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Populations threatened by an abrupt environmental change—due to rapid cli-
mate change, pathogens or invasive competitors—may survive if they possess
or generate genetic combinations adapted to the novel, challenging condition.
If these genotypes are initially rare or non-existent, the emergence of lineages
that allowa declining population to survive is known as ‘evolutionary rescue’.
By contrast, the genotypes required for survival could, by chance, be common
before the environmental change. Here, considering both of these possibili-
ties, we find that the risk of extinction can be lower in very small or very
large populations, but peaks at intermediate population sizes. This pattern
occurs when the survival genotype has a small deleterious effect before the
environmental change. Since mildly deleterious mutations constitute a large
fraction of empirically measured fitness effects, we suggest that this unex-
pected result—an intermediate size that puts a population at a greater risk
of extinction—may not be unusual in the face of environmental change.
1. Introduction
Populations that face a sudden and adverse change in their environment—for
example through climate change, the emergence of novel pathogens or the arrival
of invasive competitors—may be able to survive if some members of the popu-
lation carry an allele, or combination of alleles, that allows survival in the
novel, challenging condition. If the required allele is rare (or completely absent)
before the environmental change, survival can occur via ‘evolutionary rescue’
[1–3], in which the pace of adaptive change outstrips population decline.

The simplest models of an environmental challenge assume that the change
is instantaneous (but see [4]); after this change, the fitness of individuals that do
not carry the survival allele is reduced, and such lineages begin to decline. If the
population initially lacks the survival allele, evolutionary rescue can occur via
de novo mutation, while the population is potentially en route to extinction.
Survival can also occur via standing variation; this is also considered evolution-
ary rescue if the survival allele was rare before the environmental change [5,6].

For a given environmental challenge, however, the allele required to survive
could in fact be common before the environment changes. For example, antibiotic
resistance alleles may pre-exist at high frequencies in untreated patients, and
more generally unselected alleles can reach high frequencies due to genetic
drift. These situations are excluded, by definition, from evolutionary rescue,
since the population is not in need of rescuing if the survival allele is common.

The relationship between population size and extinction is of long-standing
interest in conservation biology [7–9]. In surviving an abrupt environmental
change as described above, the survival probability is closely tied to the number
of copies of the survival allele, rather than to the frequency of the allele in the popu-
lation. This is because each copy has an independent chance of creating a lineage
that will ultimately rescue the population, irrespective of the size of the wild-type
population. If the survival allele is maintained in standing variation at a given
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frequency, this implies that a larger population would have a
higher chance of survival because it carries more copies of
the allele. Similarly, for a given mutation rate, a large popu-
lation will create more copies of the required allele by de
novo mutation before extinction. Finally, because extinction
occurs at an absolute threshold of zero individuals, larger
populations allow more time for rescue to occur before extinc-
tion. For these reasons, it seems reasonable that the probability
of survival will increase with population size; larger
populations appear to be safer from extinction.

Indeed, as we will illustrate below, the probability of
evolutionary rescue increases with population size; larger
populations have an advantage when the required allele is
initially absent or rare. But does this hold more generally?
If a particular allele is required to survive an environmental
change, what is the overall probability that the population
survives, allowing for the possibility that the allele could
be at any frequency (absent, rare or common) when the
population faces the novel challenge?

To address this question rigorously, further assumptions are
required regarding the selective effect of the survival allele in
the environment before the change, and the population sizes
of interest. While we delineate these assumptions mathemat-
ically in the sections to follow, the essence of our approach is
that (1) genetic drift may be non-negligible in the small popu-
lations that will be at risk of extinction in relevant scenarios
and (2) it is very common for mutations to have mildly deleter-
ious effects—that is, effects that are not completely neutral but
are far from lethal.We demonstrate that under these conditions,
survival can be favoured in smaller populations, because gen-
etic drift maintains mildly deleterious alleles at substantial
frequencieswhen the population size is small. Thus the survival
probability can in fact decreasewith increasing population size.
This counterintuitive result may have broad implications for
conservation, antimicrobial resistance and pathogen escape
from immune or vaccine pressure [1,2].
2. Methods
We combine awell-studiedmodel of evolutionary rescue [5,6]with
Wright’s classicmodel of the balance among genetic drift, selection
andmutation [10] to describe the survival probability as a function
of population size. For simplicity, we consider a haploid popu-
lation of size N that begins to decline at rate δ per generation
after an instantaneous change in the environment; that is, the
expected number of offspring per wild-type individual (absolute
fitness) is initially one, and instantaneously becomes 1− δ in the
novel environment. We assume that an allele (or set of alleles
that can be grouped) at a locus confers the ability to withstand
this change in environment. Specifically, the survival allele has a
fitness of 1− δ + sb after the change, where sb > δ. Before the
change, we assume that the survival allele bears a fitness cost sd.
Mutation is reversible; mutation from wild-type to the survival
allele and vice versa occurs at rate μ. This model is equivalent to
the model proposed and analysed by Orr and Unckless for evol-
utionary rescue, with the additional simplification that the
forward and back mutation rates are equal [5,6]; this assumption
could easily be relaxed, as we discuss in later sections.

