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Multiomics and Machine Learning Accurately Predict 
Clinical Response to Adalimumab and Etanercept Therapy 
in Patients With Rheumatoid Arthritis
Weiyang Tao, Arno N. Concepcion, Marieke Vianen, Anne C. A. Marijnissen, Floris P. G. J. Lafeber,  
Timothy R. D. J. Radstake, and Aridaman Pandit

Objective. To predict response to anti–tumor necrosis factor (anti-TNF) prior to treatment in patients with 
rheumatoid arthritis (RA), and to comprehensively understand the mechanism of how different RA patients respond 
differently to anti-TNF treatment.

Methods. Gene expression and/or DNA methylation profiling on peripheral blood mononuclear cells (PBMCs), 
monocytes, and CD4+ T cells obtained from 80 RA patients before they began either adalimumab (ADA) or etanercept 
(ETN) therapy was studied. After 6 months, treatment response was evaluated according to the European League 
Against Rheumatism criteria for disease response. Differential expression and methylation analyses were performed 
to identify the response-associated transcription and epigenetic signatures. Using these signatures, machine learning 
models were built by random forest algorithm to predict response prior to anti-TNF treatment, and were further 
validated by a follow-up study.

Results. Transcription signatures in ADA and ETN responders were divergent in PBMCs, and this phenomenon 
was reproduced in monocytes and CD4+ T cells. The genes up-regulated in CD4+ T cells from ADA responders 
were enriched in the TNF signaling pathway, while very few pathways were differential in monocytes. Differentially 
methylated positions (DMPs) were strongly hypermethylated in responders to ETN but not to ADA. The machine 
learning models for the prediction of response to ADA and ETN using differential genes reached an overall accuracy 
of 85.9% and 79%, respectively. The models using DMPs reached an overall accuracy of 84.7% and 88% for ADA 
and ETN, respectively. A follow-up study validated the high performance of these models.

Conclusion. Our findings indicate that machine learning models based on molecular signatures accurately predict 
response before ADA and ETN treatment, paving the path toward personalized anti-TNF treatment.

INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune disease 
leading to joint inflammation and destruction (1,2). To date, 
conventional synthetic disease-modifying antirheumatic drugs 
(csDMARDs), such as methotrexate, are typically given as a first-
line treatment to patients with RA in an attempt to achieve a state of 
low disease activity. Upon failure or loss of efficacy of csDMARDs, 
patients are switched to biologic DMARDs (bDMARDs), such as 
tumor necrosis factor inhibitors (TNFi) (3). Currently, there are dif-
ferent biologic TNFi, including adalimumab (ADA) and etanercept 

(ETN), available for clinical use (4). ADA is the first fully human 
therapeutic anti-TNF monoclonal antibody, while ETN is a recom-
binant human TNF receptor (p75)–Fc fusion protein that competi-
tively inhibits TNF (5). Although these TNFi have revolutionized the 
treatment of RA, ~30% of patients do not respond well to their 
initial anti-TNF therapy (4). Treatment failure elevates the risk of 
adverse events such as infections and puts additional socioeco-
nomic burden on the patients (3,6). Thus, there is a strong unmet 
need to predict response to TNFi.

To predict treatment response, it is crucial to identify reliable 
predictors. Katchamart et al (1) and Callaghan et al (4) reviewed 18 
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and 154 studies, respectively, and identified several potential pre-
dictors of RA remission and response to biologic therapy, includ-
ing age, sex, disease duration, disease activity, smoking status, 
and concomitant methotrexate therapy, among others (1,4). Vas-
tesaeger et al (7) developed a matrix tool based on 6 predictors 
(sex, Health Assessment Questionnaire, presence of comorbidi-
ties, age, tender joint count, and erythrocyte sedimentation rate) 
to predict remission and low disease activity in RA patients treated 
with golimumab (anti-TNF) therapy. More recently, Ganhão et al 
(8) examined this matrix tool in real-world RA patients receiving 
anti-TNF therapy and corroborated the idea of this tool for the pre-
diction of remission. Those studies, however, 1) did not illustrate 
the biologic mechanisms that underlie this differential response to 
the TNFi, and 2) did not examine potential treatment responses to 
different TNFi.

At the cellular and tissue level, RA is characterized by the 
chronic infiltration of immune cells in the synovial membrane 
(9). To understand biologic processes associated with anti-TNF 
response, several transcriptomic and epigenetic studies have 
been conducted using the synovium and blood from patients with 
RA (10–19). Those studies have demonstrated that transcriptomic 
and epigenetic profiling have the potential to predict response to 
anti-TNF therapies before treatment. Despite the promising pre-
dictive potential, we still lack molecular insights into the predictive 
power of different cell types involved in the anti-TNF response. 

