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Preterm birth (PTB) at less than 37 weeks of gestation is the leading cause of neonatal
morbidity and mortality. Intrauterine infection (IUI) due to microbial invasion of the amniotic
cavity is the leading cause of early PTB (<32 weeks). Commensal genital tract Ureaplasma
and Mycoplasma species, as well as Gram-positive and Gram-negative bacteria, have been
associated with IUI-induced PTB. Bacterial activation of Toll-like receptors and other pat-
tern recognition receptors initiates a cascade of inflammatory signaling via the NF-κB and
p38 mitogen-activated protein kinase (MAPK) signaling pathways, prematurely activating
parturition. Antenatal antibiotic treatment has had limited success in preventing PTB or
fetal inflammation. Administration of anti-inflammatory drugs with antibiotics could be a
viable therapeutic option to prevent PTB and fetal complications in women at risk of IUI
and inflammation. In this mini-review, we will discuss the potential for anti-inflammatory
drugs in obstetric care, focusing on the class of drugs termed “cytokine suppressive
anti-inflammatory drugs” or CSAIDs. These inhibitors work by specifically targeting the
NF-κB and p38 MAPK inflammatory signaling pathways. Several CSAIDs are discussed,
together with clinical and toxicological considerations associated with the administration
of anti-inflammatory agents in pregnancy.

Keywords: chorioamnionitis, cytokine suppressive anti-inflammatory drugs, intrauterine inflammation, intrauterine
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INTRODUCTION
Preterm birth (PTB), delivery prior to 37 weeks of gestation, is esti-
mated to affect 5–15% of pregnancies worldwide (1) and remains
the leading cause of morbidity and mortality of neonates (2) and
the second largest direct cause of death in children under 5 years
(3). There are many pathological pathways which can lead to
PTB, including intrauterine infection (IUI),uterine ischemia,uter-
ine over-distension, abnormal allogeneic recognition and allergic
reactions, cervical disease, and endocrine disorders (4). Whilst
interventions such as progesterone therapy and ultrasound cer-
vical monitoring are now utilized in many high-risk clinics in
developed countries, they are not specific to a particular PTB
etiology (5). IUI and inflammation has been casually linked to
early PTB and account for approximately 40% of all spontaneous
PTB (6, 7). Microbial invasion of the amniotic cavity, most com-
monly with ascending vaginal microorganisms, activates pattern

Abbreviations: ATP, adenosine triphosphate; COX, cyclooxygenase; CSAID,
cytokine suppressive anti-inflammatory drug; FIRS, fetal inflammatory response
syndrome; IκB, inhibitor of NF-κB; IKK, IκB kinase; IL, interleukin; IRAK, IL-
1R-associated kinase; IUI, intrauterine infection; LPS, lipopolysaccharide; MAPK,
mitogen-activated protein kinase; MCP, monocyte chemoattractant protein; MKK,
MAPK kinase; MMP, matrix metalloproteinase; NAC, N -acetyl cysteine; NBDI,
NEMO binding domain inhibitor; NEMO, NF-κB essential modulator; NF-κB,
nuclear factor κB; NSAID, non-steroidal anti-inflammatory drug; OxZnl, 5z-7-
oxozeaenol; PAMP, pathogen-associated molecular pattern; PTB, preterm birth;
PTL, preterm labor; PG, prostaglandin; SSZ, sulfasalazine; TAK, TGFβ activated
kinase; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumor
necrosis factor; TRAF, TNF receptor-associated factor.

recognition receptors (PRRs) which induce the production of
pro-inflammatory mediators leading to the premature activation
of labor and ultimately PTB [reviewed in Ref. (8)]. Neonatal health
and development is further compromised if chronic exposure of
the fetus to these inflammatory mediators results in fetal inflam-
matory response syndrome (FIRS) (9, 10). It is likely that optimal
pregnancy outcomes will come from the development of thera-
peutic strategies that are cause-specific and targeted to women at
risk and likely to benefit from the treatment.

