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Abstract Large epidemics such as the recent Ebola crisis in West Africa occur
when local efforts to contain outbreaks fail to overcome the probabilistic onward
transmission to new locations. As a result, there may be large differences in total epi-
demic size from similar initial conditions. This work seeks to determine the extent
to which the effects of behavior changes and metapopulation coupling on epidemic
size can be characterized. While mathematical models have been developed to study
local containment by social distancing, intervention and other behavior changes,
their connection to larger-scale transmission is relatively underdeveloped. We make
use of the assumption that behavior changes limit local transmission before suscep-
tible depletion to develop a time-varying birth-death process capturing the dynamic
decrease of the transmission rate associated with behavior changes. We derive an
expression for the mean outbreak size of this model and show that the distribution
of outbreak sizes is approximately geometric. This allows a probabilistic extension
whereby infected individuals may initiate new outbreaks. From this model we char-
acterize the overall epidemic size as a function of the behavior change rate and the
probability that an infected individual starts a new outbreak. We find good agreement
between the analytical results and stochastic simulations leading to novel findings
including critical learning rates that demarcate large and small epidemic sizes.

Keywords Ebola - Epidemic model - Behavior change - Transmission rate -
Birth-death process + Metapopulation model

1 Introduction

Many questions arise during outbreaks of emerging infectious diseases. How trans-
missible is the new pathogen within the initially exposed population? How fast will it
spread to other populations? What must be done to achieve containment? How large
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will the final epidemic be? These questions and others are amenable to theoretical
analysis using dynamic models [12]. Most models of disease transmission, however,
assume time constant parameters and do not account for changing human behavior
or other interventions. The 2014-2015 West Africa Ebola epidemic illustrates this
point. With an Ry around 1.7-3.0 [4, 6, 17] and a population of around 20 million
persons [16] in the three primarily affected countries, the final size of an outbreak
contained by susceptible depletion [13] would be from 11.7 to 18.8 million persons.
In contrast, the actual epidemic size of ~30,000 persons is much less than 1% of
this size.

Because standard models admit containment only after the outbreak becomes
self-limiting through depletion of susceptible persons, they are inappropriate for
making predictions about apparent infections, where self-protective behaviors may
be quickly adopted, and in modern societies, where global financial, medical, and
logistic resources are rapidly mobilized to contain emerging pathogens like SARS,
MERS, and Ebola. But, if behaviors change and resources are quickly mobilized,
then why have outbreaks of these emerging pathogens persisted as long as they
have? One possible explanation is that behavior change and intervention are local
events that occur only around transmission clusters and are not completely efficient,
so that while behavior change and intervention act to reduce transmission where
it is high, a small fraction of infections escape isolation to seed new outbreaks in
spatially or socially adjacent populations. According to this idea, the persistence of
the pathogen in the population—and the propensity to transition from outbreak to
epidemic proportions—is based on a balance between the ability of the pathogen to
spark new outbreaks and the capacity of behavior change and intervention to contain
these outbreaks before further spread occurs.

Our motivation for this idea comes from the 2014-2015 West Africa Ebola epi-
demic. For instance, spread among counties in Liberia seems to be consistent with
this picture (Fig.1). Here we see that the epidemic was maintained by a series of
outbreaks, each of which recapitulates a common pattern of explosive transmission,
followed by a decline in the rate of transmission and eventual containment. Because
the transmission process in each county occurs almost independently of the other
counties (coupling is primarily important for the initial spark and possibly subsequent
reinfections), a single compartmental model cannot accurately represent the asso-
ciated dynamics. Instead, what is required is a model of coupled epidemics. In the
following sections we develop a simple, conceptual model of this process. We imag-
ine an epidemic starting with an outbreak originating at a single location. In contrast
to most models, we assume that this outbreak is quickly contained by reductions
in transmission. The stochastic nature of transmission when only a small number
of persons are infected gives rise to a probability distribution in the outbreak size.
Although the outbreak is quickly contained, there is a small chance that the infection
is spread to an adjacent population before complete containment is achieved. If this
occurs, then the process is repeated until finally no further outbreaks occur. It is this
outbreak-of-outbreaks that we call an epidemic. To model this two-scale process,
we first propose a simple model for the stochastic dynamics of an outbreak subject
to behavior change, for which we obtain the mean outbreak size, denoted M. M is
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Fig. 1 In the 2014-2015 West Africa Ebola epidemic, the virus spread throughout the adminis-
trative units of Liberia during weeks 20 through 40 despite the fact that nation-wide containment
measures, including border closure, were put in place beginning in week 30 and the World Health
Organization declared the Ebola epidemic to be a Public Health Emergency of International Con-
cern one week later. Here, the cumulative number of cases in each administrative unit is plotted
against epidemiological week. These nearly parallel epidemic curves suggest that the same process
of outbreak and control was replicated in one county after the next with local interventions and
behavior change realized some finite time after cases began accumulating. For instance, approxi-
mately the same take-off rate was exhibited by Montserrado as by Grand Cape Mount, despite the
fact that their first cases were separated by twelve weeks. Data from the World Health Organization
situation reports