Orr & Unckless [6] derived a compact expression for the
survival probability, including the possibility that rescue might
occur either through de novo mutation, or through standing
variation. This approximation can be understood as

Pfsurvivaljpg ¼ 1� e�pðsb�dÞðAst þAdnÞ: ð2:1Þ
Here, π(s) denotes the establishment probability of a single allele
with selective effect s, while Ast is the number of copies of the
survival allele in standing variation at the time of the environ-
mental change and Adn is the number of copies that will be
created by de novo mutation during the population decline.
The survival probability given here depends on p, the frequency
of the survival allele in the population at the moment when the
environment changes. From this definition of p, it is clear that
Ast = pN. The total number of new mutations that occur while
the population declines, Adn, is given by the sum of a geometric
series describing the expected number of mutations in each gen-
eration of this decline toward extinction. Orr and Unckless
assume that p≪ 1; that is, the population is nearly fixed for
the wild-type allele at the time of the change. In this case,
Adn≈Nμ/δ [6].

In the sections to follow, we will consider population survival
across a range of population sizes, including small populations
experiencing strong genetic drift; thus we will treat cases in
which p may be large. We therefore generalize the expression for
Adn to include the fact that the rescue allelemay already be present,
yielding Adn = (1− p)Nμ/δ. We note that this generalization will
have little effect on the overall survival probability, since when p
is large, survival is already very likely through standing variation.
However, it may influence the balance between de novo and
standing variation as described in §3.

We will also treat some cases in which the survival allele has
a relatively large effect, and thus we replace π(s)≈ 2s (as used in
[6]) with the larger root of the equation π(s) = 1− e−(1+s)π(s) [11];
this approximation assumes a branching process with Poisson-
distributed offspring numbers, and has also been shown to
be applicable to a declining population [12], but does not
assume that s is small. These generalizations yield the survival
probability for a given initial frequency p:

Pfsurvivaljpg ¼ 1� e�Npðsb�dÞðpþð1�pÞm=dÞ: ð2:2Þ

The frequency of the survival allele at the time of the change,
p, will not generally be known. If we let ϕ( p) describe the prob-
ability density function for p, then as described previously [5], to
compute the overall probability of survival, we need to average
equation (2.2) over all possible allele frequencies

Psurvival ¼
ð1
p¼0

fðpÞPfsurvivaljpgdp, ð2:3Þ

¼ 1�
ð1
0
fðpÞ exp �NpðsrÞ p 1� m

d

� �
þ m

d

� �� �
dp, ð2:4Þ

where we take sr = sb− δ to simplify the notation going forward.

(a) Stationary distribution of the survival allele
To predict survival probabilities, all that remains is to describe
the probability density function ϕ( p), the stationary distribu-
tion of the survival allele, at population size N, before the
environmental change. When the forces of drift, mutation and
selection are all non-negligible, one approach is to assume that
the stationary distribution for the survival allele frequency is
given by Wright’s equation [10]

fðpÞ ¼ C e�2Nsdpðpð1� pÞÞ2Nm�1, ð2:5Þ
where C is a constant defined such that the distribution ϕ( p) inte-
grates to unity

1
C
¼

ð1
0
e�2Nsdpðpð1� pÞÞ2Nm�1 dp, ð2:6Þ

and we have assumed that forward and backward mutation rates
are equal (figure 1a).

Equation (2.5) admits a number of simplifying cases, depend-
ing on the cost of the survival allele, sd, before the environment
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Figure 1. Wright’s steady-state distribution. (a) The stationary distribution of a survival allele (equation 2.5) with selective disadvantage sd = 0.001, under sym-
metric mutation, in populations of size N as indicated. In small populations, the distribution is bimodal with a substantial probability that the population is fixed or
nearly fixed for the survival allele. (b) The mean frequency of an allele under Wright’s distribution, with symmetric mutation at the rates indicated. The mean is
computed numerically using equation (2.7). At low population sizes, drift dominates, so the mean frequency is near 0.5, which reflects the balance between two
equal mutation rates. At high population sizes, the frequency is determined by the balance between mutation and selection; in this case �p approaches the deter-
ministic equilibrium approximated by p̂ ¼ m=ðsþ 2mÞ, shown here with faint horizontal lines. (c) The probability that at least one copy of the survival allele is
present in the population at steady state (equation (2.8)), as a function of population size. Mutation is symmetric at rate μ = 10−5 in (a) and (c).
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changes. If sd is sufficiently large, the survival allele is rare
(p≪ 1) and back mutation can be ignored. In this case, ϕ( p)
can be approximated by a gamma distribution [13]. By contrast,
if sd is sufficiently small, the survival allele is effectively neutral.
In this case, ϕ( p) can be approximated by a beta distribution [14].
Orr & Unckless [5] consider these two cases in detail.

A limitation of Wright’s stationary distribution is that the
expected time to approach this equilibrium can be very long, at
a timescale given by the inverse of the mutation rate. Another
approach is to assume that the survival allele appears, drifts tran-
siently and is lost. Hermisson & Pennings [15] use a diffusion
approximation to derive simple approximations for ϕ( p) in this
situation, conditioned on the survival allele never reaching fix-
ation and assuming that its fitness effect is either neutral or
deleterious. Again, the survival allele frequency is assumed to
be small (p≪ 1).

