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EEG‑derived brain graphs are 
reliable measures for exploring 
exercise‑induced changes in brain 
networks
Daniel Büchel1*, Tim Lehmann1, Øyvind Sandbakk 2 & Jochen Baumeister1

The interaction of acute exercise and the central nervous system evokes increasing interest in 
interdisciplinary research fields of neuroscience. Novel approaches allow to monitor large-scale brain 
networks from mobile electroencephalography (EEG) applying graph theory, but it is yet uncertain 
whether brain graphs extracted after exercise are reliable. We therefore aimed to investigate brain 
graph reliability extracted from resting state EEG data before and after submaximal exercise twice 
within one week in male participants. To obtain graph measures, we extracted global small-world-
index (SWI), clustering coefficient (CC) and characteristic path length (PL) based on weighted 
phase leg index (wPLI) and spectral coherence (Coh) calculation. For reliability analysis, Intraclass-
Correlation-Coefficient (ICC) and Coefficient of Variation (CoV) were computed for graph measures 
before (REST) and after POST) exercise. Overall results revealed poor to excellent measures at PRE 
and good to excellent ICCs at POST in the theta, alpha-1 and alpha-2, beta-1 and beta-2 frequency 
band. Based on bootstrap-analysis, a positive effect of exercise on reliability of wPLI based measures 
was observed, while exercise induced a negative effect on reliability of Coh-based graph measures. 
Findings indicate that brain graphs are a reliable tool to analyze brain networks in exercise contexts, 
which might be related to the neuroregulating effect of exercise inducing functional connections 
within the connectome. Relative and absolute reliability demonstrated good to excellent reliability 
after exercise. Chosen graph measures may not only allow analysis of acute, but also longitudinal 
studies in exercise-scientific contexts.

While the interaction of acute endurance exercise and the cardiovascular system is well understood, research 
in the last decade started to rather unfold the effect of acute and long-term exercise on the central nervous 
system1–3. Thus, growing evidence suggests that metabolic changes induced by exercise are associated with 
systematic modulations of brain function due to neurochemical changes within the central nervous system2. 
Several neuroimaging studies have shown that these acute changes induce modulations of brain function that 
persist at rest after exercise cessation1. Hereof, the use of electroencephalography (EEG) appears feasible for field-
application due to its fast applicability, high degree of mobility and excellent temporal resolution4. Nevertheless, 
EEG data obtained during high intensity exercise is massively contaminated by artefacts induced by muscle 
and movement artefacts5. Therefore, the EEG resting state after exercise provides a valuable insight into short-
term exercise-induced modulations of brain function1. In particular, EEG resting state data revealed systematic 
exercise-induced regional phenomena like altered power spectral density3, alpha peak frequency6 or oscillatory 
microstate patterns7 across participants. However, while the abovementioned findings focused on changes of 
locally segregated activity of neural patches, treating the brain as a dense connectome integrating locally segre-
gated neural structures evokes a new and interesting perspective in exercise neuroscience8–10.

For analyzing brain networks, graph theory offers a promising opportunity to model pairwise communica-
tions between the elements of large-scale brain networks to abstract neurophysiological parameters. Brain graphs 
treat single sensors or neural patches as network nodes and the connections between those nodes as edges11 and 
can therefore express mathematical characteristics of dense, multivariate connectomes12. For instance, measures 
like the clustering coefficient (CC), the characteristic path length (PL) or the small-world-index (SWI) of a 
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network help to abstract key characteristics of brain networks where the aspects of local segregation and global 
integration are combined to describe brain network efficiency12–14. Although brain network analysis has mainly 
been applied in clinical settings to distinguish brain function between special and healthy populations13,15,16, 
first investigations applied graph theory in exercise science contexts. Recent findings observed that acute aerobic 
exercise modulates the connectome in an intensity-dependent fashion, since global efficiency increased more 
at moderate in comparison to lower intensity cycling8. Moreover, a loss of network efficiency, as indicated by a 
reduction of the frontal clustering coefficient, was reported after exhaustive exercise17 and an exhaustive motor-
cognitive dual-task protocol inducing both physiological as well as cognitive exhaustion9. Taken together, these 
findings suggest that brain graph reveal a promising tool to investigate the modulatory effect of acute and long-
term exercise on the connectome. Nevertheless, especially for intra-individual analysis of brain networks metrics, 
a reliable extraction of graph outcomes18 seems paramount.

To date, investigations of reliability solely focused on relative reliability, in which fair to good intraclass-
correlation-coefficients (ICCs) were reported for graph measures computed from resting state EEG data in sitting 
position in sound-attenuated rooms18–20. The moderating effects on reliability were assigned to aspects related 
to graph extraction like the measure of functional connectivity (FC) estimation, the frequency band of interest 
or the number of epochs analyzed18–20. Additionally, it was observed that the topographical level of graph meas-
ures affects brain graph reliability, as global graphs released more reliable metrics compared to regional or local 
graphs19. Altogether, graph measures from resting EEG seem to provide a reliable insight into brain function 
when key parameters of graph extraction are considered.

However, for a longitudinal application of graphs in exercise-related settings, it needs to be clarified whether 
graph outcomes assessed after exercise are reliable either. As reported by Shen et al., the architecture of brain 
networks highly depends on consistent structural connections, but is further modulated by dynamics of func-
tional pathways. Accordingly, neuroimaging studies suggest that functional task-related brain networks are 
more reliable than unconstrained resting state networks21,22. Since acute bouts of exercise modulate the cortical 
activity and induce the activations of functional pathways that persist after exercise1,2, a resting assessment of 
brain network post exercise may differ from an unconstrained resting state before exercise. Therefore, we expect 
that not only the degree of connectivity8–10, but also the reliability of this connections might be modulated by 
exercise-induced systematic changes in brainfunction. So far, no study has investigated the reliability of brain 
network metrics explicitly after an acute bout of exercise.