There is growing interest in therapeutic interventions that
target the inflammatory labor cascade by blocking the pro-
duction of pro-inflammatory mediators or up-regulating anti-
inflammatory mediators and/or the exogenous administration of
anti-inflammatory or pro-resolution mediators. In their review
of anti-inflammatory agents for the prevention of labor, Rinaldi
et al. (8) concluded that progesterone was the most likely com-
pound to progress into mainstream clinical use. Although proges-
terone treatment reduces the incidence of preterm delivery (11),
its ability to block inflammatory signaling associated with infec-
tion is unclear. In a previous review, we concluded that while
the use of anti-inflammatory agents for the treatment and/or
prevention of PTB appears promising, pre-clinical studies demon-
strating clear benefits and lack of toxicity are needed (12). This
mini-review will revisit the benefits and risks of administration
of anti-inflammatory drugs in obstetric care, focusing specifi-
cally on the emerging class of drugs termed “cytokine suppres-
sive anti-inflammatory drugs” or CSAIDs. These inhibitors, when
administered in conjunction with an effective antibiotic regimen,
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have the potential to both prolong pregnancy and improve
neonatal outcomes.

INTRAUTERINE INFECTION AND INFLAMMATION
One in four preterm infants is born to a mother with IUI (13).
These infections commonly arise via the ascending route of infec-
tion where bacteria from the cervicovaginal fluid ascend, breach
the cervical barrier, colonize the amniotic fluid, and invade fetal
membranes and in some cases the fetus (14). IUI also occurs via
hematogenous dissemination with trans-placental transfer (15).
Chorioamnionitis is the hallmark feature of IUI and is typically
diagnosed after delivery by histopathology as the infiltration of
leukocytes into the fetal membranes; histological chorioamnioni-
tis severity is positively correlated with intra-amniotic infection,
fetal inflammation, and poorer pregnancy outcomes (16, 17).
While bacteria are the major organism responsible for chorioam-
nionitis, viruses and yeast are also capable of causing intrauterine
inflammation.

Genital Mycoplasma and Ureaplasma species are some of the
most commonly isolated organisms from amniotic fluid in cases
of infection-induced PTB (7), although the appearance of these,
and numerous other bacteria (7, 18), in amniotic fluid does not
necessarily denote causation (19). Evidence suggests that the extent
of bacterial colonization, route of infection, and the stimulatory
capacity of the bacteria all play key roles in the activation of
maternal and fetal pro-inflammatory signaling cascades which

induce production of pro-inflammatory cytokines (e.g., IL-1β and
TNF-α) and chemokines (e.g., IL-8 and MCP-1), which in turn
promote prostaglandin (PG) production and myometrial contrac-
tility, ripening of the cervix, and degradation of the fetal mem-
brane extracellular matrix leading to preterm labor (PTL) (20).
The importance of cytokine and chemokine signaling in the patho-
genesis of infection-induced PTL is well established and has been
thoroughly reviewed in Ref. (14, 21, 22). Microorganism-specific
pathogen-associated molecular patterns (PAMPs) are sensed by
trans-membrane PRRs, e.g., Toll-like receptors (TLRs) (23, 24),
with ligation resulting in recruitment of adaptor proteins [IL-1R-
associated kinase (IRAK)1, IRAK4, and TNF receptor-associated
factor (TRAF6)] and activation of TAK1 kinase (Figure 1). TAK1
then mediates the phosphorylation and activation of the IκB
kinase complex (IKK), which comprises of two catalytic sub-
units (IKKβ and IKKα) and a regulatory subunit IKKγ (25). The
IKK complex phosphorylates IκB-α, targeting it for degradation,
allowing NF-κB heterodimers to dissociate and translocate to the
nucleus to drive inflammatory gene expression (26). TAK1 kinase
can also phosphorylate and activate the mitogen-activated protein
kinases (MAPKs), MKK3 and MKK6 that subsequently activate
p38 MAPK (27). Although there is some evidence that p38 MAPK
is involved in intrauterine inflammatory activation of fetal mem-
branes (28), the exact mechanism of activation in gestational
tissues and pregnancy is unknown and likely varies according to
the nature of the stimulatory agent.

