
icity [118,119]. In conclusion, clinical data indicate that the application of nanocarriers
in drug delivery can effectively reduce the side effects of chemotherapeutic drugs while
holding the promise of targeted therapy. However, the use of single nanocarriers for drug
delivery has not yet solved the drug resistance of tumor cells, so it is necessary to study
further how nanocarriers solve the problem of the drug resistance of tumor cells.

3.2. Nanoparticle-Based Strategies for Melanoma mRNA Vaccine Therapy

The mRNA vaccine is a promising drug for cancer prevention and treatment [120].
In contrast to DNA vaccines, mRNA vaccines can express the target protein directly, thus
avoiding the side effects associated with various mutations during transcription [121].
Moreover, mRNA vaccines can be specifically designed to encode a variety of peptide
and protein structures to express complete antigens [122]. In addition, an mRNA vaccine
would enable us to respond more quickly to highly infectious and dangerous pandemic
outbreaks, such as SARS-CoV-2 [123], and mutates in production much faster and more
flexibly than existing vaccines. Currently, clinical trials of direct administration of synthetic
mRNAs encoding tumor antigens have demonstrated safety, induction of tumor-specific
immune responses, and some clinical benefits for patients [124]. However, mRNA delivery
therapy in vivo has been considered a major bottleneck. Recent studies have shown that
the incorporation of therapeutic mRNA nanoparticles can overcome in vivo delivery prob-
lems, such as the insufficient expression of intracellular proteins, and the deficient antigen
loading, as well as the maturation of antigen-presenting cells [125]. In 1994, the group
of Curiel et al. was the first to evaluate the effect of mRNAs on the in vivo delivery of
liposomes and demonstrated that the expression of the mRNAs-cationic liposome complex
was comparable to the corresponding pDNA complex when injected into tumors [126]. In
2015, liposomes were first introduced as a more advanced mRNA lipid formulation. This
new mRNA formulation concept is based on previously developed pDNA, oligonucleotide,
and siRNA formulation strategies. The group of Matthias et al. reported on the develop-
ment of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a
cytotoxic CD 8 T cell response [127]. They confirmed that the vaccine’s effectiveness was
tested in a model of B16F10 malignant melanoma. The treatment of B16F10 melanoma
with lipid nanoparticles encoded with tumor-associated antigens gp100 and TRP 2 [128]
mRNA resulted in tumor shrinkage and extended the overall survival in treated mice. In
addition, the addition of adjuvants can further enhance the immune response. In a similar
report by Yu et al., they reported a preclinical cancer vaccine that introduces both an mRNA
antigen and an immune checkpoint that blocks siRNA from entering antigen-presenting
cells [129]. A lipid-coated calcium phosphate (LCP) nanoparticle was used as a carrier to
effectively deliver mRNA to dendritic cells (DCs) in lymph nodes for antigen expression.
The LCP mRNA vaccine encoding TRP2 elicited a powerful antigen-specific cytotoxic T cell
response and humoral immune response in a C57BL/6 mouse model of B16F10 melanoma.
Miao et al. reported a combinatorial library of ionizable lipid-like materials to recognize
mRNA delivery vehicles and facilitate mRNA delivery in vivo, and meanwhile to provide
powerful and specific immune activation [130]. They also demonstrated that lipids with
cyclic amino head groups activate the MYD88/RLR independent intracellular stimulator
of interferon genes (STING) pathway. In addition, cyclic lipids that can activate STING
are condensed with mRNA to prepare lipid nanoparticles [131]. Therefore, nanoparticle-
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mediated endocytosis improves the cell internalization, thereby activating the intracellular
STING pathway. These agents also induce the maturation of antigen-presenting cells
through the STING pathway to inhibit melanoma proliferation. In conclusion, based on
current preclinical data, mRNA therapies have the potential to lead to a major revolution in
medicine as they enable personalized medicine that allows tumor patients to produce their
own therapeutic proteins. Furthermore, mRNA therapies will be cheaper than existing
treatments because they can be produced through the gene production process and the
mRNA sequence can be easily modified if needed.