Most studies focus on predicting response to one TNFi, and 
cannot predict if the patients who fail to respond to one TNFi will 
respond to another known TNFi (20). The gene signature used for 
predicting response has been shown to be unique for different 
TNFi (17). Thus, it is crucial to investigate the role of different cell 
types, especially immune cells, in RA patients receiving different 
anti-TNF therapies to reveal the biologic process of specific anti-
TNF response.

Building upon the previous studies, we performed transcrip-
tomic and epigenetic profiling of immune cell types and whole 
PBMCs, along with deep clinical profiling of RA patients, to gener-
ate cell-specific profiles that can predict response to 2 TNFi—ADA 
and ETN—prior to treatment initiation.

PATIENTS AND METHODS

Patients in this study were selected from the BiOCURA 
cohort at the University Medical Center Utrecht (18). BiOCURA is 
an observational cohort in which patients with RA who are eligible 
for treatment both with TNFi agents (ADA, ETN, infliximab, goli-
mumab, and certolizumab pegol) and with non-TNFi agents (tocili-
zumab, abatacept, and rituximab) were enrolled and followed up 
for 12 months after the initiation of treatment. All csDMARDs 
(methotrexate, hydroxychloroquine, leflunomide, and glucocorti-
coids) were allowed concomitantly with the bDMARD. Patients’ 

Figure 1.  Flow chart showing the study methods. A, Blood samples were obtained from patients with rheumatoid arthritis (RA) at baseline, 
and patients were treated with subcutaneous adalimumab (ADA) or etanercept (ETN) for 6 months. Peripheral blood mononuclear cells (PBMCs) 
were isolated for RNA sequencing and DNA methylation profiling. CD4+ T cells and CD14+ monocytes were then isolated for RNA sequencing. 
Patients were classified as responders or nonresponders according to European League Against Rheumatism criteria at the end of month 6. 
Patients who did not respond to ADA were switched to ETN, and patients who did not respond to ETN were switched to ADA, for 6 months 
and treatment responses were observed. B, RNA sequencing data sets and DNA methylation data sets were used to build machine learning 
models to predict treatment responses at baseline.
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responses were evaluated based on the Disease Activity Score 
in 28 joints (DAS28) at baseline and after 6 months of treatment 
according to European League Against Rheumatism (EULAR) cri-
teria (21). (For the patients with a follow-up duration of <6 months, 
response evaluation was based on DAS28 at baseline and at 
the last visit, which showed that all of these patients were nonre-
sponders to either ADA or ETN).

Stratified random sampling was carried out to retain 80 of 
212 patients with RA who were treated with either ADA or ETN 
alone and were followed up for ≥6 months (for responders) in this 
study for further analysis. We first isolated peripheral blood mono
nuclear cells (PBMCs) from these patients prior to ADA or ETN 
treatment (Figure 1A). Then genome-wide gene expression and 
DNA methylation profiling were performed on these PBMCs, 
using RNA sequencing and an Infinium MethylationEPIC Bead-
Chip kit, respectively. (RNA sequencing data and DNA methylation 
data can be accessed at GEO accession no. GSE13​8747). RNA 
sequencing on CD14+ monocytes and CD4+ T cells isolated from 
the PBMCs were performed to gain more insights into different 
responses to anti-TNF. Using the gene expression and DNA meth-
ylation signatures, we then built and internally validated machine 
learning models to predict response to ADA and ETN (Figure 1B). 
Finally, 9 patients were used to externally validate the predic-
tion that was made by the machine learning models. A detailed 
description of the methods conducted in this study can be 

found in the Supplementary Methods, available on the Arthritis &  
Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/ 
art.41516/​abstract.

RESULTS

Demographic and disease characteristics of the 
patients. The characteristics of the patients are summarized 
in Table 1 and Supplementary Table 1, available on the Arthritis  
& Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10. 
1002/art.41516/​abstract. Eighty patients with RA were selected 
from the BiOCURA study (18), of which 38 (47.5%) and 42 (52.5%) 
were treated with ADA (ADA cohort) and ETN (ETN cohort), respec-
tively. In each cohort ~70% of the patients were women. At base-
line, the mean ages of the patients in the ADA cohort and the 
ETN cohort were 53.34 years and 54.27 years, respectively. After 
6 months of treatment, 11, 9, and 18 patients showed good, mod-
erate, and no response, respectively, to ADA, while 11, 8, and 23 
patients showed good, moderate, and no response, respectively, to 
ETN. No significant difference was observed between the cohorts 
in terms of either age, sex, smoking status, weight, height, alcohol 
use, rheumatoid factor positivity, anti–cyclic citrullinated peptide 
(anti-CCP) positivity, bDMARD exposure, hemoglobin, leukocyte, 
and thrombocyte counts at baseline, or drug response rate after 
6 months of treatment (Supplementary Table 1).