As outlined in §1, we sought to generalize these approaches for
two reasons. First, we reasoned that populations at risk of extinction
would often be small. Wewanted to derive the extinction probability
for populations on the order of hundreds or a few thousand
individuals [9,16,17]. In populations of that size, genetic drift can
be powerful, and thus the frequency of a deleterious allele may
not always be small. Second, empirically measured distributions of
mutational effects often show a large fraction of mildly deleterious
mutations (for review, see [18]). We therefore assumed that this inter-
mediate case, in which the survival allele is neither strongly
deleterious nor effectively neutral, might in fact be a common scen-
ario. Orr & Unckless [5] treat this case briefly, but do not explore the
effects of population size on the survival probability.

We thus wished to retain the full stationary distribution as
derived by Wright [10]. To gain an intuitive understanding of
the results to follow, it is helpful to first understand �p, the
mean frequency of the survival allele prior to the environmental
change. This is given by

�p ¼
ð1
0
fðpÞ pdp:

Kimura et al. [19] derive �p in terms of the 1F1 confluent hypergeo-
metric function [20]. When the forward and back mutation rates
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are equal, the mean frequency of the allele at steady state is

�p ¼ 1
2
1F1ðaþ 1, 2aþ 1, � gÞ

1F1ða, 2a, � gÞ , ð2:7Þ

where α = 2Nμ and γ = 2Nsd.
Figure 1b shows �p as a function ofN. For largeN, �p approaches

the deterministic mutation-selection balance approximated by
p̂ ¼ m=ðsd þ 2mÞ, which differs from the classic expression μ/sd
because we do not assume that back mutation is negligible.

When N is small, however, �p approaches 0.5 irrespective of μ
and sd. This is because drift is increasingly strong, overwhelming
selection against the deleterious allele. Thus, when mutation is
symmetric, the average frequency of the survival allele before the
environment changes can be close to 1/2 in small populations.
More generally, if u is the mutation rate to the survival allele and
v is the back mutation rate, �p will approach u/(u + v) at small N.
We note, however, that this result does not imply that many
small populations have a survival allele frequency close to 0.5.
Rather, small populations tend to be fixed for either the survival
or the wild-type allele, as shown in figure 1a. Finally, we note
that since Wright’s distribution is a diffusion approximation of
the Wright–Fisher model, it is most accurate at large N. However,
comparisons against full Wright–Fisher simulations show that the
approximation performs very well even at N = 10, 100 and 200
(electronic supplementary material, figures S1 and S2).

We can also use Wright’s stationary distribution to estimate
the probability that at least one copy of the survival allele
exists, in standing variation, when the environment changes.
This probability is simply given by

Pfat least 1 copyg ¼
ð1
1=N

fðpÞdp: ð2:8Þ

When the survival allele is mildly deleterious, this probability
drops substantially at intermediate population sizes (figure 1c), as
selection against the deleterious allele begins to dominate drift.
As the population size increases, however, the probability that
the survival allele exists approaches unity. This non-monotonic
behaviour underpins the results presented in the next section.
(b) Survival probability as a function of population size
Substituting Wright’s stationary distribution, equation (2.5), into
equation (2.4), the survival probability can be written as

Psurvival ¼ 1� C e�NpðsrÞm=d
ð1
0
ðpð1� pÞÞ2Nm�1 e�2N~sp dp ð2:9Þ

¼ 1� e�NpðsrÞm=d
Ð 1
0 ðpð1� pÞÞ2Nm�1 e�2N~sp dpÐ 1
0 ðpð1� pÞÞ2Nm�1 e�2Nsdp dp

, ð2:10Þ

where we use ~s to denote sd + (1− μ/δ)π(sr)/2, and we use C as
defined in equation (2.6).

Note that the integral representation of the confluent hyper-
geometric function of the first kind is

1F1ða, b, zÞ ¼ GðbÞ
GðaÞGðb� aÞ

ð1
0
pa�1ð1� pÞb�a�1 ezp dp

[20]. Therefore, letting β = 2α, we have

ð1
0
ðpð1� pÞÞa�1 ezp dp ¼ 1F1ða, 2a, zÞG2ðaÞ

Gð2aÞ : ð2:11Þ

Substituting this expression into the numerator and denominator
of equation (2.10), we find