3.3. Nanoparticle-Based Strategies for Melanoma Immunotherapy

Cancer immunotherapy is to activate or induce the patient’s host immune response to
kill tumor cells [132]. In addition, the success of cancer immunotherapy depends on antigen-
presenting cells, such as DCs and macrophages [133]. However, due to the influence of
the tumor immunosuppressive microenvironment, DCs have been in an immature non-
functional state, so their function of initiating the immune response is significantly hindered.
Toll-like receptor (TLR) agonists have been reported to induce DC maturation [134], but as
low molecular weight substances, most of them appear to be systematically distributed
after a local injection, thus eliminating systemic proinflammatory cascading and severe
immune-related toxicity. To address this issue, Wang et al. designed a drug delivery
system based on mesoporous polydopamine nanoparticles and used the TLR7 agonist
imiquimod (R837) as a model immunomodulator to activate immune responses of the
lymph nodes [135]. Lymph nodes are important tissues of the immune system [136]. Some
important immune cells (such as DC and T cells) reside in this tissue and organize the
immune response. Therefore, direct delivery of R837 to lymph nodes may provide a great
opportunity to increase its bioavailability and reduce side effects. The research results
suggest that mesoporous polydopamine (MPDA) nanoplatforms loaded with R837 are more
effective in lymphatic targeted immune stimulation for tumor immunotherapy. In addition,
autophagy-regulated nanoactivators within the DCs make melanoma immunotherapy
possible. A novel self-assembled nanoactivator was synthesized using a poly (β-amino
ester) polymer with covalently conjugated beclin1 (NH2-CGTNVFNATFHIWHSGQFGT-
COOH) [137] and ovalbumin (OVA, NH2-CSIINFEKL-COOH) [138] on both terminals
of the backbone, which entered DCs and induced autophagy; the autophagy process
facilitates antigen presentation and subsequent T cell activation. Yi et al. demonstrated that
nanoactivators significantly enhanced tumor antigen cross-presentation and subsequent
T cell initiation [139]. Moreover, in vivo experiments showed that the nanoactivators
successfully reduced the number of tumors and prolonged the survival time of mice [139].
Taken together, these results suggest that nanoactivator-induced autophagy enhances the
dendritic cell responses in antigen presentation to eliminate the tumors.

Previous studies have found that nanocarriers are not only used for the delivery of
immune adjuvants but also have the function of activators to promote immunotherapy.
Several research groups have designed iron oxide nanoparticles as nanocarrier adjuvants
for dendritic cell-based cancer immunotherapy [140]. Luo et al. first synthesized ultra-
small Fe3O4 nanoparticles as a nano immunoenhancer and combined them with OVA as a
tumor model antigen [141]. Interestingly, free Fe3O4 nanoparticles showed significant im-
munotherapeutic ability in these experiments, demonstrating that Fe3O4 nanoparticles not
only serve as a delivery tool to protect antigens from degradation and inactivation but also
participate in cancer immunotherapy as an enhancer to promote immune responses [142].
The experimental results demonstrated that the therapeutic and preventive effect of the
Fe3O4-OVA vaccine on subcutaneous or metastatic melanoma growth and formation was
demonstrated to be based on dendritic cell immunotherapy and potential macrophage
activation. Recently, Chen et al. developed a new sensitizer, copper cysteamine (Cu-Cy),
which was evoked by UV, X-rays, microwaves, and ultrasound to produce reactive oxygen
species (ROS) to destroy cancer cells and bacteria [143]. Zhang et al. designed Cu-Cy
nanoparticles with an average size of ~40 nm to produce substantial levels of ROS and
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promote the apoptosis and/or necrosis of melanoma cells under X-ray stimulation [144].
Furthermore, this binding promotes the formation of an antitumor immune response.
These results suggest that Cu-Cy nanoparticles can simultaneously achieve radiotherapy,
oxidation therapy, and immunotherapy for tumors, and help overcome the limitations of
traditional melanoma treatment strategies.