important for three reasons. First, it enables calculation of the chance that a secondary
outbreak is caused, which may be iterated until no further outbreaks result. Guided
by numerical experiments, we propose to approximate the probability distribution of
the number of outbreaks by a geometric distribution. The second role played by the
mean outbreak size is to parameterize the geometric distribution of outbreak number.
Finally, by summing a random number of outbreaks with the mean size M, we obtain
an approximation for the epidemic size, i.e., the size of all outbreaks added together.
The accuracy of this approximation is studied through comparison with simulations.

Models that explicitly take account of within and between household transmission
have yielded important understanding of the role of host social structure on epidemic
development. Part of their success lies in the relatively simple task of enumerating
all possible infection statuses of individuals in small households and of assuming
a constant hazard of transmission to uninfected cohabitors [2]. In contrast, when
attempting to describe connections between local outbreaks (involving population
sizes much bigger than households) and larger-scale epidemics against the backdrop
of reduced transmission over time, tracking the local outbreak sizes can be chal-
lenging. Previous modeling studies of behavior change to limit transmission have
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generally assumed that transmission dynamics may additionally be slowed by sus-
ceptible depletion, e.g., [3, 5, 15]. By instead assuming that behavior changes act
before susceptible depletion, birth-death branching process techniques can be uti-
lized. As well as lending analytical tractability, these models likely capture the rapid
social distancing and learned risk-averse behavior associated with deadly diseases
such as Ebola. In the recent West African outbreak, outbreak sizes were considerably
smaller than population sizes (Fig. 1).

2 Final Size of a Single Outbreak with Behavior Change

We assume that local outbreaks are contained by behavior changes over time that
act to reduce transmission (rather than the standard assumption of susceptible deple-
tion). We employ a simple time-varying function for the transmission rate, Boe~".
Parameter S is the intrinsic transmission rate operating in the absence of behav-
ior change, and ¢ is the rate of decay in the transmission rate where large values
of ¢ imply that effective behaviors such as social distancing are adopted rapidly.
Because the removal rate p is assumed constant then local transmission dynamics
are described by

a1 Boe 1 — ul R _ (1)
— = Poe — ul; — =ul.
ar ~ " " ar "
This is a generalized continuous-time birth-death process with time-varying birth
rate, as discussed by Kendall [10]. Following Kendall, the mean final size, R(00), is
given by

M=1+ /OOO e "B (1)dt 2)
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So consequently, we are seeking to solve
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where y is the lower incomplete gamma function. This expression yields some
insights into how underlying processes govern outbreak size. Particularly, the left
panel of Fig. 2 shows the expected outbreak size to increase greater than exponen-
tially as By increases. Similarly, the outbreak size initially drops dramatically with
learning rate (between O and ~0.05 in the right panel of Fig. 2), diminishing as
the realized transmission rate becomes small (¢ > 0.05). In this figure, the shoulder
occurs when ¢ is about one fortieth of Sy.

Stochastic simulations of Eq. 1, obtained using Gillespie’s direct method, show
that outbreak size is “fat-tailed” with high variance, considerable right skew, and a
spike at zero (Fig.3). This suggests the outbreak size distribution might be approx-
imated by a geometric distribution with mean M (Eq. 15). Figure 3 compares 5,000
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Fig. 2 Mean outbreak size, M, as a function of Sy and ¢ (with u held at 1.0, ¢ is fixed at 0.1 in the
left panel, and By fixed at 2in the right panel). Note the non-linear functions in semi-log space
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Fig.3 Histogram of the final outbreak size based on 5000 replicates of the stochastic version of Eq. 1
with 71(0) =1, Bo = 2.0, ¢ = 0.5 and p = 1.0. The vertical dotted line shows the sample mean
oubreak size from these stochastic simulations. The solid vertical line represents the theoretical
mean outbreak size (Eq.15) and the dashed curve is the density of the geometric distribution
parameterized with the sample mean outbreak size

simulated outbreak sizes with the corresponding approximation (dashed line). The
mean of the approximating distribution (solid line) is only slightly larger than the
mean of the simulations.

