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Organic cation transporters (OCTs) are expressed in the mammalian brain, kidney,
liver, placenta, and intestines, where they facilitate the transport of cations and other
substrates between extracellular fluids and cells. Despite increasing reliance on
ectothermic vertebrates as alternative toxicology models, properties of their OCT
homologs transporting many drugs and toxins remain poorly characterized.
Recently, in zebrafish (Danio rerio), two proteins with functional similarities to
human OCTs were shown to be highly expressed in the liver, kidney, eye, and
brain. This study is the first to characterize in vivo uptake to the brain and the high-
affinity brain membrane binding of the mammalian OCT blocker 1-1′-diethyl-
2,2′cyanine iodide (decynium-22 or D-22) in zebrafish. Membrane saturation
binding of [3H] D-22 in pooled zebrafish whole brain versus mouse hippocampal
homogenates revealed a high-affinity binding site with a KD of 5 ± 2.5 nM and Bmax of
1974 ± 410 fmol/mg protein in the zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of
704 ± 182 fmol/mg protein in mouse hippocampus. The binding of [3H] D-22 to brain
membrane homogenates was partially blocked by the neurotoxic cation 1-methyl-4-
phenylpyridinium (MPP+), a known OCT substrate. To determine if D-22 bath
exposures reach the brain, zebrafish were exposed to 25 nM [3H] D-22 for 10 min,
and 736 ± 68 ng/g wet weight [3H] D-22 was bound. Acute behavioral effects of D-22 in
zebrafish were characterized in two anxiety-relevant tests. In the first cohort of
zebrafish, 12.5, 25, or 50 mg/L D-22 had no effect on their height in the dive tank
or entries and time spent in white arms of a light/dark plus maze. By contrast, 25 mg/L
buspirone increased zebrafish dive tank top-dwelling (p < 0.05), an anticipated
anxiolytic effect. However, a second cohort of zebrafish treated with 50 mg/L D-22
made more white arm entries, and females spent more time in white than controls.
Based on these findings, it appears that D-22 bath treatments reach the zebrafish brain
and have partial anxiolytic properties, reducing anti-predator dorsal camouflaging,
without increasing vertical exploration. High-affinity binding of [3H] D-22 in zebrafish
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brain and mouse brain was similar, with nanomolar affinity, possibly at conserved OCT
site(s).

Keywords: anxiety, black–white plus maze, Danio rerio (zebrafish), dive tank, SLC22A, pseudoisocyanine, uptake 2
transporters, predator avoidance

INTRODUCTION

Organic cation transporters (OCTs) are transmembrane proteins
of the solute carrier family SLC22A responsible for bi-directional
facilitated sodium-independent electrogenic transport of
compounds that are mono or multivalent cations at
physiological pH. They are blocked by hydrophobic
polyamines and steroid hormones (Koepsell et al., 2007; Hill
et al., 2011; Sala-Rabanal et al., 2013). In mammals, there are
three isoforms: OCT1 is richly expressed in the liver, kidneys, and
gut; OCT2 is widely found in the brain, kidneys, and to a lesser
extent, in other peripheral organs; and OCT3 is predominant in
the heart, lungs, adipose tissue, placenta, and brain, and also
occurs in other peripheral organs (Koepsell et al., 2007; Nies et al.,
2011; Koepsell, 2020; Samodelov et al., 2020; Sweet, 2021).
Substrates of mammalian OCTs include the biogenic amines
serotonin, norepinephrine, dopamine, and histamine;
antioxidants; vitamins such as choline and thiamine;
metabolites such as guanidine or putrescine; xenobiotic
compounds including drugs such as metformin; and cationic
neurotoxins such as the 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) cation, 1-methyl-4-phenyl
pyridinium (MPP+), or paraquat cations that are used to
model Parkinson’s disease in rodents (Cui et al., 2009;
Rappold et al., 2011; Nies et al., 2011; Bönisch, 2021; Yee and
Giacomini, 2021). The pseudoisocyanine 1-1′-diethyl-
2,2′cyanine iodide (decynium-22 or D-22) blocks human and
mouse OCTs at low nM concentrations, and because of this
property, D-22 is a useful pharmacological tool in the studies of
OCT functions (Hayer et al., 1999; Hayer-Zillgen et al., 2002;
Fraser-Spears et al., 2019; ; Bönisch, 2021).