T cell therapy has been a great success in the treatment of hematologic malignan-
cies [145]. However, T cells have had limited success in treating solid tumors. Most
researches focus on the inhibitors antagonizing the proinflammatory cytokines or immune
checkpoint to improve efficacy [146,147]. However, some patients have unsatisfactory ther-
apeutic effects and serious side effects [148]. Hence, it is necessary to develop effective and
safe combined treatment methods. Previous studies have shown that the tumor-specific
microenvironment inhibits T cell infiltration, survival, and effector function [149,150]. In
addition, studies have shown that T cell function depends on cholesterol in the cell mem-
brane to gather T cell receptors (TCR) and form immune synapses. Therefore, it is expected
to improve the immunotherapy of solid tumors by regulating cholesterol metabolism in
combination with T cell therapy. Avasimibe (Ava) is an inhibitor of the cholesterol esterifica-
tion enzyme acetyl-CoA acetyltransferase 1. It increases the plasma membrane cholesterol
content, thereby promoting TCR aggregation and improving the T cell function [151].
Hao et al. used click chemistry to attach Ava-containing nanoliposomes to the surface
of engineered T cells without interfering with their physiological functions [26]. Finally,
studies have shown that TCR transgenic CD8+ T cells and chimeric antigen receptor T
cells carrying liposomal AVA have good antitumor effects in mouse models of melanoma
and glioblastoma [152].

3.4. Nanoparticle-Based Strategies for Melanoma Photodynamic Therapy (PDT)

Nanotechnology is expected to play an important role in modern cancer treatment,
including primary and metastatic melanoma. Nanoparticles are capable of targeting
and visualizing the transfer to a variety of organs and delivering therapeutic drugs. By
targeting tumor cells, nanoparticles can greatly reduce the minimal drug toxicity to healthy
tissues/organs [153]. Due to its controllability and traceability, nanotechnology-based
PDT [154,155] and thermotherapy [156] may be a powerful method for cancer research
and treatment in the future. The early treatment of melanoma is effective, and diagnosis
is necessary before metastasis occurs. However, early diagnosis of tumors is a challenge
for clinicians and scientists because clinical symptoms appear at a later stage of the tumor.
Therefore, a novel type of early diagnosis nanomaterial needs to be developed to provide
earlier and more accurate tumor detection.