Psurvival ¼ 1� e�NpðsrÞm=d 1F1ð2Nm, 4Nm, � 2N~sÞ
1F1ð2Nm, 4Nm, � 2NsdÞ , ð2:12Þ

(see for comparison eqn (9) in [5]). As demonstrated in §3 to
follow, this expression exhibits a number of interesting
behaviours as N varies, and is only monotonic in N in some
limiting cases.
(c) Simulations
The analytical predictions described above were confirmed in
stochastic simulations of haploid populations of initial size N.
The simulated process starts at the moment of the environmental
change, and is followed until either the survival allele is estab-
lished (see below) or the population goes extinct. Recall that at
the moment of the environmental change, the survival allele
frequency, p, should be distributed according to Wright’s distri-
bution, equation (2.5). The initial condition for p was therefore
drawn from Wright’s distribution by integrating equation (2.5)
in intervals with boundaries (0, 0.5/N, 1.5/N, …, (N− 1.5)/N,
(N − 0.5)/N, 1), where the two edge bins have width 0.5/N
while the others have width 1/N. Thus, apart from the two
edge bins, each bin is centred at allele frequency j/N for j = 1,
2, …, N − 1. Because the density function is very steep near the
boundaries at low population sizes, we integrated using a
numerical approach devised by Kimura [19] for smaller N
values. These N + 1 integrated probability masses were used to
draw a random frequency p from (0, 1/N, …, (N− 1)/N, 1),
which we used to initialize the simulation. We also note that
this discretization of equation (2.5) is the simplest, but least accu-
rate, of methods discussed by Ewens ([21]; see pp. 177–178). We
also implemented the discretization believed to be most accurate
(Ewens [21], equation (5.79)) but this yielded indistinguishable
results for survival probabilities.

Using Li andMi to denote the number of individuals carrying
the wild-type and survival alleles, respectively, in generation i,
we first set the initial number of copies of the survival allele
M0 to pN and the number of wild-type L0 to (1− p)N, each
rounded to the nearest integer. In each generation i, the simu-
lation algorithm determines the total number of offspring, then
accounts for mutation. First, the number of wild-type offspring
that will form generation i + 1 is drawn from a Poisson distri-
bution with mean (1− δ)Li, while the number of offspring in
the survival lineage is drawn from a Poisson distribution with
mean (1− δ + sb)Mi. Mutations at the survival locus occur inde-
pendently in each offspring individual with probability μ; the
number of wild-type alleles in generation i + 1 is then given by
the sum of the wild-type offspring in which mutation did not
occur, and survival-allele offspring in which mutation did
occur. The number of survival alleles in generation i + 1 is
computed analogously, since mutation is symmetric.

The process is stopped when either the population goes
extinct or the survival lineage reaches a fixed threshold size, indi-
cating that survival has succeeded. We used a threshold of 2000
individuals but our results are insensitive to this number, as long
as it is large enough that the survival lineage is unlikely to go
extinct after reaching the threshold.

Both the mathematical and simulation approaches above
assume that lineages carrying the survival allele reproduce inde-
pendently, a common simplifying assumption in evolutionary
rescue (but see for example [22,23]). Since this assumption can
fail when the survival allele is not initially rare, we also simulated
populations inwhich population size is regulated according to the
Ricker model [24]. In these simulations, each wild-type individual
has offspring with mean number given by exp (r[1−Nt/Kt]),
where r > 0 is the intrinsic growth rate, Nt is the total population
size t generations after the environmental change and Kt is the
carrying capacity in generation t, which declines according to
Kt =K0(1− δ)t. By contrast, individuals carrying the survival
allele havemean offspring number exp (r[1−Nt/K0]) in generation
t; their carrying capacity is unaffected by the environmental
change. Populations are initialized at the Wright stationary distri-
bution with a population sizeN0 equal to the carrying capacity K0.
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Figure 2. The probability of survival as a function of population size N before the change in environment. The curves show these probabilities calculated using
equation (2.12). The points show probabilities estimated from 5000 simulations per point; these simulations are described in §2. We show the effect of varying sb in
(a), varying μ in (b) and varying sd in (c). The default parameters are: sb = 0.05, δ = 0.01, sd = 0.001, μ = 10−5. In electronic supplementary material, figure S3,
we show how the severity of the environmental change, δ, affects the survival probability.
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Note that in contrast with our analytical work, in this approach the
relative fitness of the survival allele, analogous to sb, depends on
the population size and varies over time.
3. Results
Figure 2 shows the probability of survival as a function of
population size, across a wide parameter range. In (a–c)—as
we vary sb, μ or sd—we see regions in which the survival
probability declines, often substantially, as the population
size increases. While our analytical approach (solid lines)
assumes that the allele frequency is continuous even at
small N, these predictions are very closely confirmed by
simulation (plotted points). This pattern persists when we
relax the assumption that survival lineages act independently
(electronic supplementary material, figure S4).

This dramatic non-monotonicity of survival with N disap-
pears in several asymptotic cases. If either the benefit of the
survival allele or the mutation rate is large (figure 2a,b, blue
lines), survival grows monotonically. In figure 2c, taking
Nneut = 1/sd as the threshold for neutrality, we see that
when sd = 10−4, the survival allele is effectively neutral
across the range of N plotted (up to 104). In this case, survival
simply grows with population size. By contrast, when sd = 0.1
the allele is deleterious for N > 10, and again survival is
nearly monotonic; these are the two cases studied in most
detail by Orr & Unckless [5]. A local minimum in survival
probability appears when Nneut is neither so small that survi-
val is unlikely at Nneut, nor so large that survival is nearly
certain at this population size.