Human gene polymorphisms affecting the expression or
function of OCTs are associated with substance abuse (Aoyama
et al., 2006; Bousman et al., 2009; Bergen et al., 2014), resistance to
drugs such asmetformin (Nies et al., 2009; Becker et al., 2010; Chen
et al., 2010; Chen et al., 2015), and a more rapid progression of
Parkinson’s disease (Becker et al., 2011). Developmental language
delays, hypotonia, and motor speech disorders were evident in two
cases of chromosome 6q deletions that impacted OCT2 and OCT3
genes (Peter et al., 2017). Given this, gene polymorphisms
impacting OCT expression or function may contribute to
psychiatric disorders such as depression, anxiety, and autism
spectrum disorders, but testing this hypothesis requires further
clinical investigations (Daws et al., 2013; Gasser and Daws, 2017;
Daws, 2021). In humans and rodents, OCTs have lower affinity
for monoamine transmitters than sodium-dependent serotonin
(SLC6A4), norepinephrine (SLC6A2), or dopamine (SLC6A3)
transporters (Fraser-Spears et al., 2019). SLC6A transporters are
the primary mediators of monoamine clearance, so they are
called “uptake 1,” while in most circumstances, OCTs play an

auxiliary role in monoamine clearance and are referred to as
“uptake 2” (Daws et al., 2013; Gasser, 2021). However, OCTs
have a greater capacity to clear monoamines at high
concentrations or if SLC6A transporters are compromised
(Daws, 2009).

Rodent studies show that OCTs modulate monoamine
availability in the brain to shape mood and behaviors.
However, OCT effects on anxiety have been equivocal. For
example, OCT3 knockout mice were more active and
exhibited less anxiety in some tests (Wultsch et al., 2009), but
were more stressed, anxious, and less sensitive to
psychostimulants in others (Vialou et al., 2008). OCT3
knockout males had lower social interaction preferences than
wild types (Garbarino et al., 2019), which may stem from early
developmental dysregulation of serotonin neurotransmission
(Karahoda et al., 2020). Systemic D-22 treatment blocked the
serotonin uptake and produced antidepressant-like effects
independent of the serotonin transporter (Baganz et al., 2008;
Horton et al., 2013). Co-administration of D-22 with monoamine
reuptake inhibitors enhanced antidepressant effects in wild-type
mice (Krause-Heuer et al., 2017; Bowman et al., 2020). Since acute
effects of D-22 on anxiety-relevant behaviors were not well
characterized, one goal of this study was to use zebrafish to
look for such effects. We used two different tests, dive tank and
light–dark plus maze with established protocols to assess acute D-
22 effects on anxiety-based behaviors (Gould, 2010a; Sackerman
et al., 2010; Connors et al., 2014).

OCTs have similar structure and function in bacteria, plants, and
animals (Koepsell et al., 2007). Two OCT orthologs were recently
discovered and characterized in zebrafish (Danio rerio): drOCT1 on
chromosome 20 and drOCT2 on chromosome 17; they are most
syntenic with human OCT1, OCT2, and OCT3 which occur as a
gene cluster on chromosome 6 (Mihaljevic et al., 2016). The
expression of drOCT1 was high in liver and kidneys, while
drOCT2 was high in eyes, and sex dependent expression in
muscle, gonads, and gills. Brain drOCT expression in males was
higher than that in females. Furthermore, the same group found
many similarities in functional properties among human OCTs and
zebrafish drOCT1 through homology modeling and transfection of
drOCT1 into human embryonic kidney (HEK293T) cells for
fluorescent substrate uptake saturation and concentration-
dependent inhibition assays (Mihaljević et al., 2017). However,
neither ligand-binding properties of D-22 in zebrafish nor if bath
exposures to D-22 can even reach the brain were previously
reported. Since pharmacological profile differences occur even
among mouse, rat, and human OCTs for substrates and blockers
(Maier et al., 2021), the second goal of this study was to characterize
the high-affinity binding properties of radiolabeled D-22 in zebrafish
whole-brain membrane homogenates that could underlie any acute
changes in their anxiety behaviors.
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MATERIALS AND METHODS

Animals
All procedures involving live zebrafish were approved under
protocol #090124 by the University of Texas Health Science
Center at San Antonio Institutional Animal Care and Use
Committee in accord with the National Institutes of Health
guidelines (http://oacu.od.nih.gov/ARAC). A hundred zebrafish
(Danio rerio) 4–6 months old with a mean ± SEM weight of 0.
285 ± 0.016 g were obtained in 2009 from Aquatic Eco-Systems
Inc (Apopka, FL, United States). Subsequently, 48 zebrafish
weighing 0.171 ± 0.013 g were obtained for additional
behavior tests from Carolina Biological Supply Co.
(Burlington, NC, United States). Fish were housed in mixed-
sex groups of six to eight for 2–3 months in the original 2009
studies, and one week for a more recent study to acclimate before
use in 3 L tanks of a benchtop flow through aquatic habitat
(Aquatic Eco-Systems, Apopka, FL, United States) filled with
25–27°C deionized water (Nanopure, Barstead, Dubuque, IA,
United States) supplemented with 200 mg/L “Instant Ocean”
salts (Aquarium Systems, Mentor, OH, United States), pH =
7.2–7.6. Light/dark cycles were 14:10 h (lights on at 700 h and
off at 2,100 h). Fish were fed “Top Fin” tropical flakes once per
day (Pacific Coast Distributing, Phoenix, AZ, United States).

