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C1 Esterase Inhibition: Targeting Multiple Systems in COVID-19

T. M. Ayodele Adesanya1 & Courtney M. Campbell2 & Lijun Cheng3
& Princess U. Ogbogu4

& Rami Kahwash2

Received: 16 July 2020 /Accepted: 13 January 2021
# Springer Science+Business Media, LLC, part of Springer Nature 2021

To the Editor:
The COVID-19 pandemic is a worldwide health and socio-

economic burden requiring optimization of disease preven-
tion, treatment, and management strategies. Here, this review
of physiologic rationales, basic science and translational data,
and preliminary clinical results suggests the involvement of
C1 esterase inhibitor-related processes in COVID-19 pathol-
ogy and specifies opportunities for further investigation.

C1 esterase inhibition regulates the complement, fibrino-
lytic, and contact systems (Fig. 1a). These cascades stimulate
a range of immunologic and hematologic processes including
inflammation, coagulation, and fibrinolysis, all of which are
activated in COVID-19 [1–3]. In the complement system, C1
esterase inhibitor (C1-INH) protein binds to and inactivates
C1r and C1s of the classical pathway, C3b of the alternative
pathway, and mannose-binding lectin-associated serine prote-
ases (MASPs) of the lectin pathway [4, 5]. This inhibition
reduces complement-driven inflammation and coagulation.
In the fibrinolytic and contact systems, C1-INH inhibits com-
ponents of the coagulation cascade, plasmin, and kallikrein to
affect both coagulation and fibrinolysis. Additionally, brady-
kinin, downstream of kallikrein, is an integral mediator of the
contact system that increases vascular permeability.

Numerous medications involved in C1-INH pathways are
clinically available for the treatment of hereditary angioedema
(HAE), which is caused by deficient or dysfunctional C1-INH

(Fig. 1b) [6, 7]. COVID-19 and HAE share clinical overlap
with symptoms such as shortness of breath, diarrhea, abdom-
inal pain, and facial swelling [8]. In HAE, increased vascular
permeability results in angioedema that can manifest as facial
and extremity swelling or mucosal edema of the respiratory
and gastrointestinal tracts. It has been hypothesized that the
dry cough, ground-glass lung opacities, and sensitivity to fluid
overload in COVID-19 may be related to pulmonary angio-
edema [9–11]. Mechanistically, COVID-19 and HAE share
innate immune activation that results in inflammation, endo-
thelial dysfunction, and fibrinolysis. In the terminal comple-
ment cascade, dysregulation can result in thrombotic micro-
angiopathy characterized by thrombosis and organ injury, a
common finding in COVID-19 [1]. The terminal complement
cascade can be initiated by the classical pathway via the C1
complex, the alternative pathway, and the lectin pathway.

Early use of C1 esterase inhibition for the treatment of
COVID-19 has been promising. In Switzerland, administra-
tion of recombinant C1-INH reduced fever and inflammatory
markers in patients with COVID-19, who had not improved
despite hydroxychloroquine and antiviral therapies [12]. In the
Netherlands, inhibition of the contact system via icatibant, a
bradykinin receptor antagonist, was associated with decreased
oxygen requirements in patients with COVID-19 [13].
Applicability of these results is limited by their observational
nature and the small number and male predominance of en-
rolled patients. Expanded trials with recombinant C1-INH,
icatibant, and lanadelumab—a kallikrein inhibitor—are cur-
rently under investigation and will assess clinical outcomes in
larger, randomized studies [14–16]. Although preliminary re-
sults are promising, C1 esterase inhibition may not be suffi-
cient to significantly modulate all potential downstream effec-
tors within the complement cascade, which can have multiple
means of activation. Clinical trials of these downstream tar-
gets such as C3, C5, and C5a are currently under investigation
[17]. Randomized controlled clinical trials are needed.

In vitro and bioinformatic studies suggest that SARS-CoV
can interact with C1-INH and dysregulate its anti-
inflammatory cellular processes. High-throughput yeast two-
hybrid screening demonstrates interactions between human
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C1-INH and seven different SARS-CoV proteins [18, 19].
C1-INH is predicted to interact directly with ACE (61% sim-
ilar to ACE2) and TMPRSS1 (50% similar to TMPRSS2)

[20]. Interestingly, bradykinin, a downstream effector of the
contact system, is a substrate of the angiotensin-converting
enzyme 2 (ACE2) protein that is required along with