Therefore, the present study aimed to investigate test–retest reliability of brain graphs derived from both (i) 
an unconstrained resting state before exercise as well as (ii) a resting state following an acute bout of low intensity 
endurance exercise while running on a treadmill in male participants. We hypothesized that exercise-induced 
functional pathways2 result in a modulation of test–retest reliability of graph measures immediately after exercise 
compared to the unrestricted resting state. Since the FC estimator has been shown to modulate brain network 
reliability19, we aimed to observe the effect of preceding exercise on brain graph reliability for two different FC 
estimates of interest (wPLI vs. Coh). The findings of the present study may help to better understand whether 
brain graphs are reliable measures to assess exercise-induced modulations of large-scale brain networks in 
repeated measures designs.

Results
Physiological outcomes.  An overview of physiological outcomes including mean ± SD and ICC esti-
mations is presented in Table  1. Analysis of physiological data revealed systematic changes in physiological 
responses to exercise between session 1 and session 2. We observed an interaction effect indicating that Lacpost 

Table 1.   Overview of results revealed from reliability analysis for physiological outcomes before and after 
10 min of running on the treadmill. Data are presented as outcome means ± standard deviations, Intraclass-
Correlation-Coefficients (ICC) and Coefficient of Variation (CoV) including lower (LB) and upper bound 
(UB) of the 95% confidence interval of two sessions performed within 1 week and statistical outcomes of 
repeated measures ANOVA with the factors Exercise (PRE vs. POST) and Session (Session I vs. Session II) 
performed at p < 0.05. Blood lactate values (Lac) obtained from the right earlobe and rate of perceived exertion 
(RPE) were assessed before (PRE) and immediately after (POST) running on the treadmill. Average resting 
heart rate (HR rest) is determined as the 5-min average heart rate (HR) recorded in a sitting position, HR in 
running (HRrun) is obtained as the average HR during 10-min of running at 50% of the individual VO2peak. HR 
measures are presented as the percentage of the individual HRmax.

Descriptives Relative reliability Absolute reliability

Session 1 Session 2 ICC [LB UB] CoV (%) [LB UB]

LacPRE (in mmol/l) 1.0 ± 0.4 1.0 ± 0.3 0.67 [0.26 0.87] 22.64 [31.96 14.69]

LacPOST (in mmol/l) 1.4 ± 0.7 1.2 ± 0.5 0.84 [0.34 0.95] 18.93 [33.17 11.15]

BSPRE 7.3 ± 1.6 7.0 ± 1.2 0.34 [0.0 0.72] 15.60 [20.94 10.45]

BSPOST 11.1 ± 1.8 9.8 ± 1.8 0.65 [0.0 0.89] 10.02 [17.17 5.70]

HRrest PRE (%HRmax) 32.5 ± 11.6 32.3 ± 7.53 0.86 [0.62 0.95] 7.68 [11.99 4.74]

HRrest POST (%HRmax) 39.2 ± 7.4 38.0 ± 6.64 0.76 [0.43 0.91] 8.67 [13.47 5.36]

HRrun (%HRmax) 68.0 ± 5.2 65.3 ± 6.1 0.58 [0.13 0.83] 5.49 [7.87 3.45]
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was lower at Session II compared to Session I (p = 0.01) and a main-effect demonstrating that BS reduced from 
session I to session II (p < 0.01). Further, BS and HRrest revealed significant main-effects of exercise, with higher 
values at POST compared to PRE (p < 0.05).

ICC analysis revealed good to excellent correlation values for Lac (PRE: 0.66 vs. POST: 0.84) and HRrest (PRE: 
0.83 vs POST: 0.83) while ICC for BS increased from REST to POST (PRE: 0.34 vs. POST: 0.65).

Graph analysis.  ANOVA on EEG-derived graph measures revealed significant main-effects on Coh-based 
graph measures, where SWI increased from PRE to POST for both sessions in the alpha-2 band (p = 0.006, 
F = 10.35) and decreased in the beta-1 (p = 0.003, F = 12.48) and beta-2 bands (p = 0.002, F = 15.48). In line with 
these changes, Coh-based CC increased in the alpha-1 (p = 0.02, F = 6.56) and alpha-2 band (p = 0.002, F = 14.49), 
while CC decreased in the beta-1 (p = 0.02, F = 6.61) and beta-2 bands (p = 0.01, F = 9.01) from PRE to POST 
in both sessions. Furthermore, PL decreased in the alpha-1 (p = 0.04, F = 5.19) and alpha-2 bands (p = 0.0006, 
F = 10.06) and decreased in the beta-1 (p = 0.01, F = 8.56) and beta-2 bands (p = 0.005, F = 15.47) from PRE to 
POST in both sessions.

For WPLI-based measures, significant main-effects of session day but not for for exercise were observed. 
Small-world Index increased significantly in the theta band from Session 1 to Session 2 in both conditions 
(p = 0.04, F = 4.93), while SWI in the beta-2 band decreased significantly from Session 1 to Session 2 (p = 0.0001, 
41.74). Accordingly, PL decreased in the theta band (p = 0.02, F = 6.81). In the beta-2 band, PL (p = 0.0002, 
F = 26.28) and CC (p = 0.0002, F = 43.68) decreased from Session 1 to Session 2 in both conditions. An overview 
of graph outcomes is presented in Fig. 1 and statistical results are provided in Table 2.

Relative reliability of brain graphs.  ICC values for relative reliability between graph measures of two 
sessions within one week ranged from poor to excellent (overall range: 0.27 to 0.94). An overview of the ICCs, 
including 95% CIs for wPLI and Coh graph measures, is presented in Fig. 2. With regards to the graph outcome 
analyzed, CC (0.77) and SWI (0.75) revealed excellent mean ICCs, while a good mean ICC was observed for 
PL (0.71). Further, ICCs observed for Coh-based graph measures were excellent in mean (0.83), while those 
obtained from wPLI-based networks were good (0.66). Additionally, alpha-1, alpha-2, and beta-1 revealed excel-
lent ICCs (0.88 vs 0.79 vs. 0.77), while theta- and beta-2 based networks revealed good ICC values (0.62 vs. 0.66).

