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3 Foundation for Clinical and Applied Cancer Research (FICMAC), Bogotá, Colombia, 4 Molecular Oncology and Biology
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KRAS mutations are one of the most prevalent oncogenic alterations in cancer. Until
recently, drug development targeting KRAS did not convey clinical benefits to patients.
Specific KRASG12C inhibitors, such as sotorasib and adagrasib, have been designed to
bind to the protein’s mutant structure and block KRASG12C in its GDP-bound inactive
state. Phase 1/2 trials have shown promising anti-tumor activity, especially in pretreated
non-small cell lung cancer patients. As expected, both primary and secondary resistance
to KRASG12C inhibitors invariably occurs, and molecular mechanisms have been
characterized in pre-clinical models and patients. Several mechanisms such as tyrosine
kinase receptors (RTKs) mediated feedback reactivation of ERK-dependent signaling can
result in intrinsic resistance to KRAS target therapy. Acquired resistance to KRASG12C

inhibitors include novel KRAS mutations such as Y96D/C and other RAS-MAPK effector
protein mutations. This review focuses on the intrinsic and acquired mechanisms of
resistance to KRASG12C inhibitors in KRASG12C mutant non-small cell lung cancer and the
potential clinical strategies to overcome or prevent it.

Keywords: KRASG12C, resistance mechanisms, NSCLC, target therapy, Y96D
INTRODUCTION

KRAS was the first described oncogene in human cancer (1) and one of the most frequently mutated
genes (2). It encodes a GTPase superfamily protein that mediates the intracellular signaling of
activated tyrosine kinase receptors by switching between inactive GDP-bound and active GTP-
bound states. This activation induces phosphorylation of effectors of the mitogen-activated protein
kinase (MAPK) pathway like RAF, MEK, and ERK leading to apoptosis inhibition and activation of
transcription factors that promote cancer cell survival and metastasis (3, 4). Guanine-nucleotide-
exchange factors (GEFs) catalyze the exchange of GDP for GTP, hence turning KRAS into its active
state; on the other hand, GTPase activating proteins (GAPs) take part in the GTP hydrolysis
reaction, inactivating KRAS (5). Single aminoacidic mutations at codons 12,13, and 61 are
responsible for structural changes that prevent GAPs from hydrolyzing GTP, and therefore
blocking KRAS in its GTP-bound active state (6). The hotspot transversion mutation KRASG12C

is the most frequently found in lung adenocarcinoma accounting for 13% of cases in the western
population (7, 8). Despite its high prevalence and importance in the development of cancer, efforts
to effectively target KRAS have long been futile as a consequence of micromolar GTP concentrations
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in cells (~0.5 mmol/L) combined with a picomolar affinity
(dissociation constant at ~10-10 mol/L) of KRAS for GTP (9).
Moreover, the lack of allosteric regulatory sites needed for drug
binding coined KRAS as an “undruggable” target (10). This has
been modified with the discovery in the KRASG12C mutant
protein of a pocket that resides beneath de switch II region,
adjacent to the mutant cysteine that allows the binding of small
inhibitory molecules and, as a consequence favoring the affinity
of KRAS for GDP, blocking KRASG12C in its inactive state (11).
This unique feature of the KRAS G12C mutation has led to the
development of specific KRASG12C irreversible inhibitors such us
adagrasib and sotorasib which is currently FDA approved to treat
patients with KRASG12C lung cancer.

Unfortunately, primary and acquired resistance invariably
occur. This review focuses on the intrinsic and acquired
mechanisms of resistance to KRASG12C inhibitors, mainly in
KRASG12C mutant non-small cell lung cancer, and potential
clinical strategies to overcome or prevent resistance.
KRASG12C MUTATION BIOLOGY