In addition to traditional chemical drugs and gene drugs, PDT for melanoma treatment
has emerged and developed in recent years [157]. PDT is a typical treatment strategy with
specificity, low drug resistance, and high temporal and spatial precision [158]. PDT consists
of three components: light, photosensitizer (PS), and tissue oxygen. During the PDT
treatment of cancer, PS transfers its excitation energy to surrounding oxygen molecules to
generate ROS, such as superoxide anion radicals [159], hydroxyl radicals [160], hydrogen
peroxide radicals [161], and singlet oxygen [162], to induce cancer cell death. PDT can
induce platelet aggregation and the release of vasoactive molecules, increase the vascular
permeability and vasoconstriction, and lead to damage of the vascular system around tumor
tissue, thereby inhibiting tumors. Some clinical reports have shown the efficacy of PDT
in the treatment of patients with metastatic melanoma [163,164]. However, traditional PS
molecules, such as porphyrins [165] and chlorin e6 (CE6) [166], which are commonly used
as PDT PSs for image-guided cancer therapy, have many defects, including a low solubility
and fluorescence quantum yield, and aggregation and quenching. To address this issue,
Cheng et al. proposed a self-assembled delivery system for the PDT treatment of malignant
melanoma [167]. The self-assembled nanocarrier system consists of the PS protoporphyrin,
a melanoma-specific antigen peptide (KVPRNQDWL) [168], and PEG to achieve preferred
tumor accumulation by EPR. PDT can enhance immunogenicity, improve the efficiency
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of antigen cross-presentation, and form more effective tumor-specific cytotoxic T cells. In
addition, the melanoma-specific antigen peptide, which is a melanoma-specific antigen
delivered in a nanocarrier, can also activate specific cytotoxic T cells to achieve durable
antitumor immunity. Furthermore, Chien et al. developed a method for treating melanoma
using the free form and micellar form of the PS CE6 in PDT [169]. Compared with the free
CE6, the micellar nanocarrier attached CE6 had a clearer vascular image, and the micellar
CE6 was localized in the lysosome and endoplasmic reticulum of cultured endothelial cells,
suggesting active endocytosis of the nanocarrier. In summary, micellar CE6 potentially
functions as a dual-function PS for angiography and PDT to promote their delivery in
the tumor microenvironment. At the same time, Li et al. reported liposome encapsulated
aggregation induced emission iuminogen nanoparticles (AIE nanoparticles) [170]. Under
near-infrared light (800 nm), a high quantum yield (23%) and a maximum two-photon
absorption (TPA) cross section of 560 GM were observed. The research results show
that AIE nanoparticles can be used as imaging agents for the spatiotemporal imaging of
tumor tissues, and the penetration depth of mouse melanoma models can reach 505 µm.
Although PDT is a promising treatment for melanoma, its application in the treatment of
malignant melanoma has not been fully promoted. The most important limiting factor is
that the antioxidant effect of melanin may inhibit PDT in the treatment of melanoma. In
addition, the hypoxic environment of tumors further limits the application of PSs in tumor
therapy [171]. Therefore, researchers hope to improve the efficacy of PDT in the treatment
of melanoma by improving the hypoxic environment. Additionally, SiO2 [172], Fe3O4 [173],
and mesoporous titanium dioxide (TiO2) [174] are not only a carrier, but also a potential
PS. Zhou et al. proposed a kind of TiO2 as a PS and doped with MnO2 to form core-shell
MnO2@TiO2 nanoparticles (MTM nanoparticles) [175]. MTM nanoparticles can provide
oxygen sustainably, thereby increasing the ROS level and reducing tumor hypoxia and
tumor metastasis. These studies provide a potential strategy for high brightness, superior
photostability, and high biosafety nanomaterial-based tumor imaging system. Such a
system will benefit PDT therapy in the near future.