FIGURE 1 | Infection-induced preterm labor triggered by activation ofTLR-mediated NF-κB and p38 MAPK inflammatory signaling cascades. Targets for
the selected anti-inflammatory agents are indicated in red circles.
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TARGETING PRO-INFLAMMATORY SIGNALING FOR
PREVENTION OR TREATMENT OF PTB
Antibiotic treatment is routinely given to women presenting with
PTL (29, 30). However, it is not the infection but the subsequent
inflammation that initiates PTL and is primarily responsible
for adverse neonatal outcomes. The use of non-steroidal anti-
inflammatory drugs (NSAIDs) to inhibit PG synthesis provided
initial evidence that the use of anti-inflammatory drugs may help
to delay PTB (31, 32). However, significant pregnancy complica-
tions and adverse fetal side effects have been associated with their
use (33) as summarized in Table S1 in Supplementary Material.
The following sections consider a number of promising alterna-
tive anti-inflammatory agents with potential for use in preventing
inflammation-driven PTB.

NON-SPECIFIC NF-κB INHIBITORS
N -acetyl cysteine (NAC) is a non-specific free radical scavenger
and NF-κB inhibitor (34–36) (Figure 1, indicated by red circle
at position 5). Treatment of fetal membranes with NAC has been
shown to inhibit lipopolysaccharide (LPS) and γ-irradiation killed
E. coli-induced inflammation (37, 38). NAC has been tested clini-
cally in pregnancy, but has not progressed into mainstream clinical
use (39) and the clinical findings have not yet been replicated in
other studies. Sulfasalazine (SSZ), a salicylate drug that blocks NF-
κB activation by directly inhibiting the IKK kinases (40), is well
tolerated and approved for use in pregnancy, with no discernible
increase in risk of fetal congenital defects, morbidity, or mortality
(41). SSZ treatment has been shown to reduce both LPS-induced
placental inflammation in an explant model (42), and the inci-
dence of preterm delivery in a mouse model of PTL (43). However,
increased levels of chorionic apoptosis has also been reported in
a human membrane model after SSZ exposure (20 h), suggest-
ing that prolonged treatment may result in eventual membrane
degradation and loss of function and structural integrity (42).

TLR4 ANTAGONISTS
TLR4 activation by LPS is the most commonly used IUI model and
accordingly TLR4 antagonism has been assessed for therapeutic
potential (Figure 1, red circle at position 1). Studies of TLR4–LPS
inhibition using a monoclonal anti-TLR4 antibody found treat-
ment effective in vivo in reducing pro-inflammatory mediator
(TNF-α, IL-8, and PGE2) production in amniotic fluid (44), and
the incidence of LPS-induced PTB (45). Alternate TLR4 antago-
nists include eritoran tetrasodium (46) and TAK-242 (47), neither
of which have been examined in this context. IUI and inflamma-
tion can be triggered by a range of PAMPs, while TLR4 antagonism
is only appropriate in cases of Gram-negative bacteria-induced
PTL.

TNF-α BIOLOGICS
Conflicting reports exist regarding the efficacy of anti-TNF-α anti-
bodies to decrease the incidence of PTB in murine models (48,
49). Drugs blocking the production of pro-inflammatory TNF-
α are used in pregnancy (50, 51), but the complexity of cytokine
interactions associated with PTL suggests that targeting individual
cytokines may not be the most optimal therapeutic intervention
(Figure 1, red circle at position 6). Interestingly, clinical stud-
ies have reported that maternal administration of antibody-based

TNF-α biologics (e.g., infliximab) persist in the neonatal circula-
tion for many weeks after birth (52) and may therefore dampen
both intrauterine and fetal inflammation protecting the fetus from
the adverse sequelae of IUI and inflammation. There is little evi-
dence for congenital abnormalities with the use of anti-TNF-α
therapy during pregnancy (53), but high levels in fetal circulation
may increase risk of neonatal infection. The consequences of such
treatments for the developing immune system need to be fully
considered.