Particular RAS mutations may modify RAS proteins ’
biochemical behavior, including their ability to bind GTP and
GDP. Further studies continue reporting differences in GTP
binding and intrinsic or GAP-mediated GTP hydrolysis (12).
Smith et al . detected KRASG12V in the GTP-bound
conformation, which was consistent with its high transforming
potential. In addition, experiments in MCF10A cells transduced
with different KRAS mutations revealed that KRAS wild-type
(WT) and KRASG12D and KRASG13D could bind GTP with
similar affinity to control cells, which only express endogenous
KRAS, after EGF stimulation. In contrast, KRASG12C showed an
increase in GTP-binding up to 2-fold mutant compared to
control cells (13). Another study also reported that KRASG12A,
G12R, Q61H, and Q61L decreased GTP hydrolysis speed
approximately by 40- to 80-fold compared to KRAS wild-type,
the G12C mutation had a minimal impact in this respect.
Regarding this endpoint, KRASG12D, G12V, and KRASG13D

mutant proteins displayed an intermediate effect (14).
Anchorage-independent growth is the ability of transformed

cells to grow in suspension or unattached to any matrix (13) an
associated characteristic for tumor metastasis regulated by the
RAS/RAF/MAPK signaling pathway (15). Seeburg et al. reported
that except for HRAS WT and HRAS G12P, all the HRAS codon
12 mutants could grow in soft agar (16), results paralleling their
data on transforming potential of these mutant proteins.
Immortalized human bronchial epithelial cells with specific
shRNA knockdown of p53 mRNA expressing KRASG12C were
able to form colonies in soft agar compared to KRASG12D easily-
and KRAS WT-transfected cells (17), suggesting that the genetic
background could also affect the phenotypical manifestation of
mutant RAS variants.

The RAF1 serine/threonine kinase is one of the best
characterized RAS effector proteins, located directly
downstream of RAS in the MAPK pathway (14). Considering
Frontiers in Oncology | www.frontiersin.org 2
that point mutations at codons 12 and 61 of HRAS differ in their
phenotypical properties as previously reported (18), Voice et al.
hypothesized that mutant RAS proteins might activate RAF1
differentially (19) and found that KRASG12A, G12C, G13D, Q61L,
and Q61H showed 1.2- to 2.3-fold decrease in relative affinity
compared to WT KRAS and KRASG12D, G12R and G12V displayed
an even more pronounced reduction in affinity for RAF1 (4.8-,
6.2-, and 7.3-fold, respectively).

RAS proteins also activate the PI3K/AKT/mTOR pathway to
promote cell survival by activating survival factors and inhibiting
apoptotic proteins (20). Therefore, different in vitro (13) and in
vivo (18, 21) studies also assessed the activation of this pathway
by the interaction of various RAS mutated variants with PI3K
and different downstream proteins, such as AKT, 4EBP, or RPS6.
The comparison of KRASG12C and G12V with WT KRAS in a
panel of 67 NSCLC cell lines showed that these mutations
decreased AKT activation compared to WT KRAS (17).
Despite this low activation of AKT, cells expressing KRASG12C

or G12V showed the same phosphorylation levels of 70S6K and
4EBP proteins compared to WT KRAS in the absence of serum.
In contrast, the addition of serum to the media enabled
KRASG12C and G12V to strongly phosphorylate 70S6K
compared to WT KRAS (17).

RAS proteins can also interact and activate effectors that do
not belong to the MAPK and the PI3K canonical cascades. For
example, RAC, a subfamily of small GTPases of the RHO family,
can interact with RAS via the RacGEF called Tiam1. The RAS/
RAC signaling pathway controls several cellular functions by
regulating actin cytoskeleton, including cell morphology,
locomotion, and polarity (22). Another RAS downstream
effector subfamily is the RAL group of proteins involved in
membrane trafficking, proliferation, survival, and metastasis in
many types of cancer (23). In this sense, WT KRAS and
KRASG12C, but not KRASG12D, activated RALA and RALB
effector proteins (17).