To analyze the effect of exercise on the reliability of graph outcomes, a bootstrap analysis on the original 
data samples was performed. Based on effect size estimation, exercise revealed small to large effect sizes on ICC. 
Hereoff, ES differed with regards to FC measure, frequency band and outcome (Fig. 1). Overall, wPLI based 
graph measures indicated small to largely increased ICC values at POST (mean ES: 1.2), which was particularly 
observed in the alpha-1 (mean ES: 1.5) and theta frequency bands (mean ES: 1.5). For Coh based ICCs, small 
to large negative effects of exercise on ICC were observed (mean ES: 1.00), which was most prominent in the 
alpha-1 band (mean ES: 1.9). An overview of ES for SWI measures is provided in Table 3. A visualization of ICC 
values for all graph outcomes, including 95% confidence intervals and bootstrapped distributions based on a 
resampling of k = 100 iterations, is presented in Fig. 3.

Absolute reliability of brain graphs.  Absolute reliability was analyzed by taking into account the SEM´s 
proportion with regards to the outcome measure. We observed excellent CoV (in %) for most of the outcomes 
assessed. Coh-based measures (mean: 2.6%) and wPLI-based measures (mean: 3.7%) both revealed good CoV 
values. With regards to the graph measures analyzed, SWI (mean: 4.6%), PL (mean: 2.2%) and CC (mean: 
2.6%) revealed good average CoV. With regards to the frequency bands of interest, networks metrics derived 
from theta (2.5%), alpha-1 (3.7%), alpha-2 (3.1%), beta-1 (2.5%) and beta-2 (3.8%) demonstrated good CoV. 
SWI exceeded the arbitrary threshold of 5% for the following cases: wPLI-Pre-alpha-1 (6.7%) and Post-alpha-1 
(6.3%), Coh-Post-alpha-1 (5.6%), wPLI-Pre-alpha-2 (5.5%) and wPLI-Pre-beta-1 (5.1%), WPLI-Pre-beta-2 
(7.2%) and WPLI-Post-beta-2 (6.7%).

Bootstrap analysis to detect significant changes of CoV from PRE to POST revealed moderate effect sizes on 
both Coh (mean ES: 0.91) and wPLI (mean ES: 0.89) derived graph outcomes. An overview of effect sizes for SWI 
is provided in Table 3. A visualization of CoV values of all graph outcomes, including 95% confidence interval 
and bootstrapped distribution based on a resampling of k = 100 iterations, is presented in Fig. 3.

Discussion
The present study aimed to investigate the reliability of brain graphs derived from an uncontrained EEG resting 
states as well as a resting state after an acute bout of low intensity exercise on the treadmill in male participants, 
and we expected preceding exercise to modulate graph reliability. The key finding was that the extraction of brain 
graphs from EEG resting state after low intensity exercise reveals good to excellent relative reliability expressed 
by ICC for both Coh and wPLI, while brain graphs extracted from unconstrained resting states revealed poor 
to excellent reliability, with limited reliability especially for wPLI based graphs. Bootstrap analysis revealed a 
beneficial effect of exercise on wPLI-based ICC values, while exercise reduced ICC derived from Coh based 
measures particularly in the alpha-1 frequency band. Moreover, CoV demonstrated good absolute reliability 
before and after exercise. The present findings demonstrate that resting state brain graphs obtained after exercise 
may represent a reliable measure to analyze brain network efficiency in the field of exercise science.

The novel approach of this study was to analyze the reliability of brain graphs during resting state after physi-
cal activity and to compare that with the corresponding unrestricted resting state brain graphs before exercise. 
Specifically, we observed that preceding exercise increases the relative reliability of wPLI resting state graph meas-
ures to good-to-excellent as compared to poor-to-fair reliability in an unconstrained situation. Somehow con-
tradictory, the reliability of Coh based graph measures decreased but remained good to excellent after exercise. 
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Similar modulations of reliability were observed for absolute reliability metrics, with CoV values being slightly 
increased for Coh-based measures but decreased for wPLI based measures. Overall absolute reliability of graph 
measures remained mainly below 5%, which is interpreted as a good value in exercise science contexts of repeated 
measures23. The different modulations of brain graph reliability depending on FC estimator appear reasonable 
when the nature of the respective FC estimation method is considered and are in line with previous network 
analysis studies observing differences between Coh and PLI networks in different populations24,25. Whereas the 
wPLI detects non-zero phase lags and is less prone to spurious connections based on volume conduction and 
common sources, Coh-based functional networks rely on signal amplitude and volume conduction and therefore 
even resemble zero-phase lags in the signal26. Since systematic exercise-induced modulations of cortical activ-
ity are commonly expressed by changes in spectral power and signal amplitude1, this effect may contribute to 
changes in functional connectivity estimated by amplitude-sensitive FC measures. In contrast, wPLI metrics are 
suggested to be more sensitive in detecting true non-zero phase synchronization indepedendent from changes in 
amplitude and power and eliminate zero-phase contributions26. Accordingly, it remains open whether an acute 
bout of low-to-moderate exercise is sufficient to induce systematic changes in global brain network characteristics 
or whether amplitude and power changes of single neural ensembles contribute to observed findings in Coh-
based networks due to volume conduction. According to previous investigations, more intense bouts might be 

Figure 1.   Box plot of graph measures based on Spectral coherence (left column) and weighted PLI (right 
column) functional connectivity estimation. Measures were obtained from two experimental sessions within 
1 week investigating EEG resting states before (PRE) and after (POST) an acute bout of 10 min moderate-
intensity running on the treadmill. Boxes display the range of values including group mean and standard 
deviations for for four conditions: PRE Session I (light grey), PRE Session II (dark grey), POST Session I 
(yellow) and POST Session II (orange). Graph outcomes analyzed were characteristic path length (upper figure), 
clustering coefficient (middle figure) and Small-World Index (lower figure). *Significant main effect of exercise 
(PRE vs. POST) in both sessions (p < 0.05), §significant main effect of session day (Session 1 vs. Session 2) in all 
pre and post conditions (p < 0.05).
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needed to modulate brain network characteristics estimated by non-zero lag correlations on a global level9,17. 
However, the overall reliability analysis demonstrates good to excellent overall reliability, for both wPLI and Coh 
networks, especially after exercise. This information is from high relevance for future studies when interpreting 
intra-individual changes based on the expected intra-individual variations of such measures23.