Fig. 1 C1 esterase inhibitor-related cellular processes and therapeutic
targets. a C1 esterase inhibition physiologically regulates the comple-
ment, fibrinolytic, and contact systems, all of which may be involved in
COVID-19 pathology. SARS-CoV-2 could dysregulate these systems by
direct interaction with C1 esterase inhibitor or ACE2 and TMPRSS2. b

Multiple medications target C1 esterase inhibitor-related pathways for
management of hereditary angioedema, which is caused by C1 esterase
inhibitor deficiency or dysfunction. Dash: hypothesized mechanism;
HAE, hereditary angioedema; IV, intravenous; SC, subcutaneous; PO,
oral
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transmembrane protease, serine 2 (TMPRSS2) for SARS-
CoV-2 cell entry [21]. In addition, C1-INH was identified
amongst ten serum proteins that most accurately predict pro-
gression to respiratory distress in COVID-19 and amongst the
six proteins predicted to interact with SARS-CoV-2 that are
most broadly connected to expression of other genes [22, 23].
A genetic association study identified a SERPING1 single-
nucleotide polymorphism (SNP) as one of seven
complement-related SNPs most associated with adverse clin-
ical outcomes in COVID-19 infection [24].

C1-INH may be suppressed in SARS-CoV infection, lead-
ing to unchecked inflammation. Antiviral interferon cytokines
can induce C1-INH expression, and preclinical studies have
shown that C1 esterase inhibition reduces inflammation [25,
26]. However, in vitro SARS-CoV infection increases
interferon-stimulated gene expression—with the notable ex-
ceptions of ACE2 and SERPING1, the gene that encodes the
serine protease inhibitor: C1-INH [27]. As a whole, the
SERPING1-related gene networks are amongst the most up-
regulated in SARS-CoV infection [28]. In two genomic anal-
yses of patients with COVID-19 infection, SERPING1 expres-
sion in bronchoalveolar lavage fluid (BALF) was decreased
[29–31]. These BALF decreases are coupled with increases in
SERPING1 blood expression in COVID-19 [23, 30, 32].
Another study showed that SERPING1 BALF expression
was generally decreased in patients with non-SARS-CoV-2
community-acquired pneumonias, suggesting a broader role
for C1-INH involvement in pneumonia [31]. Decreases in
SERPING1 BALF expression are likely cell-specific process-
es, secondary to secretion from or consumption in resident
lung cells. Serologic increases in SERPING1 expression likely
represent a physiologic response rather than a pathologic
propagation.

Administration of medications that target C1-INH path-
ways may supplement endogenous anti-inflammatory and an-
tiviral efforts to improve COVID-19 disease courses.
Medication repurposing utilizes the benefits of already-
established pharmaceutical production protocols and aware-
ness of medication pharmacokinetics and pharmacodynamics.
It will be particularly important to carefully assess the risk-
benefit profiles of such strategies in COVID-19.
Lanadelumab, a kallikrein inhibitor, is associated with in-
creased risk of upper respiratory tract infections in clinical
trials [33]. There are conflicting preclinical reports about in-
creased thrombogenesis with C1 esterase inhibitors [34].

Thrombosis also occurs in several complementopathies in-
cluding paroxysmal nocturnal hemoglobinuria, atypical he-
molytic uremic syndrome, and complement hyperactivation,
angiopathic thrombosis, and protein-losing enteropathy
(CHAPLE) syndrome [35]. All of these diseases respond to
complement inhibition. These clinical observations and the
association of SNPs in complementopathy-related genes with
adverse COVID-19 outcomes may reflect complement-driven

hypercoagulability and endothelial dysfunction as shared pro-
cesses in COVID-19 and complement disorders [24]. Trials of
various complement inhibition strategies in COVID-19 are
ongoing. Targeting these pathways at a proximal step via
C1-INH may be a promising approach.

Involvement of C1-INH-related pathways in COVID-19
pathology collectively appears rooted in basic science ratio-
nale, supporting translational data, and promising preliminary
clinical results. The results from the aforementioned trials
should prompt collaborative research into C1-INH-related
mechanisms of disease etiology and therapy. Specifically, in-
vestigations could explore the biochemical confirmation of
host and host-viral protein interactions, analysis of host genet-
ics and protein expression to determine predictors of morbid-
ity, clinical review of patients diagnosed with both COVID-19
and complement disorders, and expansion of randomized con-
trolled studies. While social distancing, personal protective
equipment, disease screening, and vaccine development are
cornerstones of COVID-19 prevention, studies of therapeutic
intervention should be concomitantly advanced. Such efforts
will be critical to efficiently and effectively reduce the health
and socioeconomic burdens of the COVID-19 pandemic.
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