Brunelli et al. characterized the metabolic profile of the isogenic
NCI-H1299 NSCLC cell line overexpressing WT KRAS or
KRASG12C, G12D, or G12V (24). Most metabolites identified were
common to all three KRAS-mutated lines (G12C, G12D, and
G12V), although these mutants harbored 74, 58, and 48 unique
metabolites, respectively, compared to WT. Moreover, the
deregulated metabolites between WT and mutant KRAS variants
were classified into biochemical groups. The two most abundant
classes for KRASG12C, G12D, and G12V were glycerophospholipids
and amino acids. KRASG12C and KRASG12D mainly affected
phosphatidylcholines (PC) and phosphatidylinositol (PI),
whereas KRASG12V influenced PI and phosphatidylserine. In
addition, the report by Brunelli et al. provided further insights
into the biology of the deregulated metabolites. KRASG12C, G12D,
and G12V variants showed an increase of metabolites related to
protein biosynthesis, glutathione, glutamate metabolism and
ammonia recycling (24). Moreover, KRASG12C, G12D, and G12V

had lower levels of glutamate, glutamine, asparagine, and proline,
amino acids interconnected in the glutamate synthase cycle, and
lower levels of NAD+, an essential coenzyme involved in many
cellular metabolic pathways.
December 2021 | Volume 11 | Article 787585
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Following on these results, the group of Pastorelli continued
studying the metabolic profile of KRASG12C, as it is the most
representative KRAS mutation in NSCLC patients. In this work,
the NCI-H1299 NSCLC cell line expressing WT or KRASG12C

and xenograft tumors generated from this cell line were analyzed
(25). They identified 26 and 23 deregulated metabolites in vitro
and in vivo, respectively, betweenWT KRAS and KRASG12C. The
enriched pathway analysis of these deregulated metabolites
showed that KRASG12C alters the same metabolic pathways
in vitro and in vivo, including pathways involved in protein
biosynthesis, ammonia recycling, and urea cycle (25). Focusing
on the deregulated metabolites whose abundance changed
significantly in vitro and in vivo between WT KRAS and
KRASG12C, 11 and 16 metabolites were significantly altered,
respectively. Moreover, in both in vitro and in vivo models,
KRASG12C, decreased glutamine and glutamate levels, two amino
acids involved in nitrogen balance maintenance, supporting the
central role of glutaminolysis and nitrogen anabolism to provide
energy for cancer cell growth and proliferation. This indicates
that cells expressing the KRASG12C variant use glutaminolysis as
a source of energy (25). In addition, KRASG12C, mutation
induced a significant increase in the levels of carnitine, acetyl-
carnitine, and butyryl-carnitine, which are involved in the
oxidation of fatty acids. This increase could be associated with
the mitochondrial fatty acid beta-oxidation to respond to the
increasing energy demand triggered by KRASG12C, to fuel cell or
tumor growth and proliferation (25).
KRASG12C INHIBITORS

The development of specific KRASG12C inhibitors started with
ARS-1620, a small covalent specific inhibitor, that showed
in vitro and in vivo activity in KRASG12C mutant models (26).
This was followed by the development of two KRASG12C

inhibitors, sotorasib (AMG 510) and adagrasib (MRTX849),
supported by robust preclinical evidence and reaching clinical
development in phase I/II trials (27, 28). Both compounds have a
common mechanism of action by inhibiting KRAS in its GDP-
bound state, however, the binding properties of both inhibitors
differ slightly. The KRASG12C cryptic pocket is formed by
residues H95/Y96/Q99 is exploited by the hydrogen mediated
bonding of the hydroxyl group of Y96 with the pyrimidine ring
of adagrasib (29) and by the water bridges between Y96 and a
carboxyl group in sotorasib (30).