3 Global Epidemic Model

To scale up from local outbreaks to epidemics we adopt a probabilistic model in
which local outbreaks are connected by movement of infected individuals among
communities. In general, we assume that the number of uninfected communities is
large so that the chance that an infected individual sparks an outbreak in another
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community may be represented by a small constant 0 < ¢ < 1. Let p, be the proba-
bility mass function for an outbreak of size x. Since the probability that an individual
doesn’t spark a secondary outbreak is 1 — ¢, the probability that an outbreak of size
x fails to spark a secondary outbreak will be (1 — ¢)* by an assumption of indepen-
dence. The probability that there is an outbreak of size x and that it fails to spark
any secondary outbreaks is therefore p,(1 — ¢)*. By enumeration of all possible
outbreak sizes, the probability that an outbreak of unknown size will spark at least
one secondary outbreak is

a=1-> p(l—e) (16)
x=1

With ¢ « 1, we assume that each outbreak sparks, at most, only one secondary
outbreak.

Let j =1,2,3,..., N index the local outbreaks so that N is the total number of
local outbreaks. The probability that the first outbreak is also the last one is just
p(N = 1) = 1 — «. By contrast, the probability that the first outbreak gives rise to a
secondary outbreak (with probability o) and that the second outbreak fails to give rise
to a third (with probability 1 — «) is p(N = 2) = (1 — «). Proceeding to j = 3,
the probability that both outbreaks one and two give rise to a secondary outbreak
and that the third outbreak is the last yields p(N = 3) = (1 — ). By induction,
we see that the general rule is given by

fm)=p(N=m)=a"""(1-0a). (17)

The next challenge is to ascertain the total number of cases in these m outbreaks.
Let X ; be the random number of cases in the jth outbreak. The total number of cases
in the epidemic will be the sum of cases in the local outbreaks, i.e.,

Yy =D X (18)
Jj=1

Since the X ; are independently and identically distributed according to distribution
Px, it follows that the distribution of Y,, is just the m-fold convolution of p,, denoted
pi*. The probability that there are exactly m outbreaks and that these give rise to ¥
cases is

py = p" f(m). 19)

Using the notation of Johnson et al. [8], we have the following re-parameterization
for the distribution of outbreak sizes.

M=0-=p)/p—p=1/M+1), (20)
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P=0-p)/p=M, (21)
and
O=1/p=M+1. (22)

If k outbreaks are summed, the result is negative binomially distributed with para-
meters k and P. Let k be the number of non-primary outbreaks. Applying the same
rationale used to arrive at Eq. 17, we obtain P(k = 0) = 1 — o« = a and in general
P(k =n) = (1 —a)"a. So, the number of non-primary outbreaks is a geometric
distribution with parameter p = a.

Following Johnson et al. [8], the distribution formed by taking a negative binomial
with k drawn from a geometric distribution with parameters Q" and P’ is also a geo-
metric distribution with parameter Q Q' — P’. Identifying parameters in Eq. 17, we
have Q' = 1/(1 — «) and P’ = « Q' yielding Q = (M + 1)(%) — =% Expand-

. . . LT (=)
ing to obtain the unconditional total epidemic size distribution, we have

PY =y)=n(l—n)"", (23)

where

1 o !
n:((M+l)(1_a)—(1_a)) . 24)

This simplifies to

l—a)(M/(M 4+ 1 —a))>!
P(Y:y)z( a)(M/ErlJ:a a)) 25)

with expected value

o

1
1/n=(M+l)(1_a)—(1_a). (26)

4 Comparison with Numerical Results

This derivation of Eq. 25 relies on approximations for the probability of a secondary
outbreak given an outbreak of unknown size (Eq. 16) and the distribution of out-
break sizes (assumed to be approximated by a geometric distribution), as well as the
assumption that outbreak number and outbreak sizes are independent. We evaluated
these assumptions by comparing Eq. 25 with numerical simulations in which chains
of outbreaks were probabilistically generated by linking individual outbreaks simu-
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lated as in Sect. 2. Figure 4 shows an example solution that is visually similar to the
data on Ebola shown in Fig. 1. Figure 5 compares the mean and 99th percentile of
epidemic size for the approximation and simulated results over a range of ¢ and ¢.
The two solutions are similar to order of magnitude for most combinations of these
parameters, failing primarily when ¢ becomes very small.

5 Discussion

The goal of this work has been to develop a relatively simple model that neverthe-
less provides valid insight into the effects of behavior change and coupling among
local populations on the final size of potentially extensive outbreaks. Such processes
are invariably at work in outbreaks of novel pathogens that ultimately affect large,
distributed populations, notably outbreaks of Ebola [17], SARS [11], and MERS
[14]. The model we developed considers epidemics to consist of multiple coupled
outbreaks where outbreak trajectories are contained by local behavior response. Con-
tainment is counteracted with the potential of each local outbreak to spark secondary
outbreaks through the movement of infected persons so that the final epidemic size
reflects the tension between these two processes.