CSAIDs: A NOVEL CLASS OF ANTI-INFLAMMATORY DRUGS
As a class of compounds, CSAIDs specifically target the NF-κB
and p38 MAPK signaling pathways to inhibit cytokine-mediated
events with demonstrated efficacy in a range of animal models
(54–56). These agents are now being examined for their potential
to be more effective and selective than NSAIDs for the inhibi-
tion of inflammation-driven PTB, as they directly target signal-
ing molecules leading to the activation of the NF-κB and p38
MAPK inflammatory cascades without interfering with the con-
stitutive/homeostatic roles of prostanoids (Table 1 and Figure 1).
Importantly, depending on the route of administration and pla-
cental transfer properties, CSAIDs may have the potential to
block intra-amniotic and fetal inflammation, thereby protecting
the fetus from the adverse sequelae of exposure to inflammatory
mediators.

p38 MAPK inhibitors
The first p38MAPK inhibitor investigated in human extraplacen-
tal membranes was SKF-86002, a potent inhibitor of p38 MAPK
and less potent inhibitor of cyclooxygenase-2 (COX-2) and 5-
lipoxygenase activity (75). This led to research into the use of
similar inhibitors, which selectively bind to the adenosine triphos-
phate (ATP) site of p38 MAPK, to block the placental production
of pro-inflammatory cytokines (Figure 1, red circle at position
4). Lappas et al. (28) reported that treatment of LPS-stimulated
human fetal membranes with SB202190 inhibited the release of
IL-6, TNF-α, and PGs, whilst we demonstrated that SB239063
inhibited the production of IL-6, TNF-α, and PGE2 at both the
maternal and fetal faces of human fetal membranes stimulated
with γ-irradiation-killed E. coli (38). This suggested that p38
MAPK may be a useful pharmacological target for prevention of
PTL; however, caution is warranted as MAPKs are also involved
in many aspects of cell function and signaling, including placental
growth and differentiation (59, 60).

IKK complex inhibitors
A short, membrane-permeable NEMO-binding domain inhibitor
(NBDI) peptide that spans the IKKβ NEMO-binding domain dis-
rupting interaction between NEMO and IKKβ (76) (Figure 1,
red circle at position 3), is effective in ameliorating inflam-
matory responses in ear swelling (77) and colitis (63) mouse
models. Recently, NBDI was also shown to inhibit LPS and Ure-
aplasma parvum-induced PGE2 production in ovine gestational
membranes (38) but not γ-irradiation-killed E. coli-induced pro-
inflammatory responses in ex vivo human fetal membranes (38);
differences in binding affinity or endogenous protease activ-
ity in human fetal membranes may explain differential efficacy
observed.
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Table 1 | Cytokine suppressive anti-inflammatory drugs (CSAIDs) with potential for the prevention or treatment of PTB.

CSAID Formula (molecular

weight, kDa)

Mode of action Anti-inflammatory effects in IUI and other

models of inflammation

Potential side effects

SKF-86002 C16H12FN3S (297.4 kDa) Inhibits p38 MAPK, COX-2,

and 5-LO enzymes (57)

↓ IL-1β and PGE2 production by LPS-stimulated

human fetal membranes (58), ↓ IL-1β from

endotoxin-stimulated human macrophages (58)

Downstream MAPK

inhibitory effects on

placental growth and

differentiation (59, 60)

SB202190 C20H14FN3O

(331.3 kDa)

Selectively binds to the

ATP-binding pocket of p38α

and β isoforms (61)

↓ IL-6, TNF-α, PGE2, and PGE2α production by

LPS-stimulated human fetal membranes (28), ↓

IL-6, IL-8, PGE2, and PGF2α secretion in

macrophage-exposed annulus fibrosis, cells in

response to TNF-α (62)

Downstream MAPK

inhibitory effects on

placental growth and

differentiation (59, 60)

SB239063 C20H21N4O2F

(368.4 kDa)

Selectively binds to the

ATP-binding pocket of p38α

and β isoforms (61)

↓ IL-6, TNF-α, and PGE2 production by

γ-irradiation-killed E. coli stimulated human fetal

membrane Transwell model (38)

Downstream MAPK

inhibitory effects on

placental growth and

differentiation (59, 60)

NBDI Synthetic peptide

corresponding to the

NEMO amino-terminal

alpha-helical region

(3780.4 kDa)

Binds to IKKβ NEMO-binding

domain and inhibits kinase

activity by disrupting the

interaction of IKKβ with

NEMO (63)

↓ PGE2 production in LPS and Ureaplasma

parvum-stimulated ovine gestational membrane

Transwell model (38), ↓ IL-6, TNF-α, and IL-1β

production and expression in a dose-dependent

manner in a mouse model of inflammatory bowel

disease (63)