We also note that when sb is small (a), very small
populations have a high probability of going extinct, even
when initially fixed for the survival allele. As a numerical
example, if sb− δ = 0.001 as shown here (red line), a single
lineage carrying the survival allele will die out with prob-
ability x≈ 0.998, and thus a population of 500 that is
initially fixed for the survival allele will go extinct x500≈
37% of the time. Since smaller populations are even more
vulnerable to this demographic extinction, the survival prob-
ability increases with Nwhen both sb and N are small. For the
population sizes investigated here, this effect disappears
when the population size is stabilized by density-dependence
in the Ricker model (electronic supplementary material,
figure S4).
(a) De novo versus standing variation
Another way to visualize this phenomenon is to examine the
contributions of standing variation and de novo mutation to
survival. To do this, we compute the probability of survival
via standing variation as

Pstand ¼
ð1
0
Pfsurvivaljpg

����
m¼0

fðpÞdp: ð3:1Þ

Note that the condition μ = 0 is applied only to P{survival|p},
but not to ϕ( p). This expression thus gives the survival
probability through standing variation only, as if de novo
mutation were turned off at the moment of the environmental
change. Similarly, we compute

Pde novo ¼ Pfsurvivaljp ¼ 0g, ð3:2Þ
which gives the probability of survival given that there was
no standing variation at the moment of the environmental
change. The overall probability of survival can then be
written as

Ptotal ¼ Pstand þ ð1� PstandÞPde novo: ð3:3Þ

These components of survival are shown in figure 3.
For comparison, we also plot Nneut = 1/sd (left vertical
line) and Nmut = 1/μ (right vertical line). Nmut indicates a
simple but conservative threshold population size at which
survival is nearly certain, since on average a new copy of
the survival allele would be produced in every generation.
In this figure, we can clearly see that selection due to the fit-
ness cost sd increases with population size as the population
approaches Nneut, reducing Pstand. While Pde novo increases
with N, the rate of increase is slow when N≪ 1/μ. Survival
declines with population size when the increase in Pde novo

is overwhelmed by the reduction in Pstand as the population
size increases.

We have used the full distribution of allele frequencies in
order to study the probability of a population surviving
an abrupt environmental change. This survival would be
defined as evolutionary rescue when the initial frequency of
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the survival allele is rare, but how rare? One possibility is to
restrict ‘evolutionary rescue’ to cases in which the population
fitness, at the time of the environmental change, is less than
unity, which corresponds here to p < δ/sb. When considering
evolutionary rescue scenarios defined in this way, we find
that the standing variation component and thus the overall
survival probability increase monotonically with increasing
population size (electronic supplementary material, figure
S5). In fact, this monotonic increase holds if we exclude
only cases in which the survival allele is fixed, through gen-
etic drift, in the population before the environmental change.
We suggest, however, that use of the full distribution of allele
frequencies is more general and ecologically pertinent; for a
given change in the environment and a particular allele
necessary for survival (eg. antibiotic resistance), situations
in which the allele is fixed before the change make an impor-
tant and non-negligible contribution to the survival
probability of the population as a whole.

(b) What population size maximizes the extinction
probability?

The local minima in figure 2 highlight populations that are
more vulnerable to extinction, counterintuitively, than they
would be if they were smaller; in some parameter regimes,
these intermediate population sizes are at greater risk of
extinction than even very small populations (e.g. when
mutation is rare; see red line in figure 2b). Given the par-
ameters of a survival scenario, can we predict whether such
a region of unexpected vulnerability exists? In other words,
is there a ‘dip’ in the survival probability as the population
size increases, and if so, where is it centred?

Defining A = π(sr)μ/δ, we can re-write equation (2.10) as

Psurvival ¼ 1� e�AN

Ð 1
0 ðpð1� pÞÞ2Nm�1 e�2N~sp dpÐ 1
0 ðpð1� pÞÞ2Nm�1 e�2Nsdp dp

ð3:4Þ

¼ 1� e�AN GðN, ~sÞ
GðN, sdÞ , ð3:5Þ

where

GðN, sÞ ¼
ð1
0

[ðpð1� pÞÞ2m e�2sp]N

pð1� pÞ dp:

Denoting the derivative ∂G/∂N =G0(N, s) and setting the
derivative dPsurvival/dN to zero,we find that critical population
sizes must satisfy

G0ðN, ~sÞGðN, sdÞ � GðN, ~sÞG0ðN, sdÞ ¼ AGðN, ~sÞGðN, sdÞ:
ð3:6Þ

In principle, we can solve equation (3.6) for values of N at
which the probability of survival is either maximized or mini-
mized. Since at large N, Psurvival increases and saturates, the
largest root of equation (3.6), when such a root exists, will
yield a local minimum corresponding to a vulnerable inter-
mediate population size. In practice, since equation (3.6)
must be solved numerically, numerical optimization can also
be used to directly find the local minima of equation (2.10).
(We cannot exclude the possibility of more than one local
minimum, but did not observe more than one in any of the
parameter regimes we tested.)

A local minimum in the survival probability occurs due to
the balance of two factors. As the population size grows,
selection against deleterious alleles grows more effective,
reducing the frequency of the survival allele in standing vari-
ation. At a given mutation rate, however, the number of
copies of the allele—a key predictor of survival—increases
as the population size grows. The survival probability
declines with population size when the force of selection
against the survival allele increases faster than the mutation
pressure creating new copies of the allele.