The phase I trial of sotorasib CodeBreak100 included
pretreated 125 patients with metastatic KRASG12C mutant solid
tumors; 45.7% had non-small cell lung cancer (NSCLC) (31).
The objective response was 32.2% in patients with lung cancer,
and the disease control rate was 88.1%. No dose-limiting
toxicities or treatment-related deaths were observed at the
established phase II dose of 960mg (31). These results were
recently confirmed by the phase II trial, which specifically
included 122 patients with NSCLC. The objective response rate
was 37.1%, with a median duration of response of 11 months and
an 80.6% disease control rate. Median progression-free survival
Frontiers in Oncology | www.frontiersin.org 3
was 6.8 months, and median overall survival was 12.5 months
(32). In the explorative analysis, assessing the association
between response to sotorasib and the presence of previously
described co-occurring mutations (STK11, KEAP1, and TP53),
which define three subgroups of KRAS mutant cancers with
different biology and response to treatment (33), sotorasib
showed efficacy in all subgroups, with a lower percentage of
response in patients with KEAP1 mutated tumors, although this
was not statistically significant. Also, similar response rates were
observed in PDL-1 positive or negative (score <1%) patients as
well as in tumors with high (≥10 mutations per megabase) or low
(<10 mutations per megabase) mutational burden. These
findings led to the FDA’s accelerated approval in May 2021 of
sotorasib in previously treated patients with mutant KRASG12C
NSCLC. Efficacy of sotorasib versus docetaxel in previously
treated patients KRASG12C mutant NSCLC is currently being
tested on a phase III clinical trial (NCT04303780). Moreover,
sotorasib as first-line treatment is under investigation on a phase
II trial (NCT04933695).

In a similar manner, data from the phase I/II KRYSTAL-I
clinical trial, that included 79 previously treated patients with
advanced stage KRASG12C mutant NSCLC treated with adagrasib,
showed an objective response rate of 45% and a 96% diseases
control rate (34). This trial is still ongoing (NCT03785249).

Interestingly, response rates for KRASG12C mutant colorectal
cancer cohorts included in both trials were considerably lower,
with 7% and 17% for sotorasib and adagrasib, respectively (31,
34). This primary resistance is driven by upstream activation of
EGFR, which can be overcome by combining KRASG12C

inhibitors with anti EGFR monoclonal antibodies, like
sotorasib and cetuximab, respectively (35).

Given the clinical evidence of the efficacy of KRASG12C

inhibitors in lung cancer, a considerable proportion of patients
do not experience a tumor response or have primary progression,
for which treatment intensification may be required. Also,
compared to other targeted therapies like EGFR, ALK, and
ROS1, patients with KRAS mutant tumors that initially achieve
a partial response have a shorter duration of responses, driven by
acquired resistance mechanisms (36).
RESISTANCE TO KRASG12C INHIBITORS

Despite the encouraging clinical results, about half of the patients
included in clinical trials with sotorasib and adagrasib do not
experience significant tumor shrinkage with specific KRASG12C

inhibitors. Moreover, nearly 10% of patients will experience
primary disease progression. On the other hand, as with other
target therapies, all patients who initially experience an objective
response or stable disease will eventually progress with KRASG12C

inhibitors, given the emergence of resistance mechanisms in cancer
cells. In general, biologic mechanisms of resistance can be
categorized into two main groups: on-target resistance, driven by
mutations or amplification in KRAS that halters drug binding, and
off-target or bypass mechanisms of resistance, when KRAS is
inhibited, but another effector commands oncogenic signaling. In
December 2021 | Volume 11 | Article 787585
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addition, other resistance mechanisms imply histologic
transformation and other events affecting epigenetic modifications
and apoptosis. A summary of biologic resistance mechanisms to
KRASG12C inhibitors is shown in Figure 1.