Inhibition of NF-κB

constitutive activity

resulting in non-specific

toxicity (64)

Parthenolide C15H20O3 (248.3 kDa) Binds to IKKβ and inhibits

kinase activity by covalent

modification of the cysteine

179 reside in the kinase

activation loop (65)

↓ Inflammatory gene expression and production in

primary choriodecidual cells (66), ↓ LPS-induced

IL-6 and TNF-α in a mouse model (67), ↓TNF-α and

COX-2 expression in TNF-α-stimulated human

urothelial cells (68)

Inhibition of NF-κB

constitutive activity

resulting in non-specific

toxicity (64)

TPCA-1 C12H10FN3O2S

(279.9 kDa)

Selectively binds to the ATP

pocket of the IKKβ kinase (69)

↓ Inflammatory gene expression and production in

primary choriodecidual cells (66), ↓TNF-α and PGE2

in fetal side of human fetal membrane Transwell

model (38), ↓ IL-8 and PGE2 LPS ovine gestational

membrane explant model (38), ↓ PGE2 in a 2-day

LPS ovine pregnancy model (70), ↓ IL-1β-induced

MMPs expression and NF-κB nuclear translocation

in corneal fibroblasts (71), ↓ IL-1β, IL-6, TNF-α, and

IFN-γ in mouse model of collagen arthritis (69)

Inhibition of NF-κB

constitutive activity

resulting in non-specific

toxicity (64)

OxZnl C19H22O7 (362.4 kDa) Selectively binds to the ATP

pocket of TAK1 kinase (72)

↓ PGE2 production by LPS-stimulated ovine model

of pregnancy (70), ↓ COX-2 production in mouse

model of picryl chloride-induced ear swelling (72), ↓

IL-1-induced COX-2 production in mouse embryonic

fibroblast (72), ↓ CD40L-induced IL-6, MCP-1, and

ICAM1 in mouse model of vascular injury (73)

Downstream inhibitory

effects on MAPK

activity involved in cell

differentiation and

apoptosis (74)

OxZnl, 5z-7-oxozeaenol; ATP, adenosine triphosphate; COX, cyclooxygenase; CSAID, cytokine suppressive anti-inflammatory drug; IFN, interferon; IL, interleukin; IUI,

intrauterine infection; IKK, IκB kinase; LPS, lipopolysaccharide; MMP, matrix metalloproteinase; MAPK, mitogen-activated protein kinase; MCP, monocyte chemoat-

tractant protein; NBDI, NEMO-binding domain inhibitor; NEMO, NF-κB essential modulator; NF-κB, nuclear factor κB; PG, prostaglandin; TAK, TGFβ-activated kinase;

TNF, tumor necrosis factor.

TPCA-1 (69) and parthenolide (65) are specific IKKβ inhibitors
(Figure 1, red circle at position 3) shown to inhibit LPS-induced
inflammation and NF-κB nuclear translocation in primary
choriodecidual cells (66). Unlike SSZ, no impairment of cell viabil-
ity, apoptosis, or expression of anti-apoptotic genes was detected in

these studies (66). Addition of TPCA-1 to the fetal compartment
of a human fetal membrane Transwell model was also reported
to inhibit γ-irradiation-killed E. coli-induced TNF-α and PGE2

production in the fetal compartment, and to a lesser extent in the
maternal compartment (38). TPCA-1 also blocked LPS- and U.
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parvum-induced IL-8 and PGE2 production in an ovine gesta-
tional membrane model (38), demonstrating that this pharmaco-
logical strategy is likely to work across a wide range of microbial
stimuli and different PAMPs. Significantly, in an ovine model of
LPS-induced chorioamnionitis, intra-amniotic administration of
TPCA-1 was found to inhibit production and accumulation of
PGE2 in amniotic fluid and leukocytosis of the fetal membranes
(70). However, at the doses employed, no significant changes in
amniotic fluid or fetal circulating cytokine concentrations were
observed.