Six constitutive serotonin transporter knockout heterozygous six-
month-old male mice weighing 26 ± 2 g came from an in-house
breeding colony established by the founders generously provided by
Dr.DennisMurphy (NIMH) in 1999 (Bengel et al., 1998). Themice on
a congenic C57BL/6J background were littermates derived from
heterozygous mating and were raised and housed together in same-
sex groups fromweaning until use in radioligand binding experiments.
The mice were housed in a temperature- and humidity-controlled
vivarium under a 12-h light/dark cycle (lights on at 600 h) with ad
libitum access to rodent diet (Teklad 7,912 irradiated, Envigo) and
water (reverse osmosis, acidified to pH 2.5–3 with HCl). Their use for
tissue was IACUC-approved under protocol #020014.

Acute Drug Treatments of Zebrafish for
Behavior Testing
Initially, 45 zebrafish, a mixed assortment of males and females,
were randomly assigned to seven different compound exposure
groups. All compounds were from Sigma Aldrich (St. Louis, MO,
United States). Fish were individually bath-exposed for 5 min to
drugs dissolved in 20 ml solutions in 50-ml glass beakers.
Dimethyl sulfoxide (1%) was used as a control or vehicle for
all treatments. The anti-anxiety drug buspirone, a serotonin 5-
HT1A receptor partial agonist, was used at 25 mg/L as a positive
control since it had anxiolytic effects in zebrafish dive tank tests
(Bencan et al., 2009). D-22 was tested at 12.5, 25, and 50 mg/L. In
addition, the mammalian stress hormone corticosterone (CORT)
was administered at 25 mg/L. This corticosterone treatment was
included because in vitro it has been shown to block mammalian
OCTs (Gasser, 2021). Red food dye (five drops, red #40 and #3,
H.E.B, San Antonio, TX, United States) was used as a color
control for the D-22 (50 mg/L) solution since it had the same
wavelength and similar amplitude in the spectrophotometer

(DU-600, Beckman, Brea, CA, United States) absorption
spectrum.

In a follow-up experiment, 24 females and males were used. Sex of
these fish was visually determined by a combination of early morning
inspection for female genital papilla as described by Yossa et al. (2013)
and male yellow or golden-colored pectoral fin breeding tubercles as
described by McMillan et al. (2015) before assigning D-22 (50mg/L)
or vehicle treatments to 12 of each sex. These characteristics are
consistent with descriptive colorations used to determine sex in the
initial study as per Paull et al. (2008). After 5min bath exposures to
treatments or controls for all experiments, zebrafish were placed in
100ml habitat water for 5min to rinse and were given drugs to
approachmaximal physiological efficacy before a series of two anxiety-
relevant tests of response to a novel environment.

Novel Environment Test 1: Height in Dive
Tank Water Column
A 4-L triangular acrylic tank (Aquascene 1, TopFin, Phoenix, AZ)
was filled 18 cm deep with 3.5 L of home tank water. Lines dividing
it into thirds were drawn in advance on the outside with a
permanent marker. The tank sat on a black countertop, with a
24 cm × 22 cmwhiteboard against its back wall to enhance contrast.
After drug exposure and 5min in holding, each zebrafish was placed
in a dive tank, observed, and digitally recorded (HP Photosmart
R742, OfficeMax, United States) for 5 min tomeasure the time spent
in the top 2/3 vs. the bottom 1/3 of the tank, as previously described
by Sackerman et al. (2010). In the initial study, Bartlett’s test (p = 0.7)
showed standard deviations among groups that were similar so the
group means were compared by the one-way analysis of variance
(ANOVA) with Dunnett’s multiple comparisons used for post hoc
analysis of significant effects. In the follow-up study, a two-way (sex
× treatment) ANOVA with Sidak’s post hoc analysis for significant
outcomes was performed using GraphPad Prism nine.