Table 1.  Demographic and baseline clinical characteristics of the RA patients in the ADA and ETN cohorts*

ADA ETN

Nonresponder 
(n = 18)

Responder 
(n = 20)

Nonresponder 
(n = 23)

Responder 
(n = 19)

Sex, no.
Female 13 14 16 13
Male 5 6 7 6

Smoking, no.
Never 4 5 10 5
Stopped 8 10 8 12
Yes 6 5 5 2

RF, no.
Negative 9 5 6 5
Positive 9 15 17 14

Anti-CCP, no.
Negative 6 5 5 4
Positive 12 15 18 15

bDMARD naive, no.
No 10 6 13 5
Yes 8 14 10 14

Age, years 53.4 ± 11.6 53.3 ± 13.2 56.95 ± 9.51 51.03 ± 11.31
Weight, kg 79.23 ± 15.51 81.91 ± 16.87 81.55 ± 15.56 81.27 ± 18.73
Height, cm 173.56 ± 9.06 175.8 ± 11.27 173.57 ± 12.42 173.11 ± 6.91
Alcohol use, units/week 3.39 ± 4.64 3.5 ± 4.29 5.13 ± 7.12 4.22 ± 5.04
Hemoglobin count, gm/dl 8.45 ± 0.77 8.44 ± 0.74 8.60 ± 0.74 8.39 ± 0.60
Leukocyte count x 109/liter 9.59 ± 4.61 7.42 ± 2.15 8.02 ± 1.94 7.53 ± 2.01
Thrombocyte count x 109/liter 296.88 ± 51.38 261.15 ± 62.53 278.22 ± 57.11 289.06 ± 70.2

* There were no significant differences, determined by Fisher’s exact test for categorical variables and by Welch’s 
2-sample t-test for continuous variables, between responders and nonresponders in either the adalimumab (ADA) 
or etanercept (ETN) cohort. Except where indicated otherwise, values are the mean ± SD. RF = rheumatoid factor; 
anti-CCP = anti–cyclic citrullinated peptide; bDMARD = biologic disease-modifying antirheumatic drug. 

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE138747
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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To increase statistical power, we combined patients with 
good response and those with moderate response, and desig-
nated them as responders. Thus, 53% of patients receiving ADA 
(20 of 38) and 45% of patients receiving ETN (19 of 42) were con-
sidered to be responders. No significant difference was observed 
between responders and nonresponders at baseline for clinical 
parameters in either cohort (Table 1).

Distinct gene signatures of responders to ADA and 
ETN. We first studied the molecular signatures of circulating 
PBMCs and identified 549 differentially expressed genes (DEGs) 
(nominal P < 0.05) between ADA responders and nonresponders 
(Figure 2A and Supplementary Figure 1, available on the Arthritis 
& Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10. 
1002/art.41516/​abstract). Similarly, we identified 460 DEGs 

Figure 2.  Differences between gene expression in PBMCs from responders (R) versus nonresponders (NR) to ADA or ETN. A and B, Heatmaps 
showing the top 100 differentially expressed genes (DEGs) in PBMCs from responders versus nonresponders to ADA (A) and ETN (B). C and D, 
Expression of example DEGs in responders and nonresponders to ADA (C) and ETN (D). Data are shown as box plots in the style of Tukey. Each 
box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. Whiskers outside the boxes represent the lowest and 
highest data points excluding the outliers. The outliers are determined by 1.5-interquartile range criteria. Circles represent individual patients. E and F, 
Multidimensional scaling plots based on gene expression data showing clusters of patient response to ADA (E) and ETN (F). G, Venn diagram showing 
the overlap in DEGs between patients receiving ADA and patients receiving ETN. H, Scatterplot showing differences in fold change (FC) in RNA 
expression for DEGs in the ADA cohort and the ETN cohort. * = P < 0.05; ** = P < 0.01. CPM = count per million; NS = not significant (see Figure 1 
for other definitions). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract.

http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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between ETN responders and nonresponders (Figure 2B and 
Supplementary Figure 1). For the ADA cohort, genes involved in 
DNA and nucleotide binding, such as RFX2, IRF8, and TAF1, were 
differentially expressed between responders and nonresponders. 
Similarly, in the ETN cohort, genes involved in DNA and nucleotide 
binding such as FOXO4 and TAF11, and TNF receptor signaling, 
such as TRAF6, were differentially expressed between responders 
and nonresponders (Figures 2C and D). Interestingly, the expres-
sion of TNF was not associated with the response to either ADA 
or ETN (both P > 0.05) (Figures 2C and D).