A possible mechanism subserving the phenomenon of modulated resting state reliability after exercise may be 
attributed to the potential neuro-regulating effect of physical exercise2. In the present study, several Coh-based 
brain network metrics (alpha-2, beta-1 and beta-2) revealed significant differences from pre to post in line with 
increases in resting heart rate and subjective rating of perceived exertion. Since acute bouts of exercise induce 
the release of several neurochemicals, such as lactate, cortisol and brain-derived neurotrophic factor, the neu-
rochemical milieu of the central nervous system may change after exercise2. In particular, even short bursts of 
exercise were shown to upregulate neurotransmitter release like reported for gamma-aminobutyric-acid27 and 

Table 2.   Overview of ANOVA results for physiological and EEG outcomes before and after 10 min of running 
on the treadmill. The table presents p- and F-values of repeated measures ANOVA with the factors Exercise 
(PRE vs. POST) and Session (Session I vs. Session II) as well as analyses for Interaction effects. Significant 
effects (p < 0.05) are marked as bold. Significant effects are marked as bold. Blood lactate values (Lac) obtained 
from the right earlobe and Borg Scale (BS) were assessed before (PRE) and immediately after (POST) running 
on the treadmill. Average resting heart rate (HRrest) is determined as the 5-min average heart rate recorded 
during the EEG resting state measurements performed in a sitting position. Small-World-Index (SWI), 
clustering coefficient (CC) and characteristic path length (PL) derived from Coherence (Coh) respectively 
weighted phase-lag-index (wPLI) are based on 5-min resting state EEG. SWI measures are presented for theta 
(θ, 4–8 Hz), alpha-1 (α1, 8–10.5 Hz), alpha-2 (α2, 10.5–13 Hz), beta-1 (β1, 13–20 Hz) and beta-2 (β2, 20–30 Hz) 
frequency bands.

ANOVA

Exercise Session Interaction

p F p F p F

Lac (in mmol/l) 0.11 3.01 0.03 5.95 0.01 8.13

BS 0.000001 71.7 0.005 11 0.08 3.62

HR (% HRmax) 0.000001 119.35 0.52ss 0.42 0.19 1.90

SWI wPLI θ 0.22 1.58 0.04 4.93 0.12 2.82

SWI Coh θ 0.60 0.28 0.11 2.90 0.20 1.80

SWI wPLI α1 0.91 0.01 0.10 3.02 0.35 0.92

SWI Coh α1 0.07 3.67 0.35 0.93 0.87 0.03

SWI wPLI α2 0.96 0.002 0.56 0.34 0.52 0.43

SWI Coh α2 0.006 10.35 0.32 1.04 0.36 0.89

SWI wPLI β1 0.94 0.01 0.19 1.89 0.41 0.72

SWI Coh β1 0.003 12.48 0.46 0.58 0.62 0.26

SWI wPLI β2 0.58 0.31 0.0001 41.74 0.65 0.22

SWI Coh β2 0.002 15.48 0.9 0.02 0.08 3.5

CC wPLI θ 0.81 0.06 0.07 3.81 0.22 1.61

CC Coh θ 0.09 3.37 0.10 3.05 0.20 1.86

CC wPLI α1 0.79 0.07 0.06 4.40 0.29 1.22

CC Coh α1 0.02 6.56 0.40 0.75 0.91 0.01

CC wPLI α2 0.51 0.46 0.52 0.45 0.90 0.02

CC Coh α2 0.002 14.49 0.40 0.76 0.43 0.66

CC wPLI β1 0.55 0.38 0.25 1.42 0.36 0.87

CC Coh β1 0.02 6.61 0.54 0.40 0.61 0.27

CC wPLI β2 0.35 0.93 0.0002 43.68 0.69 0.16

CC Coh β2 0.01 9.01 0.83 0.04 0.09 3.44

PL wPLI θ 0.79 0.07 0.02 6.81 0.22 1.61

PL Coh θ 0.24 1.54 0.15 2.33 0.27 1.33

PL wPLI α1 0.53 0.41 0.25 1.48 0.42 0.69

PL Coh α1 0.04 5.19 s0.35 0.94 0.66 0.20

PL wPLI α2 0.66 0.19 0.55 0.37 0.38 0.80

PL Coh α2 0.006 10.06 0.19 1.90 0.60 0.28

PL wPLI β1 0.44 0.62 0.17 2.00 0.47 0.57

PL Coh β1 0.01 8.56 0.46 0.59 0.71 0.14

PL wPLI β2 0.29 1.22 0.0002 26.28 0.50 0.48

PL Coh β2 0.005 15.47 0.90 0.02 0.08 3.51
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therefore modulate neural processing and functional brain connections. Moreover, it is suggested that sustained 
endurance activities such as running or cycling modulates the afferent feedback to central and parietal brain areas 
and affect brain activity up to 30 min after exercise cessation7. As the central nervous system remains modulated 
after exercise, the activation of functional pathways due to exercise might be suggested to modulate brain network 
reliability. While several Coh-based metrics were modulated by acute exercise, no significant changes from PRE 
to POST were observed for wPLI-based brain network metrics. It might be assumed that the short and moderate 