Intrinsic or Primary Resistance
Mechanisms
A lack of response to targeted therapies can be in part due to
intrinsic resistance in cancer cells. One potential cause of the lack
of efficacy of KRASG12C inhibitors is that not all KRAS mutant
cells depend on KRAS activation to maintain their viability. In an
attempt to identify a gene expression signature that correlates
with the KRAS dependency KRAS mutant cells, Singh et al.
found a subgroup of lung cancer-derived cellular lines that
maintain their viability despite ablation of the KRAS mutant
protein. Moreover, activation of the two main downstream
effectors (ERK and AKT) was not suppressed after KRAS
knockdown (37). For example, alternative PIK3-AKT pathway
activation can be due to oncogenic mutations in AKT1, AKT2,
PIK3CA, or PTEN (20, 38), therefore maintaining activated
Frontiers in Oncology | www.frontiersin.org 4
pathway singling to cell proliferation and survival,
independently of the status of KRAS. Lessons learned from
efforts to inhibit the RAS-RAF-MEK pathway in other tumor
types have revealed that a major mechanism of resistance is the
adaptive feedback resistance, in which the loss of downstream
signaling by the blocked mutant target, leads to reactivation of
receptor tyrosine kinase (RTK) mediated signaling through wild
type RAS and RAF (39). This adaptive feedback resistance was
evaluated in KRASG12C inhibited cell lines using ARS-1610 and
AMG-510, finding a rapid and consistent reactivation of
signaling by a rebound activation of downstream ERK and
RSK in addition to increase levels of active GTP-bound NRAS
and HRAS wild type. Also, increased EGFR, HER2, FGFR, and c-
MET was observed (39), suggesting that RTKs upstream
activation is one of the critical resistance mechanisms
KRASG12C inhibitors. In another study addressing the
heterogeneity of initial response in KRASG12C mutant lung
cancer cells, Xue and colleagues described that tumor cells
initially adopt a quiescent state, in which some cells will die.
Still, other cells will rapidly evade inhibition by the synthesis of
FIGURE 1 | Summery primary and acquired resistance mechanisms to KRASG12C inhibitors.
December 2021 | Volume 11 | Article 787585

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Blaquier et al. Resistance to KRASG12C in NSCLC
new KRASG12C that is quickly converted to its active state due to
upstream stimuli mediated by epithelial growth factor receptor
(EGFR) and Aurora Kinase A (AURKA) (40). Hence, primary
resistance relies on that as a canonical and fundamental pathway
for cell survival, RAS-RAF-ERK has multiple independent
mechanisms that can maintain signaling in its active state
while being selectively targeted.

Acquired Resistance Mechanisms
As stated before, eventually all patients treated with target
therapies will eventually develop progressive disease. In some
cases, progression will occur after an initial response as a
consequence of acquired resistance mechanisms triggered by
the selective pressure of target therapies (41, 42).

On-Target Mechanisms
The main mechanism of on-target resistance to kinase inhibitors
is the acquisition of mutations in key regions within the driver
protein that impedes adequate drug binding and target
inhibition. In vitro modeling of on-target resistance,
mechanisms can be performed using N-ethyl-N-nitrosourea
(ENU) mutagenesis screens, which can predict a broad
spectrum of resistance that can eventually occur in patients. In
a preclinical study using this technique by exposing KRASG12C

mutant Ba/F3 cells to sotorasib and adagrasib, 142 acquired
resistant clones were identified, of which 124 (87%) harbored
secondary KRAS mutations (Y96D, A59T, A59S, R68M, R68M,
M721, V8E, G13D, Q61L, Q99L, and H358). The Y96D
mutation, as previously stated, occurs at a relevant position for
sotorasib and adagrasib binding, leading to resistance to high
Frontiers in Oncology | www.frontiersin.org 5
concentrations (>1000nM) of both specific inhibitors (43). These
mutations were also found in patients, as recently reported by
Awad and colleagues, by performing a translational biomarker
study of a patient treated with adagrasib in the KRYSTAL-1
study who had acquired resistance (44). Acquired resistance was
defined as the disease progression after 12 weeks of stable disease
or after partial or complete response. This study used next-
generation sequencing (NGS) on tissue samples or circulating
tumor DNA (ctDNA). A total of 38 patients were included (27
NSCLC), from whom resistance mechanisms were identify in 17
(45%), 10 (26%) corresponding to patients with NSCLC. In four
patients with NSCLC, on-target mechanisms were identified,
including acquired secondary KRAS mutations associated with
the switch II pocket to which KRAS inhibitors bind, Y96C, R86S,
and H95D mutations. In addition, acquired activating KRAS
mutations other than G12C, including G12D, G12V, and G12W
occurring in trans, were found, alone or concomitantly with
acquired mutations in the switch II pocket. This complex
resistance reveals that some clones may acquire resistance by
impeding drug binding in KRASG12C cells, while others acquire
mutations that are not targetable by specific G12C inhibitors. In
addition, target amplification in the KRASG12C allele has been
identified as an independent resistance mechanism, as previously
observed with crizotinib in ALK-rearranged lung cancer (45). On
target, mechanisms are summarized in Table 1. The same
research group performed a preclinical analysis to better
characterize the role of the secondary KRAS mutations at the
Switch II region in NSCLC patients; double-mutant alleles
including Y96C, H95D, and R68S Ba/F3 cells were tested with
adagrasib and sotorasib (44).. Tanaka and colleagues also
TABLE 1 | Acquired resistance mechanisms to KRASG12C inhibitors in the preclinical setting and clinical trial patients.