Multidimensional scaling analysis performed using DEGs 
showed that we can differentiate between responders and non-
responders in each cohort (Figures 2A, B, E, and F). Since both 
ADA and ETN are TNFi, we checked the overlap in DEGs iden-
tified from the 2 cohorts. Notably, only 2% of DEGs (21 of 988) 

overlapped between the 2 cohorts, and even fewer genes were 
differentially expressed in the same direction (Figures 2G and H). 
Taken together, these results suggest that responses to ADA and 
ETN are defined by distinct gene signatures.

Distinct DNA methylation profiles in responders to 
ETN and responders to ADA. Genome-wide DNA methyla-
tion analysis of PBMCs from the same patients identified 16,141 
and 17,026 differentially methylated positions (DMPs) of CpG 
sites (nominal P < 0.05) associated with response to ADA and 
ETN, respectively (Figures 3A and B and Supplementary Figure 2, 
available on the Arthritis & Rheumatology website at http://onlin​e 
libr​ary.wiley.com/doi/10.1002/art.41516/​abstract). These DMPs are  
distributed on or near 7,719 and 7,850 genes, with an average 
of 2.09 and 2.17 DMPs per gene for the ADA and ETN cohorts, 

Figure 3.  Differentially methylated positions (DMPs) associated with response to ADA and ETN in PBMCs. A and B, Manhattan plots showing 
the −log10-transformed P values for CpG sites in the DNA methylation profiling for response to ADA (A) and ETN (B). Gene names are shown for 
genes in which any CpG site reached a significance level of P < 10−4. The corresponding probes are shown in Supplementary Figure 2, available 
on the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/art.41516/​abstract. C and D, Multidimensional scaling 
plots, based on DNA methylation data, showing clusters of patients classified as responders or nonresponders to ADA (C) and ETN (D). E and 
G, Distribution of gene region features where DMPs associated with response to ADA (E) and to ETN (G) were located. TSS1500 = 200–1,500 
bases upstream of the transcription start site (TSS); TSS200 = 0–200 bases upstream of the TSS; 5′UTR = 5′-untranslated region; ExonBnd = 
exon boundary; IGR = intergenic region. F and H, Distribution of area related to CpG island where DMPs associated with response to ADA (F) and 
ETN (H) were located. island = CpG island; shore = 0–2 kb from island; shelf = 2–4 kb from island; opensea = the rest of the area. See Figure 1 
for other definitions. Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract.

http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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respectively. Multidimensional scaling plots showed clear differ-
ences between responders and nonresponders for both ETN and 
ADA using these DMPs (Figures 3C and D). Approximately 46% 

(n = 7,424) of the DMPs were hypermethylated in ADA respond-
ers, while a drastically higher fraction of DMPs (76.3%; n = 12,994) 
were hypermethylated in ETN responders. We found more 

Figure 4.  Differences between gene expression in monocytes and CD4+ T cells from responders (R) versus nonresponders (NR) to ADA and 
ETN. A and B, Heatmaps showing the top 100 differentially expressed genes (DEGs) in monocytes (A) and CD4+ T cells (B) from responders 
versus nonresponders to ADA. C, KEGG pathways enriched by the DEGs associated with ADA response in monocytes and CD4+ T cells. D, 
Expression of ADA response–associated DEGs involved in RA and the tumor necrosis factor (TNF) signaling pathway in CD4+ T cells. E and F, 
Heatmaps showing the top 100 DEGs associated with ETN response in monocytes (E) and CD4+ T cells (F). G, KEGG pathways enriched by 
the DEGs associated with ETN response in monocytes and CD4+ T cells. H, Expression of ETN response–associated DEGs involved in FoxO 
signaling, NOD-like receptor signaling, and JAK/STAT signaling pathways in CD4+ T cells. I, Venn diagrams showing the overlap between ADA 
response–associated DEGs and ETN response–associated DEGs in monocytes and CD4+ T cells. J and K, Venn diagrams showing the overlap 
between ADA response–associated DEGs (J) and ETN response–associated DEGs (K) in monocytes, CD4+ T cells, and PBMCs. In D and H, 
data are shown as box plots in the style of Tukey. Each box represents the 25th to 75th percentiles. Lines inside the boxes represent the median. 
Whiskers outside the boxes represent the lowest and highest data points excluding the outliers. The outliers are determined by 1.5-interquartile 
range criteria. Circles represent individual patients. * = P < 0.05; ** = P < 0.01; *** = P < 0.001. CPM = count per million (see Figure 1 for other 
definitions). Color figure can be viewed in the online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract.