Figure 2.   Violin plots of Intraclass-Correlation-Coefficient (ICC) values for graph measures based on weighted 
PLI (upper graph) and spectral coherence (lower graph) functional connectivity estimation. Measures were 
obtained from two experimental sessions within one week investigating EEG resting states before (PRE, 
grey violins) and after (POST, orange violins) an acute bout of 10 min of moderate-intensity running on the 
treadmill. Violins display the distribution of ICC values based on a resampling of k = 1000 iterations using 
the bootes function (Di Plinio 2020). For each pair of distributions (PRE vs. POST), effect size Cohen’s d was 
computed based on k ICC values per condition. Black squares indicate the ICC values of the original sample, 
brackets indicate the 95% confidence intervals. CC clustering coefficient, PL characteristic path length, SWI 
small-world index. Graph measures are computed for theta (θ, 4 to 8 Hz), alpha-1 (α-1, 8 to 10.5 Hz) and 
alpha-2 (α-2, 10.5 to 13 Hz), beta-1 (β-1, 13 to 20 Hz) and beta-2 (β-2, 20 to 30 Hz) frequency bands. Horizontal 
lines indicate thresholds for fair (0.4, lower line), good (0.6, midline) and excellent (0.75, upper line) ICC 
interpretation.
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intensity exercise bout in the present study was not sufficient to systematically up- or downregulate small-world 
characteristics based on non-zero phase lag estimation across participants. However, increased reliability may 
reveal that a short bout of low-to-moderate exercise may function as a reset of the central nervous system towards 
a more reliable state. In particular, the exercise-induced release of neurotrophics may bidirectionally regulate 
the state of the central nervous system depending on the participants state and trait by upregulating positive 
affect and reducing negative affect28. Therefore, our overall findings agree with previous investigations reporting 
that functional brain networks are more stable when individuals are involved into a task or context compared to 
unconstrained conditions21,29. To elucidate the modulating effect of exercise on brain network metrics, further 
investigations are required that analyze exercise intensity and exercise duration. Nevertheless, these studies 
should consider incorporating preceding low-to-moderate-intensity activity in addition to the resting baseline 
for a more reliable reference to investigate exercise-induced changes in brain networks.

In the present study, ICCs for global graph metrics ranged from poor to excellent. Previous studies pre-
dominantly reported slightly lower ICCs for graph-based brain network measures which majorly ranged from 
poor too good. While Kuntzelmann et al. reported poor to good ICCs depending on the selected FC measure 
(either wPLI or Coh), Hardmeier et al. reported fair to good ICCs for wPLI-based graph measures in different 
frequency bands. A possible reason for the relatively high number of excellent ICC values observed in our study 
compared to previous graph reliability studies, in particular in the alpha-1 and alpha-2 band, might be related 
to the increased length and number of epochs chosen. On the one hand, it was suggested that the analysis of 
longer epochs incorporates more cycles per frequency for FC analysis and results in more variable data19. Further, 
Marquetand et al. reported systematically increasing FC reliability with increased numbers of data epochs due 
to reduced impact of noise and spurious oscillations on brain connectivity. Accordingly, the higher variance in 
our data might have reduced the risk of overestimating edges between nodes based on spurious oscillations or 
noise, resulting in increased reliability of networks compared to previous studies30. Further taking into account 
the observed modulating effect of preceding exercise on brain graph reliability, global graph measures obtained 
from sufficient data points after exercise reveal a reliable measure for the analysis of resting state brain networks.

This is the first study to analyze absolute reliability of graph measures, which is particularly relevant for the 
interpretation of longitudinal modulations of graph measures, since intra-individual variations can reveal a 
threshold of statistical meaningfulness for observed measurement-to-measurement changes (Lohse et al.). In 
the present study, we mainly observed good CoVs for graph measures obtained before and after exercise, rang-
ing from 1.25 to 7.17%. It can consequently be assumed that repeated analysis of graph measures do not underly 
strong absolute intra-individual changes31. This observation is in line with observations in elderly32 and infant 
populations33, where repeated assessments of brain graphs within days did not obtain significant differences from 

Table 3.   Overview of results revealed from reliability analysis for small-world-index values before and after 
10 min of running on the treadmill. Data are presented as outcome means ± standard deviations. For purposes 
of reliability, table provides Intraclass-Correlation-Coefficients (ICC) as well as Coefficient of Variation (CoV) 
including lower (LB) and upper bound (UB) of the 95% confidence interval of two sessions performed within 
one week. Effect size estimations (ES) are based on bootstrap analysis with k = 100 cycles running the bootes 
function (Di Plinio 2020).

Descriptives Relative reliability Absolute reliability

Session 1 Session 2 ICC [LB UB ] ES CoV [LB UB] ES

θ

wPLIREST 0.92 ± 0.05 0.96 ± 0.06 0.38 [0.0 0.73] 4.65 [6.12 3.09]

wPLIPOST 0.94 ± 0.08 0.94 ± 0.06 0.65 [0.21 0.87] 1.30 4.55 [6.83 2.79] 0.10

CohREST 0.99 ± 0.04 1.01 ± 0.06 0.73 [0.29 0.90] 2.63 [4.22 1.56]

CohPOST 0.98 ± 0.06 0.98 ± 0.06 0.73 [0.35 0.90] 0.06 3.07 [4.73 1.86] 0.91

α1

wPLIREST 1.08 ± 0.20 1.13 ± 0.22 0.88 [0.65 0.96] 6.66 [11.21 3.89]

wPLIPOST 1.10 ± 0.22 1.13 ± 0.26 0.91 [0.77 0.97] 0.85 6.26 [10.23 3.70] 0.39

CohREST 1.05 ± 0.15 1.07 ± 0.16 0.93 [0.82 0.98] 3.79 [6.25 2.23]

CohPOST 1.06 ± 0.14 1.07 ± 0.15 0.83 [0.57 0.94] 1.83 5.58 [8.92 3.33] 1.56

α2

wPLIREST 0.97 ± 0.09 0.99 ± 0.09 0.64 [0.22 0.86] 5.52 [8.17 3.41]

wPLIPOST 0.98 ± 0.12 0.98 ± 0.09 0.82 [0.55 0.94] 1.53 4.42 [7.06 2.63] 1.09

CohREST 0.95 ± 0.10 0.97 ± 0.10 0.88 [0.67 0.96] 3.54 [5.79 2.09]