The population size that yields a local minimum in sur-
vival probability is plotted in figure 4. We see that under
lower mutation pressure, larger populations are most vul-
nerable (a), since a larger population is then required to
create sufficient copies of the survival allele. Similarly,
more copies of the survival allele are required to escape
loss by drift when the benefit of the survival allele, after
the change, is small; in this case again the most vulnerable
population size is increased. In (b), curves are truncated
when a local minimum does not exist; we see as before
that if the effect of the survival allele before the change is
either strongly deleterious or nearly neutral, the minimum
disappears (as seen in figure 2c). Note that as sd increases,
the survival allele becomes effectively neutral at smaller
population sizes. Thus the local minimum occurs in
smaller populations, as seen in the right in (b), as drift over-
whelms purifying selection. Although we observe the
opposite trend when sd is very small (left side of (b)), survi-
val curves in this regime are relatively flat (figure 2c) so the
minimum is less relevant.
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4. Discussion
We demonstrate that for small populations, the chance of
surviving a sudden, adverse change in the environment can
decrease with population size. This counterintuitive effect
occurs when the allele required for survival is effectively neu-
tral and thus maintained by drift in small populations, but is
efficiently purged by selection in larger populations.

More specifically, for population sizes below the neutrality
threshold, Nneut = 1/sd, a survival allele with cost sd is ‘nearly
neutral’. We can similarly consider the threshold Nmut = 1/μ
as the population size at which survival is assured, since the
survival allele would be created in every generation on aver-
age. The risk of extinction can increase with population size
when Nneut is substantially less than Nmut, or in other words
whenever sd is substantially larger than μ. Of course, if sd is
so large that the survival allele is deleterious at all relevant
population sizes, this effect disappears. While our numerical
exploration indicates awide parameter regime over which sur-
vival is non-monotonic in population size, a precise analytical
understanding of the boundaries defining this regime presents
a challenging question for future work.

We illustrate results for population sizes as small as
several hundred, but clearly these very small populations
would be at risk of extinction, even in the absence of an
environmental change, through processes such as mutational
meltdown (the accumulation of deleterious mutations)
[17,25] and other ‘extinction vortices’ [8]. Thus it seems unli-
kely that such small populations would persist for sufficient
time (approximated by the inverse of the mutation rate) to
reach Wright’s stationary distribution. Our results demon-
strate, however, that survival probability can decrease
with population size for populations of between 103 and 104

individuals (figures 2 and 4).
Why has this effect not been observed before? Orr &

Unckless [5] use separate, analytically tractable approaches
for neutral and strongly deleterious alleles, which they exam-
ine in detail. As seen in figure 2c, in both of these asymptotic
cases (blue and red curves), the survival probability grows
monotonically with population size. Orr and Unckless also
use Wright’s stationary distribution to compute the rescue
probability, via standing variation, for mildly deleterious
alleles (see fig. 5, [5]). Although focusing on evolutionary
rescue, results in that paper did not explicitly exclude cases
in which the rescue allele is initially common, but also did
not explicitly investigate changes in population size. Our
results essentially extend this approach, allowing us to
simultaneously address neutral, mildly deleterious and fully
deleterious cases as we vary N over several orders of magni-
tude. While it is true that results for mildly deleterious
alleles fall between predictions for neutral or strongly deleter-
ious alleles (figure 2c), these two well-studied extremes lack
the complex and surprising behaviour that dominates the
intervening parameter space.

Our work makes a simple prediction that could be exper-
imentally testable: does the probability of survival, in the face
of an abrupt environmental change, drop as the population
size increases toward Nneut? Testing this hypothesis directly
would require the survival allele frequency to reach equilibrium
(Wright’s stationary distribution) before the environmental
change, a condition thatmay bedifficult to achieve inmanypro-
tocols. In the future, the analytical approach we develop here
could be extended to non-equilibrium settings. Deriving the
transient behaviour of the survival allele (see [15]) would
allow quantitative predictions for survival probabilities when
the survival allele has only equilibrated for an experimentally
feasible timescale before the environmental challenge. In
particular, studying transient behaviourwith an initially hetero-
geneous population (p≠ 0, 1) might considerably ameliorate
the 1/μ equilibration timescale.

Our model assumes a biallelic locus with symmetric
mutation rates between the survival and wild-type alleles.
More generally, these two alleles could represent two sets
of genetic states that do and do not confer the survival advan-
tage, respectively. In this case, the mutation rate to the
survival state, μ, would not generally equal the mutation
rate away from the survival state, ν; these rates would instead
depend on the number of (accessible and viable) genetic
states in each category. The expected frequency of the survi-
val allele would then approach ≈ μ/(μ + ν) in very small
populations, rather than ≈ 0.5 in the symmetric case. These
considerations imply that whenever μ < ν, the reduction in
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survival probability with increasing population size would
be less dramatic than the cases we have illustrated here.

Nonetheless, the understanding that population survival,
at least in the face of an abrupt change, does not always
increase with population size could have important impli-
cations. For situations in which survival is not the desired
outcome (e.g. antibiotic resistance), an intermediate popu-
lation size in the pathogen, before the antibiotic is applied,
could minimize the probability that a mildly deleterious
resistance allele is present; in this situation, it is feasible
that both the cost and benefit of the resistance allele might
be known, allowing a quantitative prediction of the most
vulnerable pathogen population size. For pathogens that
undergo repeated transmission bottlenecks, further investi-
gation is warranted; however, the bottleneck size itself is
likely the relevant population size for standing variation. If
so, our results suggest that either very small or very large
transmission bottlenecks favour resistance. After a very
small bottleneck, the resistance allele may be fixed in the
population by chance before therapy; for very large bottle-
necks, the de novo emergence of resistance is likely. At
intermediate bottleneck sizes, the resistance allele may be
present but has a high chance of being outcompeted by the
sensitive strain before therapy begins.