Ref. KRASG12C

inhibitor
Case

Number
Acquired secondary
KRAS mutations

Acquired activating
KRAS Mutations

KRASG12C

Amplification
Acquired

TRK/MAPK/PI3K
Squamous Cell
Transformation

Preclinical setting
(43) adagrasib - Y96D

Q99L
R68S
A59S

(43) sotorasib - Y96D
R68M
A59T
A59S

(46) sotorasib - MET amplification
Clinical trial patients

(44) adagrasib 1 Y96C
3 H95D R68S G12V G12W BRAF V600E
7 Yes
9 MET amplification
10 MET amplification
11 Yes
12 Yes
13 MAP2K1 E102_103del
15 RET M918T
16 PIK3CA H1047R

(29) adagrasib – Y96D G12V G13D NRAS Q61L NRAS Q61R NRAS
Q61K BRAF V600E MAP2K1 Q56P MAP2K1

E102_104del
December 2021 | Volume 11
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described multiple co-occurring acquired resistance mechanisms
in a patient treated with adagrasib using cell-free DNA next-
generation sequencing (NGS including two KRAS activating
mutations (G12D and G12D) in trans and a Y96D mutation
affecting the cryptic Switch II pocket (29). As stated before, the
residue Y96 is critical in forming hydrogen bonds with sotorasib
and adagrasib; the Y96D mutation disrupts the bonds between
adagrasib and sotorasib ARS-1620. Double mutant KRASG12C/
Y96D Ba/F cells are resistant to all three KRASG12C inhibitors (29),
nevertheless other mutations at the cryptic pocket such as R68S
and H95D, that confer resistance to adagrasib remain sensitive to
sotorasib (44). Hence, these findings could support the use of
sotorasib in certain clinical situations were adagrasib resistance
mutations retina sensitivity to sotorasib. However, clinical
evidence of activity in this situation is needed. On-target
mechanisms include novel acquired mutations in key residues
including Y96, H95, and R68 which directly affect the switch II
region, impeding KRASG12C inhibitors to bind allosterically: the
acquisition of activating mutations different to KRASG12C

occurring in the wild type KRAS allele (in trans) and
KRASG12C amplification. Strategies to overcome these
resistances mechanisms will be further discussed.