3.5. Combination Therapy

Based on previous medication, we found that a single drug treatment for early cancer
may show good efficacy, but with a continuation of the treatment time, tumor cells often
develop resistance, which means that patients have to change to new drugs for treatment,
and a new drug can bring more potential side effects to patients and the cost of expensive
treatment. The combination of two or more anticancer drugs with different antitumor
mechanisms can enhance the therapeutic effect, reduce adverse reactions, and prevent the
occurrence of drug resistance through the synergistic effect between different drugs [176].
However, due to the differences in the physical and chemical properties of the drugs, it is
difficult for the drugs to be enriched in the tumor tissue at the same time, which severely
limits the clinical efficacy of the combined administration. To solve this problem, Xiong et al.
designed a self-assembled nanocarrier to encapsulate cisplatin (CDDP) and metformin
(MET) for co-delivery to non-small cell lung cancer [177]. Similarly, Li et al. used cationic
liposomes to co-deliver both DOX and MET for treating multi-drug-resistant breast cancer
cells-MCF7/ADR [178]. The faster release of MET enhances the cytotoxicity of DOX by
reducing hypoxic stress in vivo and in vitro. MET diminished the cell oxygen consumption
and inhibited the expression of HIF1α and P-glycoprotein (Pgp) in vitro [179]. In addition,
the dual-drug loaded liposomes increased tumor targeting and intratumoral blood oxygen
saturation, indicating that the tumor reoxygenation effect of MET promotes its synergistic
effect with DOX to combat MCF7/ADR xenografts. Moreover, Tham et al. reported
a mesoporous nano vehicle with dual loading of PSs and clinically relevant drugs for
combination therapy while utilizing microneedle technology to facilitate their penetration
into deep skin tissue [180]. The PSs were synthesized by covalently binding to a silica
matrix, which significantly improved the quantum yield and photostability of these PSs.
The mesopores of the nanoparticles were further loaded with small molecule inhibitors
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(dabrafenib and trametinib) that target the hyperactive mitogen-activated protein kinase
(MAPK) pathway for melanoma treatment. Empty nanocarriers were biocompatible with
skin cells, while near infra-red (NIR) irradiated drug-loaded nanocarriers have synergistic
killing effects on skin cancer cells mainly through ROS and caspase-activated apoptosis.
Recently, Liu’s team combined PDT and photothermal therapy (PTT) with chemotherapy
(so-called “chemo-phototherapy”) to develop light-triggered biomimetic nanoerythrocytes
for combined therapy of malignant melanoma lung metastases against tumors [181]. Under
NIR laser irradiation, the erythrocyte (RBC) membrane vesicle was disrupted to trigger the
rapid release of the encapsulated drug. And then, the released 1,2-diaminocyclohexane-
platinum (II) (DACHPt) internalized to cancer cells by inducing DNA damage to inhibit
tumor cell replication. Meanwhile, the released indocyanine green (ICG) was able to
penetrate the tumor and produce more cytotoxic singlet oxygen and heat to induce tumor
cell apoptosis.

Furthermore, combination therapy can better balance immune activation and sup-
pression signals, which has great potential in cancer immunotherapy. In the process of
immunogenic cell necrosis, calreticulin (CRT) transfers to the cell membrane to promote the
recruitment, recognition, and antigen expression of DC to strengthen the host immune re-
sponse. It has been reported that some chemotherapeutic drugs (DOX, oxaliplatin) and PDT
can induce immunogenic cell death (ICD) [182–184]. Recent studies have shown that man-
ganese (Mn) can enhance cyclic guanosine monophosphate/adenosine monophosphate
(GMP-AMP) synthase and STING activation of viral infection [185]. Hou et al. prepared
an innate immune nanoactivator to improve the efficacy of cyclic GMP-AMP synthase
(cGAS)/STING pathway immunotherapy by synthesizing nanoscale amorphous porous
manganese phosphate (APMP) [186]. DOX was encapsulated in APMP nanoparticles and
then coated with phospholipid (PL) in APMP nanoparticles to obtain PL/APMP-DOX.
The results suggest that PL/APMP-DOX nanoparticles can promote DC maturation and
natural killer cell (NK) recruitment. At the same time, it activates the downstream pathway
of cGAS/STING to regulate the expression of TNF-α, thereby exerting a potential anti-
cancer effect. In conclusion, the combination of immunotherapy, chemotherapy, and PDT
is emerging as a promising new treatment for cancer. However, the main challenge is to
ensure that both cancer and immune cells are targeted and specifically targeted in a safe
manner. Therefore, researchers need to develop new nanocarriers to address these issues.

4. Conclusions

Currently, nanoparticle-based treatment strategies are at the forefront of clinical re-
search and are used to revolutionize the treatment of diseases. Specifically, in cancer, recent
advances in tumor biology and nanotechnology interactions have led to multiple effective
therapies in fundamentally different tumor models. At present, the drug-delivery systems
(DDS) have made significant progress in formulation preparations while achieving more
precise treatment at the molecular level, thus broadening the ways for personalized tumor
therapy. The DDS increases the drug solubility, improves bioavailability, and prolongs
the circulating time. It also selectively releases the drug at the ideal site through tissue-
or cell-dependent targeted modification. Therefore, constructing an effective DDS for
melanoma treatment is of great clinical significance.