FIGURE 1 | Light/dark plus maze. The aquatic cross maze is set up with
a 3 × 3 box configuration at the intersection of the maze. Fish explore the
environment under bright light (800 lumens from a 60 W bulb), and the
behavior is video-recorded for 5 min. Treatment-blind observers collect
data on time spent in different areas of the maze.
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Novel Environment Test 2: Light-Dark Plus
Maze Arm Preference
After dive tank tests, fish were tested in the aquatic light–dark plus
maze that was performed as described by Gould (2010a). Briefly, a
clear acrylic cross maze (Noldus, Leesburg, VA, United States) was
used in a 30 cm2 × 30 cm2 plus configuration. Opposite arms were
covered with black polyethylene and the other two with white
polyethylene 10 cm2 squares (Figure 1). The gray background of
the copy stand (Kaiser RS1, B&H Photo, New York, NY) showed
through the middle 10 cm2 section of the maze. The maze was filled
to a depth of 4 cm. A 60-W incandescent desk lamp (800 lumens)
was mounted on the copy stand behind the digital camera (HP
Photosmart R742) above the maze for testing. Each zebrafish was
placed in the center of the maze to start, and the total number of line
crosses, the percent of the total entries into the white arms, and the
total time spent in the white arms were observed from 5-min video
recordings. For the first experiment, Bartlett’s test was performed to
determine if standard deviations differed among groups, and if they
did not, one-way ANOVA was performed, but if they did, then
Welch’s ANOVA was performed, with Dunnett’s multiple
comparisons for the post hoc analysis of significant effects. For
the follow-up experiment, two-way (sex × treatment) ANOVA
was performed with Sidak’s post hoc test for significant findings
using Prism nine. After behavior tests, each fish was weighed and
euthanized by submersion in ice water for 5min and subsequent
decapitation to effect.

Uptake of [3H] D-22 from Bath Water Into
Zebrafish Muscle, Viscera, and Brain
A total of six adult zebrafish, three males and females each, were
individually exposed to 25 nM [3H] D-22 (25 Ci/mmol, ARC,
Boston, MA (11.4 μg/L)) in 25 ml habitat water in a 50-ml beaker
for 10 min. Fish were removed from the radioligand bath with
forceps, anesthetized and rinsed with a 30 s dip in ice water, and
euthanized by decapitation on an ice-chilled glass Petri dish with
a scalpel. From each fish, [3H] D-22 labeled zebrafish brain,
visceral organs (heart, gastrointestinal tract, gall bladder, spleen,
and liver), and a segment of the skinned lateral muscle were
removed as described by Gupta and Mullins (2010), and then
weighed and placed in 1.5 ml microcentrifuge tubes containing
200 ml scintillation cocktail (Ecolume, Fisher Scientific,
United States). Labeled brains and muscles were mechanically
homogenized with a teflon pestle and transferred to 8 ml
scintillation vials (Beckman Mini Poly-Q, Fisher Scientific,
United States), to which 4 ml of scintillation cocktail was added.
Tissue homogenates in vials were vortexed, then mixed on an
orbital shaker overnight. The [3H] label (DPM) was measured on a
Packard 1900 TR liquid scintillation counter (Packard Instrument
Co., Downers Grove, IL) with efficiency of 40%.

Saturation Binding of [3H] D-22 in Zebrafish
and Serotonin Transporter-Deficient Mice
Saturation assays were performed to determine the specific
binding of D-22 to uptake 2 sites in mouse hippocampus and

zebrafish whole brain. Heterozygous serotonin transporter
knockout mice were used because their hippocampal OCT3
expression was upregulated vs. the wild-type mice (Baganz
et al., 2008). A 50 mM Tris HCl, 120 mM NaCl, 5 mM KCl
buffer, pH 7.4 at 25°C was used. Hippocampi from two mice
were combined to produce one membrane homogenate, and 12
zebrafish whole brains from males and females were combined
to produce the other membrane homogenate in 25 ml buffer
each. Both were homogenized separately at 26,000 rpm for
1 min with a Polytron tissue homogenizer (Brinkman
Instruments, Westbury, NY, United States). Homogenates
were centrifuged for 10 min at 36,000 × g at 4°C using a JA
25.50 rotor (Avanti J-E, Beckman Coulter, Indianapolis, IN,
United States). The supernatant was discarded, and the pellet
was resuspended in 25 ml buffer on ice using a Potter Elvehjem
10-ml glass and teflon homogenizer. The homogenate was
centrifuged again for 10 min at 36,000 × g. These final
pellets were resuspended to obtain an approximate protein
concentration of 1 mg/ml, determined using the Bradford
reagent (Sigma, St. Louis, MO), and colorimetric detection
was performed at 595 nm using a plate reader (Spectra Max
190, Molecular Devices, San Jose, CA, United States).