TAK1 inhibitors
The TAK1 kinase complex is unique to the TLR-mediated acti-
vation pathway and offers an excellent pharmacological target
within the p38 MAPK and NF-κB pro-inflammatory signaling
cascades to block premature activation of labor, without the down-
stream effects of IKK inhibition on constitutive NF-κB activity
(Figure 1, red circle at position 2). The upstream location of TAK1
also suggests that blockade of activity is likely to exert broad-
spectrum anti-inflammatory effects against the range of microbes
and stimuli associated with IUI and inflammation. Gene deletion
of TAK1 impairs IKK and NF-κB activity, subsequently blocking
pro-inflammatory cytokine release and expression (78). To date,
availability of pharmacological TAK1 inhibitors is extremely lim-
ited; 5z-7-oxozeaenol (OxZnl), a resorcyclic acid lactone and selec-
tive inhibitor of TAK1 kinase, appears to be the most promising
(79) and has been shown to inhibit pro-inflammatory mediator
production in murine fibroblasts (72), primary cortical neurons
(80), dermal fibroblasts (81), and ear swelling models (72). In
an ovine model of LPS-induced chorioamnionitis, we recently
demonstrated intra-amniotic treatment with OxZnl to reduce
amniotic fluid levels of PGE2 and fetal membrane leukocyte infil-
tration (70), although intra-amniotic cytokine levels were not
altered. Whilst these studies suggest that TAK1 kinase inhibitors
might be an effective approach to prevent inflammation-induced
PTL, caution is warranted as TAK1 is also involved in MAPK
signaling which regulates cell function and signaling, including
apoptosis and differentiation (74). Further studies are required to
fully define the role of TAK1 in pregnancy and the clinical potential
of TAK1 inhibitors.

CONSIDERATIONS FOR THE CLINICAL TRANSLATION OF
CSAIDs
MODE OF DRUG DELIVERY: SIDES EFFECTS AND EFFICACY
In the context of PTB prevention, therapeutics should ideally
eliminate the microorganism from the amniotic cavity, block the
ensuing cytokine cascade that drives release of PGs and matrix
metalloproteinases (MMPs), prevent the onset of PTL, and min-
imize risk of FIRS. While prophylactic antibiotic trials have not
been overly encouraging, there have been some successes (82) and
exciting new antibiotics such as solithromycin hold great promise
(83). However, therapies that deal solely with the infection, with-
out suppressing inflammation, are unlikely to achieve maximal
benefit. The NAC clinical trial of Shahin et al. (39) demonstrated
that maternal administration of CSAIDs (following antibiotics to
treat bacterial vaginosis) could prevent PTB and improve neonatal
outcomes, although it should be noted that the concentrations of

NAC achieved in amniotic fluid and fetal blood following maternal
administration were not determined.

Given the wide range of genes controlled by NF-κB, the inhi-
bition of NF-κB activation by CSAIDs could have unwanted side
effects. Maternal administration may inhibit NF-κB-dependent
innate immune defenses, increasing susceptibility to infections
(84). Caution is also warranted regarding the possibility of non-
specific fetal toxicity. Observations that p38 MAPK null mice are
non-viable (57) highlight the need to investigate the safety and tox-
icity of p38 MAPK inhibitors during pregnancy. While there are
no published studies on the teratogenic effects of IKK inhibitors,
complete inhibition of NF-κB activation by IKKβ gene deletion
(IKKβ−/−) resulted in embryonically lethal uncontrolled apop-
tosis in the liver of mice (64). Heterozygous IKKβ+/− embryos
developed with normal livers, despite approximately 50% reduc-
tion in IKKβ activity, suggesting that modest inhibition in the
fetus may be tolerated (64). The pharmacodynamic profile of
TPCA-1 appears promising, and the lack of toxicity in vitro and
in vivo suggests that this could be a useful therapeutic approach
for the treatment of PTL. Intra-amniotic treatment with com-
petitive ATP protein kinase inhibitors TPCA-1 (IKKβ inhibitor)
and OxZnl (TAK1 inhibitor) in an ovine model of LPS-induced
chorioamnionitis showed that the CSAIDs were well tolerated by
the fetus, at least in the short-term, with no obvious changes in
birth weight or fetal liver function observed (70). This suggests
that modest reduction in the activity of upstream kinases IKKβ

and TAK1 is unlikely to result in the complete suppression of NF-
κB activity and non-specific toxicity. Clearly, such concerns are
drug- and dose-dependent, requiring extensive and longer-term
safety studies before clinical introduction.