Off-Target Mechanisms
Resistance mechanisms due to biological alterations independent
of KRASG12C inhibition have also been described and
characterized. As previously mentioned, GTP-bound KRAS
activates two main canonical pathways, BRAF-MEK-ERK and
PI3K-AKT-mTOR (3). As seen in EGRF mutant NSCLC, off-
target mechanisms such as MET amplification confer resistance
to tyrosine kinase inhibitors (TKIs) by activating the HGF/MET
pathway that leads to AKT and ERK activation bypassing RAS
(47). This mechanism was successfully targeted in EGFR-mutant
NSCLC by combining the EGFR inhibitor osimertinib and a
MET inhibitor savolitinib (48). In the preclinical setting, Suzuki
et al. exposed mutant KRASG12C cells to sotorsaib finding MET
amplifications in resistant cells. To further confirm this as the
resistance mechanisms, they demonstrated thar after MET
knockdown using siRNA, cells recovered sensitivity to
sotorasib (46). Moreover, they found that MET amplified cells
had higher levels of GTP-bound (active) RAS, mainly in other
isoforms such as NRAS, suggesting thatMET amplification could
confer resistance by the reactivation of RAS-BRAF-MEK-ERK
pathway by direct activation of other RAS isoforms. Similar to
the findings in EGFR resistant NSCLC, MET amplification was
found in 2 patients (7%) at the time of progression with
adagrasib (44). Similar to MET amplification, RET kinase
domain activation leads to the oncogenic signaling of BRAF-
MEK-ERK, PI3K-AKT-mTOR and JNKs pathways (49),
favoring cell survival and cancer development. Rearrangements
in RET are found in 1%-2% of all NSCLC (50); moreover, RET
point mutations are not frequently found in lung cancer but play
a key role in hereditary neuroendocrine syndromes such as
MEN2B (49). In the same study by Awad et al., a CCDC6-RET
fusion was detected in one patient, and a RET M918T was found
in another patient; interestingly M918T is highly associated with
MEN2B and is found in about 50% of sporadic medullary
Frontiers in Oncology | www.frontiersin.org 6
thyroid carcinomas (51, 52). Despite these findings, RET
mutations in lung cancer are extremely rare, but RET fusions
have also been previously described to emerge as a bypass
resistance mechanism in EGFR mutant NSCLC. In addition,
other fusions have been found at the time of resistance to
adagrasib like EML4-ALK and FGFR3−TACC3 which are
known to translate in oncogenic fusion proteins. Several
fusions involving MAPK pathway effectors have also been
described: AKAP9−BRAF, NRF1−BRAF, RAF1−CCDC176,
RAF1−TRAK1.

The RAS family genes encode four proteins (KRAS4A,
KRAS4B, HRAS, and NRAS), being KRAS the most frequently
mutated isoform in NSCLC (20-40%). Mutations in NRAS are
rare in this tumor type (3, 53). However, three different
activating NRAS mutations (NRAS Q61L, NRAS Q61R, NRAS
Q61K) were described in the same patient (29), suggesting the
polyclonal activation of other RAS isoforms could play a key role
in the acquisition of resistance to KRASG12C inhibitors.

In addition to parallel bypass activation, other genomic
alterations in downstream effectors of KRAS, like point
mutations and deletions in MAPK pathway effectors, confer
resistance to KRASG12C inhibitors MAP2K1 mutations
(MAP2K1 K57N, MAP2K1 Q56P and two MAP2K1
E102_103del), BRAF V600E driver mutation. The BRAF V600E
mutation confers monomeric activation and signaling and is
found in about 2-4% of NSCLC and can be targeted with
dabrafenib (BRAF inhibitor) and trametinib (MEK inhibitor)
(54). Moreover, activating mutations in the PIK3-AKT-MTOR
pathway like PIK3CA H1047R, PIK3CA H1047R were found,
confirming bypass activation of oncogenic signaling. Other
mutations activating the same pathway were found in
colorectal cancer (PIK3R1 S361fs, PTEN N48K, and
PTEN G209V).

Finally, as seen with other TKIs, histologic transformation
also occurs in KRASG12C mutant lung adenocarcinoma, given the
squamous cell carcinoma transformation report as a resistance
mechanism to adagrasib (44, 55).
THERAPEUTIC STRATEGIES FOR
KRASG12C RESISTANCE

The complex and diverse resistance mechanisms to KRASG12C

inhibitors pose a challenge to design clinical strategies to
overcome or prevent resistance. A main mechanism of primary
resistance is feedback reactivation mediated by multiple RTKs,
leading to preclinical research aiming to combine the inhibition
of KRASG12C and other RTKs such as EGFR, FGFR, and MET
(56). In this setting the combination of sotorasib and MET
inhibitors such as crizotinib and capmatinib has shown to
overcome resistance to KRASG12C inhibitors in vitro in cancer
cells with MET amplification (46). One of the main focuses of
current development is targeting transduction molecules situated
downstream from RTKs such as SHP2 and SOS1 which after
phosphorylation favor de GTP-bound state thus activating the
ERK pathway (57). Consequently, targeting SHP2 and SOS1 can
synergize with KRASG12C inhibitors given in combination.
December 2021 | Volume 11 | Article 787585
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Preclinical research showed that the combination of a KRASG12C