For the incubations, a 100-µL homogenate was added to a tube
containing 150 µL buffer with [3H] D-22 at eight concentrations
ranging from 0.1 to 14 nM [3H] D-22 since concentrations
exceeding this range are not pharmacologically relevant
(Horton et al., 2013). To block any potential D-22 binding to
uptake 1 transporters in mice or fish (Gould et al., 2007), 25 nM
each of sertraline and mazindol were added to the buffer. To
define the non-specific binding of [3H] D-22, 25 µM MPP+ and
25 µM cold D-22 were added to the second and third groups of
tubes, respectively. Each condition was reproduced in duplicate
tubes. The solutions were incubated at room temperature on an
orbital mixer for 60 min, and incubation was terminated by the
addition of 4 ml of buffer, pH 7.4 at 4°C. Labeled homogenates
were captured by filtration under vacuum on glass fiber filters
pre-soaked in 0.5% polyethyleneimine (Sigma) with a Brandel
tissue harvester (Gaithersburg, MD). Filters were washed twice
more with 4 ml of buffer. Radioactivity trapped by the filters was
measured on a scintillation counter (Packard Instrument Co.,
Downers Grove, IL) with 40% efficiency. Non-linear and linear
curve fits were performed with Delta Graph (V5, Red Rock
Software, Salt Lake City, UT, United States) and confirmed using
Prism (V5 for Mac OS 10, Graph Pad, LaJolla, CA, United States).

RESULTS

Zebrafish Anxiety-Relevant Behaviors in
Novel Environments After Acute D-22
Treatment: Initial Study
Dive Tank: Initially, the behavior of zebrafish exposed to red food
dye matching the wavelength with a similar intensity to the 50 mg/L
D-22 solution was compared with habitat water controls. There was
no difference in top dwelling between these two groups [t (13) =
1.221, p= 0.24], so the data were pooled into a single control group of
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15 fish. The time in the top 2/3 of the dive tank for this control group
was compared with the average times for five to seven fish treated
with buspirone, corticosterone, or three concentrations of D-22
treatments. Only the zebrafish treated with 25mg/L buspirone
spent more time in the top 2/3 of the tank [F (5, 39) = 4.786,
p = 0.0017, Dunnett’s p = 0.0004], as shown in Figure 2A.

Light–Dark Plus Maze: The red food dye-control group did
not differ from the habitat water-control group in number of line
crosses into different boxes [t (13) = 0.1836, p = 0.86], percentage
white of total line crosses [t (13) = 0.9615, p = 0.3538], and time in
white arms [t (13) = 0.4692, p = 0.6467], so these control groups
were pooled. The standard deviations for line crosses differed
among the groups (Bartlett’s p = 0.004), so Welch’s ANOVA was
used. The total number of line crosses (entries into center, white,
or black boxes) in the light–dark maze was reduced only in the
50 mg/L D-22 treatment group [W (5.000, 14.49) = 6.130, p =
0.003, Dunnett’s p = 0.04], as shown in Figure 2B. The percentage
of white/total line crosses also had different standard deviations
among groups (Bartlett’s p = 0.03), but the means did not differ
between treatments [W (5.000, 14.11) = 1.288, p = 0.323], as
shown in Figure 2C. For time spent in white boxes, the standard
deviations among groups were similar (Bartlett’s p = 0.4657), and
there were no significant differences among groups [F (5, 39) =
0.4940, p = 0.7787], as shown in Figure 2D.

Follow-Up Study: Acute D-22 50mg/L
Treatment in Females Versus Males
Dive Tank: There was no significant interaction [F (1,44) = 2.485,
p = 0.1221], effect of sex [F (1,44) = 1.961, p = 0.1684], or effect of
acute D-22 treatment [F (1,44) = 0.3468, p = 0.5589] on time
spent in the top 2/3 of the dive tank in the follow-up study, as
shown in Figure 3A.

Light–Dark Plus Maze
The total number of line crosses or box entries did not differ by sex
[F (1, 44) = 0.7577, p = 0.3888] or D-22 treatment [F (1, 44) = 1.381,
p = 0.2463], and there was no significant interaction [F (1, 44) =
0.000, p = 0.9999], as shown in Figure 3B. However, there was a
significant effect of acute D-22 treatment [F (1, 44) = 14.61, p <
0.0004] to increase the percentage of white/total line crosses or
entries by both female [t (12) = 2.894, p < 0.0118] and male [t (12) =
2.511, p < 0.0313] zebrafish relative to their controls, as shown in
Figure 3C. There was no significant interaction [F (1, 44) = 0.0730,
p = 0.7882] or sex effect [F (1, 44) = 0.4829, p = 0.4908] on the
percentage of white/total line crosses. Female D-22-treated zebrafish