http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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hypermethylated DMPs in the upstream and promoter regions of 
genes (Figure 3E) and on CpG islands (Figure 3F) in ADA respond-
ers. In contrast, globally more hypermethylated DMPs were found 
in ETN responders (Figures 3G and H). Thus, on the epigenetic 
level, we observed a distinct hypermethylation pattern between 
ADA and ETN responders, suggesting the role of epigenetics in 
defining response to ADA and to ETN in PBMCs.

TNF signaling signatures in CD4+ T cells from  
responders to ADA. Since we found different gene signatures 
defining response to ADA or ETN, we hypothesized that differ-
ent cell types may contribute to the response to ADA or ETN. 
Therefore, we performed RNA sequencing on 2 major innate and 
adaptive immune cell types, monocytes and CD4+ T cells, that 
are known to be involved in RA pathogenesis. Monocytes and 
CD4+ T cells were isolated from PBMCs from the same patients. 
Differential gene expression analyses identified 444 and 635 
DEGs (nominal P < 0.05) between responders and nonrespond-
ers to ADA in monocytes and CD4+ T cells, respectively (Figures 
4A and B and Supplementary Figures 3A and B, available on 
the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41516/​abstract). Notably, the expression of 
genes associated with RA and the TNF signaling pathway, such 
as CTLA4, TNFSF13B, TNFRSF1B, TNFSF4, IRF1, and IL18R1, 
was higher in CD4+ T cells from ADA responders than those from 
ADA nonresponders (Figures 4C and D). These genes were not 
differentially expressed between monocytes from responders 
and those from nonresponders to ADA (data not shown), sug-
gesting that CD4+ T cells showed clearer molecular “TNF sig-
naling” signatures associated with response to ADA compared 
to monocytes.

Similarly, 599 and 769 DEGs were associated with response 
to ETN in monocytes and CD4+ T cells, respectively (Figures 4E 
and F and Supplementary Figures 3C and D). In CD4+ T cells from 
responders to ETN, genes in the FoxO signaling pathway, such 
as FOXO3, FOXO4, TGFBR1, and USP7, were up-regulated, 
while genes in the NOD-like receptor signaling pathway, such as 
GSDMD, RIPK3, and CASP4, and the JAK/STAT signaling path-
way, such as CISH, SOCS2, and PIM1, were down-regulated 
(Figures 4G and H). Notably, very few pathways were differential 
in the monocytes from both the ADA and ETN cohorts (Figures 
4C and G).

Consistent with the finding in PBMCs, the expression of TNF 
in both CD4+ T cells and monocytes was not associated with 
the response to either ADA or ETN (data not shown), and the 
DEGs associated with response to ADA and ETN showed little 
overlap in both monocytes and CD4+ T cells (Figure 4I). Compar-
ing the DEGs identified from different cells, we found that each 
exhibited unique gene signatures (Figures 4J and K), suggesting a 
necessity to study different cell populations to identify which cells 
were involved in differentiating the response to anti-TNF therapy  
(Figures 4J and K).

Accurate prediction of clinical response by machine 
learning models. In addition to understanding the mechanisms 
of how RA patients respond differently to ETN or ADA therapy, 
the ultimate goal of this study was to predict which therapy is 
effective for which patients before commencing therapy. To this 
aim, we built machine learning models based on random forest 
algorithms, exploiting the transcriptome signatures from mono-
cytes, CD4+ T cells, and PBMCs, and methylation signatures 
from PBMCs (see Supplementary Methods, available on the 
Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/
doi/10.1002/art.41516/​abstract). The model based on DEGs of 
PBMCs (“PBMC RNA” ADA model) showed the highest overall 
accuracy of predicting response to ADA among other models 
(ADA models). More specifically, these ADA models reached over-
all accuracy of 80.3%, 72.7%, 85.9%, and 84.7% using DEGs 
on monocytes, CD4+ T cells, PBMCs, and DMPs of PBMCs, 
respectively. The true-positive rates of these models ranged from 
76.0% to 90.0%, and the true-negative rates ranged from 70.0% 
to 89.0% (Figure 5A).