inhibition (ARS-1620) with a SHP2 inhibitor (SHP099)
conveyed a more profound suppression of KRAS-GTP and
total RAS-GTP in vitro and enhance tumor regression in
xenograft models compared to ARS-1620 and SHP099 alone
(39). In the same manner the combination of sotorasib and BI-
3406, a SOS1 inhibitor, resulted in diminished activity of the
ERK pathway in KRASG12C mutant cells (46). Multiple clinical
trials are ongoing to test the efficacy of the combination of
KRASG12C and SHP2 inhibitors including: the phase 1/2
KRYSTAL 2 trial evaluating the combination of MRTX849 and
TNO155 in patients with solid tumor with KRASG12C mutation
(NCT04330664) and a phase Ib/II evaluating JDQ443
(KRASG12C inhibitor) and TNO155 (NCT04699188). Other
strategies to overcome primary resistance are being evaluated
in preclinical models including combination of KRASG12C

inhibitors with: PI3K/AKT inhibitors, chemotherapy, CDK4/6
inhibitors targeting alterative pathways, cell cycle and DNA
damage (56). RM-108 is a specific KRASG12C inhibitor which
binds to a chaperone protein forming a “tri-complex” that
prevents the association to the downstream effector proteins
(58). This has shown to be active in KRASG12C/Y96D resistant BA/
F3 models (29). These strategies represent multiple opportunities
to overcome primary and acquired resistance, which need
validation in clinical trials.

In addition to the efficacy of single targeted therapies and
combinations, cell death induced by KRASG12C inhibitors induce
a pro-inflammatory microenvironment that set the bases for the
observed synergism between KRASG12C and anti-PD1 immune
checkpoint inhibitors in murine models (27, 59); this combination
strategy is being evaluated in the multi-arm CodeBreak 101 trial
(NCT04185883) with an estimated enrollment of 1273 participants.
This trial includes both an experimental arm of sotorasib plus
pembrolizumab in dose exploration and dose expansion cohorts
and a sotorasib plus atezolizumab cohort. Other arms in this trial
include the combination of sotorasib plus: afatinib, palbociclib,
chemotherapy, everolimus, among others. In a similar manner the
phase 2 KRYSTAL-7 trial is designed to include 250 patients with
treatment naïve advanced KRASG12C mutant NSCLC to evaluate
the clinical activity of adagrasib in combination with
pembrolizumab in (NCT04613596).
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CONCLUSIONS

Given the recent clinical approval of specific KRASG12C

inhibitors and the ongoing development of other strategies to
target other KRAS mutations, understanding the biological
mechanisms that confer primary and acquired resistance is
necessary to improve patients’ clinical outcomes to the
response rates and progression free survival.

Resistance to KRASG12C is still not fully understood. However
initial reports show that these mechanisms are complex,
heterogeneous, and can emerge concomitantly during
treatment. In contrast with other targets like EGFR-mutant
NSCLC in which a single the T790M mutation is responsible
for approximately half of the progressions after first- or second-
line specific inhibitors (60), progressions after treatment with
KRASG12C inhibitors are caused by both single and combined
mechanisms, including: on-target mutations affecting the
docking site of this inhibitors; other activating KRAS
mutations; activation of the canonical pathways by mutations
or activation of upstream and downstream effectors and also
activation of non-mutant RAS isoforms. These early reports may
be selecting patients with tumors that have more complex
biology; hence there is a need to further explore resistance
mechanisms in patients that experience a more extended
benefit with KRASG12C inhibitors. In the clinical setting, liquid
biopsy NGS has proven to be a useful tool in identifying the
heterogeneity of resistance mechanisms occurring in a single
patient (61). The identification and understanding of acquired
resistance mutations to test and develop new therapies to
target them.
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