FIGURE 2 | Acute effects of D-22 on behaviors in novel environment-
based anxiety tests. A total of 45 zebrafish were tested with sample sizes
ranging from 5 to 15 fish with both males and females in every group. (A)Only
the anti-anxiety drug buspirone increased the amount of time zebrafish

(Continued )

FIGURE 2 | spent at the top of the dive tank. (B)D-22 at 50 mg/L reduced the
number of line crosses made by zebrafish exploring the light/dark plus maze.
(C) There were no effects of D-22 or any other treatment on the percentage of
white box entries/total entries. (D) There was no effect of D-22 or any other
treatment on the time spent in white boxes. In all figures, for controls (CTRL),
the filled symbols are the food color controls and open symbols are uncolored
control solutions. CORT = corticosterone at 25 mg/L. Mean and S.E.M. are
shown.
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also spent significantly more time in white arms than in controls [F
(1, 44) = 10.99, p< 0.0018, t (12) = 2.904, p< 0.0114], whilemales did
not [t (12) = 1.783, p= 0.1563], as shown inFigure 3D. There was no
interaction [F (1, 44) = 0.6288, p = 0.430] or sex effect [F (1,44) =
1.391, p = 0.2445] on the time spent in white arms.

[3H] D-22 Uptake Into Zebrafish Tissues
from Water
Zebrafish exposed to 25 nM [3H] D-22 for 10 min took up 736 ±
68 ng/g wet weight in the brain, 601 ± 134 ng/g in the viscera, and
308 ± 38 ng/g in the muscle (n = 6), as shown in Figure 4. This
demonstrates [3H] D-22 occupancy following acute bath
exposure in zebrafish brain and gut are comparable and
roughly double that found in muscle. This occupancy in the
brain and gut is similar to zebrafish [3H] citalopram uptake from
a 3-min bath exposure (Sackerman et al., 2010). The outcome
demonstrates that [3H] D-22 or a metabolite that remains
radiolabeled can cross the blood–brain barrier to occupy
binding sites in the zebrafish brain. A prior study showed that
blood–brain barrier properties in healthy adult zebrafish are
comparable with those of higher mammals (Jeong et al., 2008).
This finding supports the idea that bath exposures of zebrafish,
paralleling systemic administration of D-22 to animals for
behavioral studies is likely to occupy OCTs in the brain.

Saturation Binding of [3H] D-22 in Zebrafish
and Mouse Brain Homogenates
Total binding of [3H] D-22 had maximal binding (Bmax) =
1,656 ± 2,839 fmol/mg protein in zebrafish whole-brain
membrane homogenates pooled from females and males, and

FIGURE 3 | Acute effects of D-22 (50 mg/L) on female versus male
zebrafish in anxiety tests. A total of 48 zebrafish, 12 each of males and
females, were treated with D-22 or a vehicle control for 5 min, washed for
5 min, and tested in a battery of anxiety-relevant behaviors. (A) There

(Continued )

FIGURE 3 | was no effect of D-22 treatment or sex on top dwelling in the dive
tank. (B) There was no effect of D-22 treatment or sex on exploration of the
maze as measured by line crossings in the light–dark plus maze. (C) Exposure
to D-22 increased the percentage of white/total line crosses for female and
male zebrafish (*p < 0.05). (D) D-22 treatment increased the time female
zebrafish spent in white arms of the maze (*p < 0.05). Mean and S.E.M. are
shown.

FIGURE 4 | [3H] D-22 uptake from bath solution into zebrafish. After
10 min of in vivo bath exposure, zebrafishmuscle had a lower D-22 content by
wet weight than in either the brain or viscera. Males are shown as open boxes
and females are closed circles. Mean and S.E.M. are shown.
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222.7 ± 406.2 fmol/mg protein in mouse hippocampus. For total
binding, the dissociation constant (KD) = 4.853 ± 10.59 nM in the
zebrafish brain and 0.7030 ± 5.175 nM inmice. Specific [3H] D-22
binding, with non-specific binding defined by 25 μM D-22
plotted by linear regression and subtracted from total, had a
Bmax = 1974 ± 409.7 fmol/mg protein and KD = 5.172 ±
2.514 nM in zebrafish. In mice, specific [3H] D-22 binding had
a Bmax = 704.3 ± 182.0 fmol/mg protein and KD = 3.307 ±
2.308 nM. The binding of [3H] D-22 was partially blocked by
MPP+, with a curve fit Bmax = 265.9 ± 676.1 fmol/mg protein
and KD = 2.124 ± 10.77 nM in zebrafish but with an ambiguous
curve fit in mouse hippocampus, n = 3 independent experiments,
as shown in Figure 5.