The overall accuracy of the models for ETN therapy (ETN  
models) ranged from 73.3% to 79.0% using DEGs of different 
cell subsets and reached as high as 88% using DMPs of PBMCs 
(Figure 5B). For the ETN models using DEGs, the model based on 
gene expression of CD4+ T cells (“CD4 RNA” ETN model) showed 
the highest overall accuracy (79.0%) and nearly equal true-positive 
(78.1%) and true-negative (82.0%) rates. These results suggest 
that we can accurately predict the clinical response before ADA 
and ETN treatment using molecular signatures–based machine 
learning models, although the prediction accuracy of these molec-
ular signatures differs between cell types and treatments, underlin-
ing the need to study more than one drug, cell type, or epigenetic 
layer.

Further, we predicted the response to ADA and ETN for 
all patients included in this study using the best models using 
gene expression data (“PBMC RNA” ADA model and “CD4 RNA” 
ETN model) and DNA methylation data (“PBMC DNA” ADA and 
ETN models) (Figures 5C and D). Interestingly, both the RNA mod-
els and the DNA models predict that ~30% of patients will not 
respond to either ADA or ETN, which is consistent with the clinical 
observation that 30% of patients do not respond well to their first 
anti-TNF therapy (4). In addition, ~50% of patients respond well 
to either ADA or ETN. To test whether these predictions were 
reliable, we followed up the patients who failed to respond to the 
first round of ADA or ETN treatment and were switched to the 
other treatment (either ETN or ADA) for 6 months (Figure 1A). 
Finally, data for 9 patients (including 4 patients receiving ADA 
therapy and 5 patients receiving ETN therapy) were used to val-
idate the reliability of the prediction. We found remarkably high 
prediction accuracy of our models, with response to switched 
treatment correctly predicted in 88.9% (n = 8) and 77.8% (n = 7) 
of the patients by the RNA models and DNA models, respectively 
(Figure 5E).

http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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DISCUSSION

To date, methotrexate is still generally accepted as the main-
stay of treatment for RA. When methotrexate fails, however, 
treatment schemes are basically followed on a trial-and-error 
basis. Hence, it may take a considerable amount of time before 
RA patients receive the therapeutic regimen that fits them best. 
Similarly, the different TNFi agents do not have the same ben-
eficial clinical effect in all patients. This observed effect under-
lies the reason that a second or even a third TNFi can induce 
clinically meaningful effects upon failure of the first. As a result, 
being able to predict which TNFi would be effective and should 
be the first choice of treatment would be highly beneficial in 
reducing the time to effective treatment, which has been exten-
sively proven to be a paramount factor in achieving long-standing  
disease remission. Hence, by using a deep molecular approach 
followed by machine-learning algorithms, we aimed to predict the 
response to TNFi, and to provide support for decision-making 
regarding choice of TNFi, by comparing ADA and ETN.

In general, the overlap of DEGs identified in previous studies  
of TNFi is relatively low (17). This discrepancy might be due 
to multiple factors, including small sample sizes, different response  
classification criteria, different durations of treatment, low detection 
power of microarrays, and existence of biologically divergent sig-
natures between different anti-TNF therapies or between different 
cell populations. For example, the expression of CD11c (ITGAX) 
in monocytes was previously associated with response to ADA in 
RA patients (22), but was recently shown to have no association 

with response to ADA or ETN when tested in whole blood samples 
in a large patient cohort (23). Therefore, in our study we deliber-
ately included patients with the same clinical characteristics in both 
cohorts and performed transcriptomic and epigenetic profiling 
of multiple cell populations using recently developed techniques, 
i.e., RNA sequencing and a MethylationEPIC BeadChip kit.

We found divergent gene signatures associated with 
response to ADA and ETN, and this divergence of gene signa-
tures was reproduced in multiple cell populations, suggesting a 
potentially different action of mechanism between these 2 anti-
TNF agents. As a result, we found that the majority of the patients 
did not respond to both ADA and ETN but had the potential to 
respond to one of the drugs. Since ADA is an anti-TNF mono-
clonal antibody, while ETN is a TNF receptor–Fc fusion protein, 
the genetic and epigenetic differences between individual patients 
thus determine the drug response. Given such different molecu-
lar signatures, ADA and ETN should be studied and considered  
differently in the future although both are TNFi.