Alternatively, it is possible to deliver anti-inflammatory agents
directly to the amniotic cavity via ultrasound guided intra-
amniotic injection. This route will likely enhance efficacy by
delivering the minimal effective dose to target tissues and min-
imizing unintended exposures and side effects. Depending on
the compound, delayed clearance from the amniotic cavity may
in fact enhance efficacy and allow single-dose therapy. Recently,
we reported that the anti-inflammatory effects of TPCA-1 and
SB239063 administered to the amniotic face in a human fetal
membrane model were primarily restricted to the fetal com-
partment, suggesting a lack of trans-membrane transfer (38).
The potential benefits of amniotic drug delivery must always be
counterbalanced by an assessment of the risks. The procedure-
associated risk of spontaneous miscarriage following second
trimester amniocentesis is low, with a recent large study finding
a non-significant 0.6% increase in miscarriage compared to con-
trols over a 15-year period (85). How this compares to the risks of a
third trimester intra-amniotic injection is not known,although the
risks at later gestations are likely to be lower than at 12–20 weeks.
Nevertheless, it would be prudent that intra-amniotic treatment
be given selectively to women in whom a significant benefit from
CSAID therapy can be expected.

IDENTIFICATION OF WOMEN AT RISK: SHORT CERVIX AND
INFLAMMATION
Intrauterine infection is often chronic and usually asymptomatic
until the presentation of PTL, at which time it is often too late to
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treat and the fetus has been irreversibly exposed (86). The early
identification of women at high risk of adverse pregnancy outcome
associated with IUI, before the presentation of clinical symptoms,
is challenging but also key for the successful prevention of PTB
and improvement of neonatal outcomes. Analysis of amniotic
fluid/cervicovaginal fluid cytokine levels or microbial status have
been explored to identify women at an elevated risk of PTB (87),
but have lacked specificity and/or sensitivity. Sonographic stud-
ies have reported that a short cervix (cervical length ≤25 mm) is
associated with intra-amniotic inflammation, and patients with
this condition are at increased risk of adverse pregnancy outcome
(88, 89). Gomez et al. (90) reported that women with a cervical
length of ≤15 mm between 22 and 30 weeks of gestation have a
higher rate of microbial invasion of the amniotic cavity (43 vs.
3.9%; p < 0.05), and were more likely to deliver spontaneously
before 35 weeks of gestation (66.7 vs. 13.5%; p < 0.01). These
studies suggest that assessing sonographic cervical length may be
a useful predictor of risk of microbial invasion of the amniotic
cavity and intra-amniotic inflammation (89).

SUMMARY AND CONCLUSION
Infection and inflammation is the leading cause of PTB, but ante-
natal antibiotic treatment has had limited success at preventing
PTB or improving neonatal outcome (30, 91). Newer macrolide
antibiotics such as solithromycin, with greater efficacy and better
trans-placental passage, may prove in time to be more effective
(83, 92). We propose that a combination of anti-inflammatory
therapy and effective antibiotics will be required to combat IUI
and reduce the associated inflammatory responses leading to PTL
and adverse fetal sequelae. Intra-amniotic delivery offers signifi-
cant advantages in terms of dose reduction, localized site of action,
and reduction in potential side effects. CSAIDs, novel compounds
that specifically target cytokine signaling pathways, have anti-
inflammatory actions in both human fetal membranes in vitro
and animal models of IUI. These compounds have the poten-
tial to be safer and more effective than less selective inhibitors
as they target key molecules involved in the pro-inflammatory
signaling cascades that prematurely trigger labor. Issues regard-
ing maternal and fetal toxicity, mode of drug delivery, off-target
side effects, and appropriate identification of women requiring
treatment remain to be addressed. Based on our current appreci-
ation of the importance of IUI and inflammation in the etiology
of PTB, the identification and treatment of pregnant women at
risk of IUI with effective cytokine signaling inhibitors holds great
promise for the prevention of PTB and improvement of neonatal
outcomes.
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