CohPOST 0.97 ± 0.13 0.98 ± 0.10 0.86 [0.63 0.95] 0.37 4.37 [7.09 2.59] 1.27

β1

wPLIREST 0.92 ± .07 0.94 ± .08 0.59 [0.15 0.84] 5.07 [7.27 3.19]

wPLIPOST 0.92 ± .07 0.94 ± .08 0.85 [0.63 0.95] 2.77 3.09 [4.92 1.85] 2.53

CohREST 1.14 ± 0.10 1.12 ± 0.10 0.79 [0.49 0.92] 3.53 [5.50 2.12]

CohPOST 1.10 ± 0.10 1.09 ± 0.10 0.89 [0.70 0.96] 1.77 2.92 [4.78 1.73] 1.10

β2

wPLIREST 0.92 ± 0.07 0.83 ± 0.11 0.56 [0.00 0.85] 7.17 [11.24 4.10]

wPLIPOST 0.92 ± 0.07 0.85 ± 0.09 0.47 [0.00 0.80] 0.42 6.72 [9.60 4.15] 0.43

CohREST 1.29 ± 0.15 1.28 ± 0.11 0.77 [0.45 0.92] 4.83 [7.02 3.18]

CohPOST 1.23 ± 0.13 1.25 ± 0.13 0.86 [0.64 0.95] 0.90 3.92 [5.82 2.56] 0.94
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test to test. Therefore, graph measures not only display adequate relative, but also absolute reliability and could 
be feasible in displaying intra-individual adaptations to exercise in repeated measures designs.

Methodological considerations.  Although our findings demonstrated good reliability for post-exercise 
resting state graph measures, some limitations of the present study need to be mentioned. Primarily, it needs to 
be mentioned that our findings are based on sensor-level data, so that possible effects of volume conduction on 
the computed connectomes, especially for those based on coherence, need to be considered. Further, previous 

Figure 3.   Violin plots of Coefficient of Variation (CoV) values for graph measures based on weighted PLI 
(upper graph) and spectral coherence (lower graph) functional connectivity estimation. Measures were obtained 
from two experimental sessions within one week investigating EEG resting states before (PRE, grey violins) and 
after (POST, purple violins) an acute bout of 10 min of moderate-intensity running on the treadmill. Violins 
display the distribution of CoV values based on a resampling of k = 1000 iterations using the bootes function 
(Di Plinio 2020). For each pair of distributions (PRE vs. POST), effect size Cohen´s d was computed based on 
k CoV values per condition. Black squares indicate the CoV values of the original sample, brackets indicate 
the 95% confidence intervals. CC clustering coefficient, PL characteristic path length, SWI small-world index. 
Graph measures are computed for theta (θ, 4 to 8 Hz), alpha-1 (α-1, 8 to 10.5 Hz) and alpha-2 (α-2, 10.5 to 
13 Hz), beta-1 (β-1, 13 to 20 Hz) and beta-2 (β-2, 20 to 30 Hz) frequency bands. Horizontal line indicates the 
5% threshold for CoV interpretation.
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investigations report that connectivity outcomes from source-space in part correlate poorly sensor-level con-
nectivity metrics34, so that the present findings should be transferred with caution to source-space approaches. 
However, since source-space analysis incorporates several additional processing steps, graph reliability after 
exercise might even differ to a considerable degree within the source-space domain35. With regards to the trans-
ferability of the present findings, the factor of sex should also be taken into account, since scross-sectional fund-
ings suggest gender- and hormone-based differences in resting state brain networks comparing male and female 
individuals36,37.

Further, the cap was placed on the participants’ head prior to each EEG resting state assessment, so that 
the participants were not restricted by the cap during exercise. The replacement of the cap may have resulted 
in systematic error in electrode position from measurement to measurement, which can affect brain network 
analysis outcomes and consequently test–retest reliability when these deviations are > 0.5 cm38. Since digitizing 
electrode positions requires a minimum of additional time of about 15 min39, this procedure was not feasible 
for the present study analyzing the effects of acute exercise bouts on brain outcomes, but should be considered 
for future longitudinal studies on brain networks.

The major concern when interpreting the present findings should be assigned to the trade-off between reli-
ability and sensitivity of brain networks19. As a brain graph is a result of both functional and structural con-
nections which contribute to an existing connectome, both chronic and acute neuroplastic changes contribute 
to modulations of brain graphs. While structural connections are expected to remain stable over time, specific 
functional connections are more likely to rather reflect state than trait and therefore fluctuate more within smaller 
time periods40,41. Even if the analysis of brain graphs is majorly applied to distinguish healthy from diseased 
populations exposed to long-term neuroplastic changes42, first studies have shown that even acute circumstances 
like fatigue or vigilance correlate with modulations of functional graph outcomes43,44. Therefore, brain graphs 
might be treated as a mixture of long-term, mid-term and short-term modulated brain connectivity which also 
require for a complex and multimodal interpretation. In line with the above mentioned observations in the exist-
ing literature, we observed changes in small-worldedness from Session I to Session II in wPLI-based networks 
accompanied by reduced lactate and borg scale responses to exercise in the second session. Thus, even in well 
controlled week-to-week investigations, intra-individual changes like familiarization, experimental anxiety or 
even subjective well-being should be considered as inherent sources of variability in functional connectivity 
analysis. To apply brain graphs as possible markers of network efficiency, future studies need to identify out-
comes associated with intra-individual changes in the connectome to better understand the its role in sports 
performance. Furthermore, methodological choices like FC estimation need to be considered as influences on 
the observed brain network findings15,19, which is further supported by the diverging findings in the present 
study comparing Coh and wPLI.