DNA methylation has been shown to play an important role 
in the progression of RA (24–26). To our knowledge, only one 
previous study investigated DNA methylation on whole blood 
for response to ETN using a HumanMethylation450 BeadChip 
kit, which examines ~450,000 CpG sites in the human genome 
(19). In that study, Plant et al identified 5 DMPs (cg04857395, 
cg26401028, cg16426293, cg03277049, and cg12226028) 
associated with response to ETN in whole blood (19). In the pres-
ent study, we used the more recently developed MethylationEPIC 
BeadChip, which examines >850,000 CpG sites, and did not find 

Figure 5.  Machine learning models of the prediction of RA patients’ response to ADA and ETN therapy. A and B, Accuracy, true-negative 
rate (TNR), and true-positive rate (TPR) of machine learning models based on gene expression signatures (CD14, CD4, and PBMC RNA) and 
DNA methylation signatures (PBMC DNA) for the prediction of 6-month response to ADA (A) and ETN (B). Bars show the mean ± SEM from 
cross-validation analysis. C and D, Machine learning prediction of 6-month response to ADA and ETN treatment using the best model based 
on gene expression data (C) and DNA methylation data (D). R = responder; NR = nonresponder; AR = responder to ADA only; ER = responder 
to ETN only; DR = double responder (response to both ADA and ETN). E, Validation of machine learning prediction by 6-month-follow-up drug-
switched study (see Figure 1). The last 2 columns are predictions made by the best machine learning models based on gene expression data 
and DNA methylation data, respectively. Correct predictions are shown in red. See Figure 1 for other definitions. Color figure can be viewed in the 
online issue, which is available at http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract.

http://onlinelibrary.wiley.com/doi/10.1002/art.41516/abstract
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any of the sites reported by Plant et al to be differentially expressed 
in PBMCs from patients in the ADA treatment cohort (P values 
ranged from 0.1 to 0.8) and ETN cohort (P values ranged from 0.5 
to 0.9). There are several potential reasons for this. First, different 
cells were studied in both studies. In other words, Plant et al inter-
rogated DNA methylation in whole blood cells, while we studied 
the PBMCs. Second, the criteria used to determine whether a 
patient had a good response or no response differed between the 
studies. Plant et al defined a good response as a DAS28 of <2.6 
and a nonresponse as an improvement in the DAS28 of <0.6 or 
as an end point DAS28 of >5.1 after 3 months of ETN treatment 
(19). In contrast, in our study, the EULAR criteria (21) were applied 
after 6 months of ADA or ETN treatment, as described in Patients 
and Methods. More importantly, only the patients with an extreme 
response phenotype, either good response or nonresponse, were 
included in the study by Plant et al (19). Therefore, it is essential 
to use a set of reliable and consistent criteria when identifying and 
comparing the molecular signatures associated with response to 
anti-TNF therapies in different studies.

To the best of our knowledge, this is the first study in which 
paired multicellular and multiomics data have been used to inves-
tigate molecular determinants of response to TNFi. However, 
there are some limitations, which we discuss below. The majority 
of the DEGs and DMPs identified in this study were not significant 
after correcting for multiple hypothesis testing, likely due to patient 
heterogeneity. Thus, we combined the gene expression/methyla-
tion signatures identified using nominal P values to build machine 
learning models to improve the prediction of response. We 
achieved high accuracy using the RNA models and/or DNA model 
to predict response to ADA and ETN. These models were further 
validated by a follow-up study, which shows a reliable application 
prospect to guide clinical decision-making. However, one may 
argue that the responsiveness of these patients may be affected 
by the previous TNFi treatment.

It is still unknown how the responsiveness to a TNFi is affected 
by prior treatment with another TNFi, and our current data cannot 
completely address this question. In clinical practice, patients who 
failed to respond to a TNFi would not be recommended to receive 
the same treatment, at least in the near future, suggesting that the 
responsiveness to a particular TNFi is relatively stable. However, 
patients who fail to respond to one TNFi are frequently treated 
with another TNFi, based on an assumption that the response 
to a TNFi is not affected by prior treatment regimens. Our results 
support this assumption, as we found that response to a second 
TNFi treatment could be predicted to a certain extent based on 
baseline gene signatures measured prior to failure to respond to 
the first treatment. However, further studies are needed to assess 
the stability of response, to explore the reasons why some TNFi 
work in some patients and not in others, and to ultimately apply 
such predictions in clinical practice.