DISCUSSION

The main behavioral finding from this study is that acute
exposure to D-22 at 50 mg/L increased zebrafish exploration
of plus maze arms with a white background. Initially, acute
bath exposure to the high-affinity mammalian OCT inhibitor
D-22 reduced zebrafish box entries, the index of exploration, in
the light–dark plus maze at the aforementioned dose with no

other behavioral effects. For this reason, we decided not to test
any higher doses of D-22 for this study. In the follow-up male vs.
female experiment with the 50 mg/L D-22 dose, the percentage of
white/total entries of both sexes and the amount of time spent by
females in white arms was higher than those of the untreated
controls (Figures 3C,D). Treatment with the mammalian stress
hormone corticosterone at 25 mg/L was without effect, which
may be consistent if the binding properties of zebrafish drOCT1
or drOCT2 are similar to those of mouse OCT3, as corticosterone
has a lower affinity for murine OCT3 than D-22 (Koepsell et al.,
2007). Our findings support the hypothesis that D-22 has
anxiolytic properties relative to vehicle control treatment on
zebrafish exploratory behavior in novel environments.
Increased time spent in white arms after D-22 50 mg/L
treatment may be indicative of an anxiolytic effect, perhaps
because of reduced concern about predators from above (i.e.
reduced dorsal camouflaging).

Anxiety behavior tests in zebrafish are based on predator
avoidance strategies such as dwelling lower in the water
column or staying on dark backgrounds (Córdova et al., 2016;
Crane and Ferrari, 2017). Over the course of evolution,
countershading, or dark dorsal coloration and light ventral
coloration, may have been selected for in fish because it
facilitates predator avoidance by background camouflage
(Kelley et al., 2017). In zebrafish, countershading is under the
control of melanocortin receptor 1 and a series of genes regulating
agouti-signaling proteins that bind to it (Cal et al., 2019; Liang
et al., 2021). Countershading is somewhat dynamic in zebrafish
since within two days, fish can increase the dark pigmentation on
their dorsum by the recruitment of melanosome into dorsal
melanophores in response to visual exposure to a dark
background or floor (Hatamoto and Shingyoji, 2008).
Norepinephrine signaling, associated with the fight or flight
response, is a driver of dynamic pigment shifts that zebrafish
undergo to blend into their backgrounds (Xu and Xie, 2011).
Taken together, it appears that substantial evolutionary pressure
from predators from above may have driven zebrafish
countershading and camouflaging into dark backgrounds.

By contrast, the height in the water column of the dive tank
was not affected by 50 mg/L D-22. This response is akin to
exploration of the middle of an open field test by rodents.
Dwelling at the bottom of the tank is considered a
thigmotaxic response consistent with predator avoidance.
Among the experiments for this study, only the treatment
with the anti-anxiety drug buspirone increased zebrafish
exploration of the upper part of a dive tank, as had previously
been reported to occur (Bencan et al., 2009). In other studies,
drugs such as citalopram and desipramine also increase dwelling
in the top 2/3 of the dive tank, while other drugs increasing time
in the white arms of the plus maze, such as chlordiazepoxide, did
not increase dwelling in the top of the dive tank (Sackerman et al.,
2010). D-22 is therefore not the only drug with anxiolytic effects
in rodents that yields different responses in the zebrafish dive
tank versus plus maze.

The lack of sex-specific effects of D-22 on these behaviors is of
interest, since in male zebrafish, drOCT1 and to a lesser extent
drOCT2 are more highly expressed in the brain than in females

FIGURE 5 | [3H] D-22 saturation in (A) zebrafish whole-brain versus (B)
mouse hippocampus. A single high-affinity binding site for [3H] D-22 with a KD

of 5 ± 2.5 nM and Bmax of 1974 ± 410 fmol/mg protein was found in whole
zebrafish brain, and a KD of 3.3 ± 2.3 and Bmax of 704 ± 182 fmol/mg
protein in mouse hippocampus, respectively, with non-specific defined by
25 μMD-22. Binding of [3H] D-22 was partially blocked by MPP+, n = 3. Mean
and S.E.M. are shown.
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(Mihaljevic et al., 2016). We observed that sex differences in
mouse OCT3 (in males) vs. the plasma membrane monoamine
transporter (PMAT in females) contribute more to enhanced
properties of amphetamine, without knowing if differential
expression of these transporters corresponds with sex in
mouse brain (Clauss et al., 2021). This highlights the
importance of comparing expression of uptake 2 transporters
in future rodent and zebrafish studies to advance our
understanding of sex-specific effects of OCTs. However, sex
determination in zebrafish is a very different process than
what occurs in mammals; for example, females are the
heterogametic sex and chromosome 4 harbors the sex-
determining gene (Aharon and Marlow, 2021). Also female
zebrafish have a male-appearing phenotype if reared in warm
temperatures (Hosseini et al., 2019). These kind of differences
may confound efforts to effectively translate zebrafish findings to
mammalian and human responses.