Conclusions
The present study indicates that brain graphs are a reliable tool to analyze the modulation of brain networks due 
to exercise. Both the relative and absolute reliability demonstrated good to excellent values independent from 
the FC estimator after exercise. Due to the good reliability, chosen graph measures enable not only the investi-
gation of acute, but also longitudinal studies in exercise-scientific contexts. Accordingly, graph theory possibly 
provides a complementary perspective on acute and chronic neuroplastic changes of brain function associated 
with exercise compared to the established activity analysis1. However, upcoming studies need to investigate 
long-term reliability and variability of extracted brain networks to display chronic changes within brain network 
efficiency induced by exercise. Due to the advantages of mobile EEG, graph applications may allow us to monitor 
(neuro-) physiological responses to exercise in field settings with modifications of different contextual variables 
like population group, gender, training status, modality, intensity, frequency or volume.

Methods
Participants.  Fifteen healthy male participants (age: 24.5 ± 3.4  years, body height: 182.6 ± 8.8  cm, body 
mass: 75.4 ± 9.9  kg) who performed exercise at least three times (exercise time/week: 8.0 ± 3.7  h; endurance 
exercise time/week: 5.2 ± 4.5 h) each week took part at the present study. The present study included 3 days of 
testing: On day 1, each participant performed a medical assessment including a 12-lead resting electrocardio-
gram (custo cardio 100 BT, customed, Ottobrunn, Germany) which was screened and approved by a physician. 
Further, all participants performed an aerobic assessment test to detect peak oxygen uptake (VO2peak) and the 
corresponding peak running speed (vVO2peak, mean: 51.0 ± 5.2 ml/min/kg) during an incremental ramp proto-
col. Based on the individual VO2peak, exercise load was defined for the consecutive trials on day 2 and day 3. The 
two sessions including EEG recording (day 2 and day 3) were separated by ~ 1 week. Both sessions for each par-
ticipant were scheduled at the same time of the day to control for possible effects of circadian rhythm on resting 
state EEG analysis. An overview of the experimental procedure is presented in Fig. 4. Written informed consent 
was obtained from each participant and the study was approved by the local research and ethics committee of 
Paderborn University. All procedures of the present study were conducted in accordance with the Declaration 
of Helsinki.

Procedures.  For each of the two EEG sessions (day 2 and day 3), participants ran through the same standard-
ized protocol. After arriving at the lab, an EEG cap with 64 passive wet-electrodes (RNET, BrainProducts, Gilch-
ing, Germany) was fitted to the participants head and connected to a wireless Bluetooth amplifier (LiveAmp, 
BrainProducts, Gilching, Germany). The impedance level of the electrodes was reduced to 50 kOhm, FCz was 
chosen as the reference and the sampling rate was set at 500 Hz. Each resting state EEG assessment lasted for 
5 min. For the unrestricted resting situation (PRE), participants were asked to sit on a comfortable chair in front 
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of a white wall and keep their eyes open. After the PRE period, the EEG cap was removed, and participants were 
asked to run for 10 min at an individually determined speed corresponding to 50% vVO2peak. Based on previous 
analysis of the protocol (Büchel et al.), we decided to employ a moderate rather than a high endurance exercise 
intensity. While high intensity exercise is associated with both negative and positive effects on brain function and 
cognitive variables, moderate intensity induces beneficial changes in brain function, cognition and mood2,45,46. 
After 10 min running, participants sat down on the chair again and the EEG cap was applied a second time 
according to the international 10–20 system and aligned with regards to the anatomical landmarks of nasion, 
inion, and left and right preauricular. Due to the quick application of wet electrodes, EEG resting state assess-
ment started within 4 min after running termination (POST). Before PRE and POST, blood lactate was obtained 
from the right earlobe and the rate of perceived exertion was assessed using the Borg-scale (BS). During the 
resting state, the heart rate was monitored using a chest belt connected to an ECG sensor (Polar H10, Polar 
Electronics, Kempele, Finland).

Graph analysis.  For the data processing, the EEG raw data was imported into the EEGLAB toolbox47 for 
MATLAB (Version R2020a, Mathworks Inc., Natick, United States). The EEG signals were processed using a 
custom-built automated code including a Cleanline filter48, a finite impulse response filter between 3 and 40 Hz, 
the restoration of the reference-electrode FCz, re-referencing to common average, as well as a down-sampling 
to 256 Hz. In order to remove non-stereotype artifacts, the clean_rawdata EEGLAB plugin49 was applied, which 
performs automated subspace reconstruction (ASR), a component-based method to effectively interpolate tran-
sient or large-amplitude artifacts50. After the application of ASR, an adaptive mixture independent component 
analysis (AMICA, Palmer51) was applied to decompose the signal into brain and non-brain signals. The factor n 
(samples/number of channel2) = 18.17 was expected to be sufficient for valid AMICA decomposition due to the 
low amount of artefacts and stationarity of the neural sources52. Independent Components (ICs) were labeled 
applying the ICLabel plugin53. Based on visual inspection of scalp map topographies, time course, and frequency 
characteristics, ICs not labeled as brain resulting from muscle activity, eye movement, ECG, sweat or channel 
noise were removed from the dataset, in case they did not contain a reasonable contribution of brain oscillation 
activity. During this step, 8.3 ± 2.6 ICs were removed per dataset (PRESession 1: 8.0 ± 2.7; POSTSession 1:10.3 ± 2.9; 
PRESession 1: 7.3 ± 1.8; POSTSession 2: 7.5 ± 1.8) and allowed to increase the signal-to-noise ratio for further channel-
space analysis. Since previous investigations stated that epochs shorter than 4 s possibly overestimate FC meas-
ures due to a lack of variance in the data30,34, the pruned data was epoched into 8 s windows. Since the number 
of epochs is further described to affect resting state reliability20, we chose epochs overlapping for 4 s to double 
the amount of epochs for the given number of samples based on real and temporally related data. Further, Allen 
et al. described that overlapping windows avoid that the position of a given sample in the extracted epoch afftects 
analysis outcomes54. Due to the chosen approach, each datapoint was analyzed twice. Since no study reported 
the impact of resting states longer than 4 min durations on graph reliability19, we limited our analysis to the first 
50 epochs of each EEG resting state recording which corresponds to 3.4 min of consecutive EEG data.