When considering endangered populations, our results
suggest that several small subpopulations, in which slightly
deleterious alleles could drift to high frequency, might be
more likely to survive a sudden environmental change than
one large, well-mixed population. Such a scenario is reminis-
cent of Wright’s shifting balance theory [26,27], though our
analysis focuses narrowly on the probability of extinction or
adaptation after an environmental change via a specific
survival allele, rather than on adaptation on complex land-
scapes. Previous theoretical work on rescue in a structured
population has identified a counterintuitive non-monotonic
response of the rescue probability to the migration rate
[23,28] and the rate of environmental degradation [23].
Future work could characterize the effect of population size
in a structured population, noting that small subpopulations
would be subject to the accumulation of other deleterious
genes that would further endanger them [17,25]. More specu-
latively, if we consider the mutations required for a zoonotic
pathogen to transmit efficiently in humans, these rare alleles
may be deleterious in the animal reservoir, and thus the
chance of zoonotic escape may also be non-monotonic as the
size of the reservoir increases.
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available at https://github.com/m-tanaka-unsw/nonmon-survival.
There are no data to be archived. Electronic supplementary material
is available online [29].
Authors’ contributions. M.M.T.: conceptualization, formal analysis,
funding acquisition, investigation, methodology, software, visualiza-
tion, writing—original draft, writing—review and editing;
L.M.W.: conceptualization, formal analysis, funding acquisition,
investigation, methodology, visualization, writing—original draft,
writing—review and editing.

Both authors gave final approval for publication and agreed to be
held accountable for the work performed therein.

Conflict of interest declaration. We declare we have no competing interests.

Funding. This work was supported by the Natural Sciences and Engin-
eering Research Council of Canada grant no. RGPIN-2019-06294, and
by the Australian Research Council grant no. DP210102463.

Acknowledgements. We are grateful to two referees whose insights,
including a helpful definition of evolutionary rescue, greatly
strengthened the work.
References
1. Alexander HK, Martin G, Martin OY, Bonhoeffer S.
2014 Evolutionary rescue: linking theory for
conservation and medicine. Evol. Appl. 7,
1161–1179. (doi:10.1111/eva.12221)

2. Bell G. 2016 Evolutionary rescue. Annu. Rev. Ecol.
Evol. Syst. 48, 1–23. (doi:10.1146/annurev-ecolsys-
110316-023011)

3. Gomulkiewicz R, Holt RD. 1995 When does
evolution by natural selection prevent extinction?
Evolution 49, 201–207. (doi:10.1111/j.1558-5646.
1995.tb05971.x)

4. Marrec L, Bitbol A-F. 2020 Adapt or perish:
evolutionary rescue in a gradually deteriorating
environment. Genetics 216, genetics.303624.2020.
(doi:10.1534/genetics.120.303624)

5. Orr HA, Unckless RL. 2008 Population extinction and
the genetics of adaptation. Am. Natualist 172,
160–169. (doi:10.1086/589460)

6. Orr HA, Unckless RL. 2014 The population genetics of
evolutionary rescue. PLoS Genet. 10, e1004551.
(doi:10.1371/journal.pgen.1004551)

7. Flather CH, Hayward GD, Beissinger SR, Stephens PA.
2011 Minimum viable populations: is there a
‘magic number’ for conservation practitioners?
Trends Ecol. Evol. 26, 307–316. (doi:10.1016/j.tree.
2011.03.001)
8. Gilpin ME, Soulé ME. 1986 Minimum viable
populations: processes of species extinction. In
Conservation biology: the science of scarcity and
diversity (ed. ME Soulé), pp. 19–34. Sunderland,
MA: Sinauer Associates.

9. Jamieson IG, Allendorf FW. 2012 How does the 50/
500 rule apply to MVPs? Trends Ecol. Evol. 27,
578–584. (doi:10.1016/j.tree.2012.07.001)

10. Wright S. 1937 The distribution of gene frequencies
in populations. Proc. Natl Acad. Sci. USA 23,
307–320. (doi:10.1073/pnas.23.6.307)

11. Haldane JBS. 1927 The mathematical theory of
natural and artificial selection. Proc. Camb. Phil. Soc.
23, 838–844. (doi:10.1017/S0305004100015644)

12. Otto SP, Whitlock MC. 1997 The probability
of fixation in populations of changing size.
Genetics 146, 723–733. (doi:10.1093/genetics/146.
2.723)

13. Nei M. 1968 The frequency distribution of lethal
chromosomes in finite populations. Proc. Natl Acad.
Sci. USA 60, 517–524. (doi:10.1073/pnas.60.2.517)

14. Crow JF, Kimura M 1970 An introduction to
population genetics theory. New York, NY: Harper
and Row.

15. Hermisson J, Pennings PS. 2005 Soft sweeps:
molecular population genetics of adaptation from
standing genetic variation. Genetics 169,
2335–2352. (doi:10.1534/genetics.104.036947)

16. Franklin IR. 1980 Evolutionary change in small
populations. In Conservation biology: an
evolutionary-ecological perspective (eds ME Souĺe,
BA Wilcox), pp. 135–149, Sunderland, MA: Sinauer
Associates, U.S.A.