To further determine whether the signatures we identified 
were robust or dependent upon a subset of patient samples, we 

performed additional tests as described below. We performed 
jackknife resampling iterations, where 20% of the samples in each 
group were removed in each iteration, and then we repeated the 
entire analysis using the randomly retained 80% of the remaining 
samples (see Supplementary Methods, available on the Arthritis  
& Rheumatology website at http://onlin​elibr​ary.wiley.com/doi/10. 
1002/art.41516/​abstract). We performed 1,000 such iterations 
and found that most DEGs and DMPs identified in the original 
analysis were re-identified in >50% of the jackknife resampling iter-
ations (Supplementary Figure 4, available on the Arthritis & Rheu-
matology website at http://onlin​elibr​ary.wiley.com/doi/10.1002/
art.41516/​abstract). As an additional control, we shuffled the 
sample identity (i.e., whether the patient was a responder or non-
responder) to mix samples between groups. Such mislabeling of 
the samples between groups should not provide us with genes/
methylation sites that are consistently differential between different 
iterations. Indeed, we found that most of the DEGs and DMPs 
were not consistently re-identified (most DEGs and DMPs were 
consistent in <25% of such iterations) (Supplementary Figure 4).

Using the DEGs and DMPs consistently identified in >50% 
of jackknife resampling iterations, we found clear patient clus-
ters, methylation patterns, and response prediction ability similar 
to those shown in Figures 2–5 (Supplementary Figure 5, availa-
ble on the Arthritis & Rheumatology website at http://onlin​elibr​ary. 
wiley.com/doi/10.1002/art.41516/​abstract). Based on models 
built upon the features identified after jackknife down sampling or 
random sample shuffling (Supplementary Figure 6, available on 
the Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.
com/doi/10.1002/art.41516/​abstract), we found that models  
created after jackknife down sampling were much better than those 
based on genes obtained by random sample shuffling. The jackknife 
down sampling models were comparable to the models shown in 
Figure 5, suggesting that the selected features in our final models are 
informative. Thus, the molecular signatures identified were robust 
and were clearly dependent on the response status of the patients.

Examination of overlapping between DEGs and correspond-
ing genes illustrated that in both the ADA treatment cohort and the 
ETN treatment cohort, >100 genes were differentially expressed, 
with ≥1 CpG site differentially methylated (Supplementary Table 2, 
available on the Arthritis & Rheumatology website at http://onlin​e 
libr​ary.wiley.com/doi/10.1002/art.41516/​abstract). Interestingly, 
compared to DMPs with smaller variability in methylation levels 
(static DMPs), DMPs with larger variability in methylation levels 
(dynamic DMPs) were more correlated with the expression of 
corresponding genes (Supplementary Figure 6, available on the 
Arthritis & Rheumatology website at http://onlin​elibr​ary.wiley.com/
doi/10.1002/art.41516/​abstract). So, the gene expression is 
weakly regulated by DNA methylation, especially when the CpG 
sites are less dynamic.

This study also had some limitations. As a subset of 
BioCURA, the patients included in this study did not all complete 
6 months of treatment. More specifically, 4 patients discontinued 
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treatment prior to month 3, and 18 patients discontinued treat-
ment between month 3 and month 6. All of these patients were 
determined to be nonresponders based on the EULAR crite-
ria using DAS28 at baseline and DAS28 at the last visit prior 
to month 6. Some patients may have shown response after a 
longer period of treatment, but in this study they were classified 
as nonresponders due to the study design and follow-up criteria. 
The second limitation is that since this is an observational cohort, 
the ratios of responders to nonresponders does not represent 
the actual response ratio observed in patients. We selected for a 
comparable number of responders and nonresponders to allow 
enough samples in each group. Future studies should be con-
ducted on larger cohorts of patients representing actual response 
ratios, but ensuring a sufficient number of patients in each group.

In conclusion, we systemically studied, for the first time, 
transcription and/or DNA methylome signatures associated with 
response to different TNFi in PBMCs, monocytes, and CD4+ T 
cells from patients with RA. We found that transcription signa-
tures in ADA and ETN responders are divergent in PBMCs, and 
this phenomenon was reproduced in monocytes and CD4+ T 
cells. Besides, DMPs of responders to ETN but not to ADA were 
strongly hypermethylated. Finally, machine learning models based 
on these molecular signatures could accurately predict response 
before ADA and ETN treatment, paving the path toward personal-
ized treatment strategies with TNFi.
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