To compute brain graphs, the epoched data was imported to the BrainWave software version 0.9.151.7.255. 
Functional connectivity between EEG channels was derived by means of (i) the wPLI and (ii) Coh. While Coh 
is a measure of signal covariance, taking into account signal phase and signal amplitude of two time-series, the 
wPLI is an index of the asymmetry in the distribution of phase differences calculated only on the base of instan-
taneous phases of two time-series. Both methods reveal measures ranging from 0 to 1, while 1 represents the 
highest degree of functional connectivity18. While phase-lag measures are reported to be less sensitive to signal 
amplitudes56 and might therefore be less prone to exercise-induced changes of signal amplitudes and volume 

Figure 4.   Overview of the experimental procedure to investigate test–retest reliability of graph measures in 
a resting situation after exercise. Day 1 consisted of a medical assessment and an incremental treadmill test to 
assess peak oxygen uptake (VO2peak). On day 2 and 3, electroencephalography (EEG) resting state was assessed 
before (PRE) and after (POST) running for 10 min at the speed corresponding to 50% of individual VO2peak.
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conduction effects3, Coh has shown to be more reliable when analyzing slow frequency bands like theta (5–8 Hz, 
Kuntzelman and Miskovic). Therefore, both Coh and wPLI were computed on the scalp-level for each possible 
connection between two electrodes for each epoch, resulting in fifty 65-by-65 grids for each participant and 
each condition per FC measure. The FC computation was performed on band-pass filtered data in the previously 
defined frequency bands of interest theta (5–8 Hz), alpha-1 (8–10.5 Hz) and alpha-2 (10.5 to 13 Hz), beta-1 (13 to 
20 Hz) and beta-2 (20 to 30 Hz). The delta and lower gamme band were not taken into account, as these are prone 
to artefacts induced by eye57 respectively muscle activity58 and might be further affected by the bandpass filter 
chosen. For graph analysis, the matrices were imported to the MATLAB based Brain Connectivity Toolbox59. 
Based on the FC grids, weighted undirected graphs were computed as they are suggested to give more specific 
information on the degree of connectivity between two nodes than binarized values. To computed weighted brain 
graph outcomes, connectivity matrices were then normalized by bounding all FC values to the range from 0 to 
1 based on the rank of the maximal and minimum FC value per participant. This measured allowed to obtain 
comparability despite of the considerable differences of absolute FC measures across participants60,61. As such, 
the weighted network approach allowed to keep all possible connections within the brain network since we did 
not apply an arbitrary threshold for the removal of weakly connected nodes. For each FC measure and condi-
tion, the graph measures CC, PL and SWI were computed on the global level. CC and PL were analyzed as global 
values and represent the mean values of all channels across the scalp, For the computation of SWI, CC and PL 
were normalized by dividing each individual value by the mean of all other values over all frequency bands and 
the individual ratio between normalized CC and normalized PL was computed13.

Statistical analysis.  All statistical analyses were performed using Matlab Version R2020a (The Mathworks, 
Inc, Natick, MA). To assess the relative test–retest reliability of the computed graph measures, we computed the 
ICC comparing the graph outcomes of Session I and Session II. Different statistical models exist to compute ICC, 
for the present study ICC estimates and their 95% confidence intervals (CIs) were calculated using the MATLAB 
ICC function62 based on single ratings, absolute agreement and a 2-way mixed effects model. In the equation 
below, MSR is the within-participant standard deviation, MSE is the mean square of the error, MSC is the mean 
square of columns, k is the number of sessions and n is the number of participants63.

ICCs are traditionally interpreted in a range between 0 and 1, where 1 indicates perfect agreement between 
two measurements. Values smaller than 0 are interpreted as zero values. In accordance with previous studies on 
brain network reliability, reliability was rated as poor (< 0.4), fair (> 0.4 to < 0.6), good (> 0.6 to < 0.75) or excellent 
(> 0.75) depending on the corresponding ICC value (Hardmeier et al.). As a measure of absolute reliability, the 
coefficient of variation (CoV) was calculated in %, estimating the relative impact of the standard error of meas-
urement (SEM) on the observed score. ICC, SEM and CoV are presented as 95% CIs. To analyze whether graph 
measures obtained from session I differed significantly from those measured during session II, paired t-tests 
were performed. In addition to t-tests, a novel approach less sensitive to sample size presented by Di Plinio was 
performed to quantify the differences in the magnitude of correlations across the experimental conditions PRE 
and POST using the bootes function. The function compares correlations between two parameters across two 
experimental conditions regardless of the input sample size by bootstrapping the orginal sample. It therefore 
allows more valid assumptions on condition effects on reliability estimates compared to established approaches 
biased for bigger sample size64. In detail, the function performs k cycles of resampling the original data sample 
to k samples of equal size. For each resampling step, a correlation value is obtained between the two given input 
samples, resulting in a distribution of k correlation values. Therefore, the bootes function creates two distribu-
tions of ICCs between Session I and Session II for PRE and POST conditions for each outcome in each frequency 
band which were then transferred into z-values. Based on mean and standard deviation of each distribution, the 
effect size (ES) Cohen’s d (Lipsey and Wilson) were computed for the difference between correlations of PRE and 
POST. In the present study, k was to 1000 cycles.

Next to EEG data, (psycho-) physiological outcomes obtained at PRE and POST were analyzed with regards to 
reliability. Therefore, ICC and CoV (in %) for PRE and POST including 95% CI were calculated for mean HRrest, 
BS and Lac. To obtain information on the changes of the EEG data and the physiological state of the participants 
from PRE to POST, two-way repeated-measures ANOVA was performed to analyze the effect of exercise (PRE 
vs. POST) and session day (Session 1 vs. Session 2) on (psycho-) physiological outcomes (p < 0.05). All statistical 
tests were performed using tailored functions in MATLAB.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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