Focusing first on the distribution of outbreak sizes, this work shows that initially
supercritical outbreaks that are intrinsically contained through a decline in the trans-
mission rate (assumed to be exponential with time since the outbreak began), give
rise to a fat-tailed distribuion of local outbreak sizes. Moreover, the outbreak size dis-
tribution changes in a strongly nonlinear fashion with respect to both the initial rate
of transmission and the learning rate. Approximating this distribution by a geometric
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Fig. 5 Left-hand panels (top to bottom) show the predicted mean epidemic size, Eq. 26, the sim-
ulated mean epidemic size and the difference between the two as a function of model parameters
& and ¢. Right-hand panels show analogous information for the 99th percentile of epidemic sizes.
Constant model parameters are fp = 2.0 and u = 1.0. Epidemic sizes are simulated from 5000
replications. Contours are indicated by white lines
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distribution with mean given by Eq. 15 enables one to investigate the tension between
containment and expansive spread, i.e., epidemics. Figure 5 shows there to be a large
region of the upper left of the & — ¢ parameter space in which epidemics (i.e., exten-
sive outbreaks with multiple communities affected) are exceedingly unlikely. To the
right hand of each panel in Fig.5, i.e., as ¢ — 1, the outbreak size contours turn
up rapidly, beyond which movement of infected individuals is so common that the
epidemic is effectively well mixed. Outside this range, the outbreak size contours
are practically horizontal, illustrating very little dependence on the rate of individ-
ual movement so that learning—and the propensity to self-containment—becomes
the much more important process. We are unaware of prior results suggesting this
transition between epidemics dominated by movement and epidemics dominated by
learning.

The super-exponetial scaling of the outbreak size shown in Fig. 2 is recapitulated
in the distribution of outbreak sizes. Thus, for instance, as one moves from the top
of each panel in Fig. 5 the contours become closer together. Similarly, the fat-tail in
the outbreak size distribution (Fig. 3) propagates to the epidemic size distribution.
This is perhaps most easily seen by noting that there is an approximately one loga-
rithm displacement between the contours for the average epidemic size and the 99th
percentile in Fig. 5. Thus, for an average epidemic size of 1,000, it is not improbable
for an epidemic of 10,000 to be realized. Comparison of the approximate analytic
results in the first row of Fig.5 with the exact results from stochastic simulation in
the second row shows that although the approximation comes at a small cost in terms
of bias, these qualitative conclusions are robust to the range of assumptions required
for their solution, particularly the assumption that the zero-inflated distribution of
outbreak sizes can be reasonably approximated by a geometric distribution.

Other assumptions we have made include that the probability any local outbreak
sparks more than one secondary outbreak is negligible and that there is no effect of
susceptible depletion. The first of these assumptions biases downward our expression
for the total number of outbreaks (Eq. 17). This bias becomes more severe as ¢ — 1,
i.e., to the right in each panel of Fig.5, which would further differentiate our two
modes for epidemic expansion. The second issue is of negligible consequence unless
the total epidemic size tends to be large relative to the population size (precisely what
containment prevents) or where the contacts among susceptible persons are highly
structured. While there has been a great deal of theory about this latter condition
[9], whether it obtains in generalized epidemics like Ebola remains poorly under-
stood. Additionally, the modeling approach adopted here may admit other assump-
tions (particularly concerning the underlying distribution of local outbreak sizes) and
extensions, including the seeding of multipe new outbreaks from a single outbreak
and a time-varying “death” rate in the birth-death process, representing more rapid
treatment/isolation with increasing experience.

Multiscale modeling of infectious diseases remains a significant mathematical
and computational challenge [7]. The simplifying, plausible assumptions made here
have allowed us to relate ultimate epidemic size to the rate at which transmission at
a local scale is reduced by behavior change and the probability that a new outbreak
is seeded elsewhere before local containment. These analytical results are achieved
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even though the model does not describe a stationary process and illustrates the value
of combining modeling approaches, here the outcome of a potentially large number
of branching processes accumulated via convolution. One of the key results is that
epidemic size grows faster than exponential with decreasing behavioral learning
rate, suggesting that there are critical rates above which behaviors acting to reduce
transmission will dramatically reduce the overall number of persons infected during
a series of outbreaks. Qualitatively, this phenomenon points to a potential connection
between the approach undertaken here and random network modeling [1] where the
addition of a few links can lead to explosive percolation suddenly connecting a large
proportion of nodes. Practically, it underscores the importance of early response to
epidemic containment.
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