To complicate matters further, it appears that the mammalian
expression of OCT2 and OCT3, but not OCT1, may be under
epistatic control in many tissues such that only maternal coding
genes are expressed (Liu et al., 2022). The control element,
Antisense to Igf2r RNA Noncoding (Air), is paternally
expressed and as a result, genotypes and OCT2 and OCT3
expression phenotypes in most tissues may not match in
heterozygous knockout mice, since only one parental allele is
active (Yotova et al., 2008). One exception to this imprinting
pattern in mice may be the neurons wherein at least Igf2r was
shown to be bi-allelically expressed (Yamasaki et al., 2005).
Initially, maternal imprinting of mouse OCT2 and OCT3
along with insulin-like growth factor 2 receptor (Igf2R) was
thought to be restricted to the mouse placenta during
pregnancy (Zwart et al., 2001; Sleutels et al., 2002; Nagano
et al., 2008). Recently, evidence has emerged that in mice,
cattle, and in some tissue types, human OCT2 and OCT3 have
mono-allelic expression (Yotova et al., 2008; Peter et al., 2017; Liu
et al., 2022). Given this, future studies should consider imprinting
and confirming the protein level expression of OCT2 and OCT3,
and also look into the potential epistatic expression of drOCTs.

We also demonstrated with a bath exposure to [3H] D-22 that
the drug penetrates the viscera, muscles, and brain of zebrafish in
the same time frame that behavioral effects was measured. The
mode of administration may affect the outcome of novel
environment-based behavior tests in fish. For example, in a
recent study, zebrafish were microinjected with D-22 at
0.01–10 μg/g in a salt solution vehicle, and this was found to
have anxiogenic properties, increasing dark background
preference, or “scotaxis” with a u-shaped curve on risk
assessment based on freezing behavior (Maximino, 2021).
Further studies on dosing and mode of administration that
take into account the amount of D-22 reaching the brain and
behavioral effects are needed to clarify its role in anxiety-related
behaviors.

Characterization of high-affinity binding sites for D-22 in
zebrafish or mouse brains was based on D-22 concentrations
found in the brain with acute treatments that produced
antidepressant-like behavioral effects in mice (Baganz et al.,
2008; Horton et al., 2013). Hence the in vitro assays on brain

membrane homogenates utilized a maximal concentration of
14 nM [3H] D-22, and bath exposures used 25 nM. Our goal
was to capture a single high-affinity binding site most likely
responsible for the beneficial behavior effects observed with
0.01–0.1 mg/kg. We did not want to use doses of D-22
approaching equivalents of 10 mg/kg because it has a sedating
effect on mice (Horton et al., 2013). In the present study, 50 mg/L
D-22 initially appeared to slow the exploration of the light/dark
plus maze in a few fish, but did not interfere with the exploration
as evidenced by box entries in the light–dark plus maze that
matched controls in the follow-up study. We found that with the
aid of monoamine blockers, a putative high-affinity binding site
appeared to reach a specific binding plateau in the zebrafish more
clearly than in the mouse saturation assays.

The pharmacological properties of zebrafish drOCT1 were
assessed in concentration-dependent inhibition assays with many
drugs, hormones, and xenobiotics (Mihaljević et al., 2017). D-22
was not tested in these assays for its affinity with drOCT1. In vivo,
we now know that drOCT1 and drOCT2 and other organic cation
transporters that D-22 may bind to, occur in the brain with some
capacity to affect behavior after acute treatment (Mihaljevic et al.,
2016). Paralleling this, although D-22 had a slightly greater
affinity for human OCT3 than OCT2 or plasma membrane
monoamine transporters in vitro (Hayer-Zillgen et al., 2002;
Fraser-Spears et al., 2019), its behavioral effects on these
transporters in vivo may involve collective inhibition of OCTs.
Furthermore, D-22 may bind to other transporters or receptors
which may also help mediate its behavioral effects. For example,
D-22 also blocks the plasma membrane monoamine transporter
(PMAT) with high affinity (Duan andWang, 2010), and a modest
affinity of D-22 for adrenergic receptors has also been reported
(Russ et al., 1996). Since OCTs transport many xenobiotics,
including neurotoxins and drugs, their role in exposure-induced
neurodegenerative disorders could be more safely studied at high
throughput in zebrafish (Gould, 2010b; Lin et al., 2021). However,
binding sites in the zebrafish brain for D-22 are even less well
described, so further study in this area is warranted.
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