Until now, liposomes, polymer nanoparticles, inorganic nanoparticles, and other
systems have been widely used in the treatment of melanoma. However, pitfalls and
caveats for different types of nanocarriers still exist. For example, liposomes are known
to encapsulate hydrophobic and hydrophilic drugs [187] and are extensively applied in
drug delivery because of their advantages with prolonged efficacy, reduced toxicity, and
tumor-targeting properties after modification. However, many liposomal preparations
were unexpectedly withdrawn in clinical trials, even though they are very successful in
previous animal models [188]. It should be noted that most in vivo studies use a mouse
solid tumor model, which overestimates the therapeutic efficacy of liposomes modified by
targeting ligands. In addition, the subcutaneous tumor model grows rapidly, and its blood
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vessels are leaky, leading to an overestimation of the EPR effect [189]. Furthermore, the
limitations of liposomes include rapid metabolism and degradation, as well as instability
and difficulty in storage [187]. On the other hand, polymer nanoparticles have poor stability
in physiological environments and may exchange with other physiological components,
restricting their applications. Inorganic nanoparticles mainly include gold nanoparticles,
iron oxide nanoparticles, silica nanoparticles, etc. [190]. Inorganic nanoparticles have
been attractive due to their large-scale speed synthesis, controllable particle size, and
easy surface modification. However, their metabolism and potential toxicity limit the
clinical application [191]. For example, gold nanoparticles are generally considered to be
non-cytotoxic, and their small particle size is conducive to rapid excretion by the kidneys.
However, some studies have shown that the large accumulation of gold nanoparticles in
cells causes mitochondrial toxicity and promotes cell apoptosis and necrosis. In addition,
these gold nanoparticles lead to tissue apoptosis and acute inflammation when they are
significantly accumulated in the liver. Last but not the least, a traditional method-based
synergistic process of inorganic nanomaterials unavoidably increases the reducing agents
and stabilizers on the surface, which are known to be toxic [192].

Unfortunately, complex physiological and physical barriers and adverse patient re-
sponses, safety, and effectiveness are still the biggest challenges for the clinical application
of nanosystems. Researchers can find answers to these questions using carefully designed
nanotechnology and platforms. Nanotechnology, especially nanomaterials, can not only
be used for targeted drug delivery but can also trigger the immune system to use the
patient’s own immune defense capabilities to achieve internal anticancer effects. These
methods show that multifunctional nanoparticles and biomaterials have the potential to
solve some of the most pressing challenges in cancer treatment. Nanoparticles extend the
blood circulation time of the drug and increase the drug concentration in the lesion through
polymer modifications. According to the tumor microenvironment, designing sensitive
materials will achieve specific drug release results. In addition, the co-delivery of multiple
drugs also overcomes the difficulty that drugs are challenging to administrate at the same
time and reduces the resistance and side effects of a single drug. Moreover, a real-time
tracking system can be designed by biological probes. However, so far, regulatory agencies
have not approved nanomaterials for cancer treatment, and the many major deficiencies
that need to be addressed. Although some nanoparticles show encouraging results, lack of
bioavailability, clearance from the body, and postpartum side effects are the key shortages.

Some future challenges urgently need to be considered. First, nanoparticles and bio-
materials with multiple payloads have complex properties and are targeted or activated.
In addition, the complex ratio of inert excipients will complicate large-scale production,
leading to repeatability problems. Although nanoparticles capable of targeted drug deliv-
ery, immune cell activation, and early diagnosis are attractive, the effective use of these
combined nanomaterials requires more biomarkers to monitor responses. Therefore, it is
necessary to study the short-term and long-term toxicity of these multifunctional nanomate-
rials, especially considering that the activation of different components of the host immune
system may cause long-term immune-related side effects. In conclusion, future therapeutic
strategies based on different nanocarriers through a combination of drug delivery provide
hopes for the clinical melanoma treatment.
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