17. Lynch M, Bürger R, Butcher D, Gabriel W. 1993 The
mutational meltdown in asexual populations.
J. Hered. 84, 339–344. (doi:10.1093/oxfordjournals.
jhered.a111354)

18. Eyre-Walker A, Keightley PD. 2007 The distribution
of fitness effects of new mutations. Nat. Rev. Genet.
8, 610–618. (doi:10.1038/nrg2146)

19. Kimura M, Maruyama T, Crow JF. 1963 The
mutation load in small populations. Genetics
48, 1303. (doi:10.1093/genetics/48.10.1303)

20. Abramowitz M, Stegun IA 1964 Handbook of
mathematical functions with formulas, graphs, and
mathematical tables. New York, NY: Dover Publication.

21. Ewens WJ 2012 Mathematical population genetics 1:
theoretical introduction, vol. 27, 2nd edn. New York,
NY: Springer.

22. Uecker H. 2017 Evolutionary rescue in randomly
mating, selfing, and clonal populations. Evolution
71, 845–858. (doi:10.1111/evo.13191)

https://github.com/m-tanaka-unsw/nonmon-survival
https://github.com/m-tanaka-unsw/nonmon-survival
http://dx.doi.org/10.1111/eva.12221
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023011
http://dx.doi.org/10.1146/annurev-ecolsys-110316-023011
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05971.x
http://dx.doi.org/10.1111/j.1558-5646.1995.tb05971.x
http://dx.doi.org/10.1534/genetics.120.303624
http://dx.doi.org/10.1086/589460
http://dx.doi.org/10.1371/journal.pgen.1004551
http://dx.doi.org/10.1016/j.tree.2011.03.001
http://dx.doi.org/10.1016/j.tree.2011.03.001
http://dx.doi.org/10.1016/j.tree.2012.07.001
http://dx.doi.org/10.1073/pnas.23.6.307
http://dx.doi.org/10.1017/S0305004100015644
http://dx.doi.org/10.1093/genetics/146.2.723
http://dx.doi.org/10.1093/genetics/146.2.723
http://dx.doi.org/10.1073/pnas.60.2.517
http://dx.doi.org/10.1534/genetics.104.036947
http://dx.doi.org/10.1093/oxfordjournals.jhered.a111354
http://dx.doi.org/10.1093/oxfordjournals.jhered.a111354
http://dx.doi.org/10.1038/nrg2146
http://dx.doi.org/10.1093/genetics/48.10.1303
http://dx.doi.org/10.1111/evo.13191


royalsocietypublishing

9
23. Uecker H, Otto SP, Hermisson J. 2014 Evolutionary
rescue in structured populations. Am. Nat. 183,
E17–E35. (doi:10.1086/673914)

24. Ricker WE. 1954 Stock and recruitment. J. Fish. Res.
Board Can. 11, 559–623. (doi:10.1139/f54-039)

25. Muller HJ. 1964 The relation of recombination to
mutational advance. Mutat. Res. 1, 2–9. (doi:10.
1016/0027-5107(64)90047-8)
26. Wright S. 1932 The roles of mutation, inbreeding,
crossbreeding, and selection in evolution. In Proc.
6th Int. Congress Genet, pp. 355–366. Chicago, IL:
University of Chicago.

27. Wright S. 1982 The shifting balance
theory and macroevolution. Annu. Rev. Genet.
16, 1–20. (doi:10.1146/annurev.ge.16.120182.
000245)
28. Czuppon P, Blanquart F, Uecker H, Débarre F. 2021
The effect of habitat choice on evolutionary rescue
in subdivided populations. Am. Nat. 197, 625–643.
(doi:10.1086/714034)

29. Tanaka MM, Wahl LM. 2022 Surviving
environmental change: when increasing population
size can increase extinction risk. Figshare. (doi:10.
6084/m9.figshare.c.5995945)
 .o
rg/
journal/rspb

Proc.R.Soc.B
289:20220439

http://dx.doi.org/10.1086/673914
http://dx.doi.org/10.1139/f54-039
http://dx.doi.org/10.1016/0027-5107(64)90047-8
http://dx.doi.org/10.1016/0027-5107(64)90047-8
http://dx.doi.org/10.1146/annurev.ge.16.120182.000245
http://dx.doi.org/10.1146/annurev.ge.16.120182.000245
http://dx.doi.org/10.1086/714034
http://dx.doi.org/10.6084/m9.figshare.c.5995945
http://dx.doi.org/10.6084/m9.figshare.c.5995945

	Surviving environmental change: when increasing population size can increase extinction risk
	Introduction
	Methods
	Stationary distribution of the survival allele
	Survival probability as a function of population size
	Simulations

	Results
	De novo versus standing variation
	What population size maximizes the extinction probability?

	Discussion
	Data accessibility
	Authors' contributions
	Conflict of interest declaration
	Funding
	Acknowledgements
	References


