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a b s t r a c t

To enhance the efficiency of vaccine manufacturing, this study focuses on optimizing the microfluidic
conditions and lipid mix ratios of messenger RNA-lipid nanoparticles (mRNA-LNP). Different mRNA-LNP
formulations (n ¼ 24) were developed using an I-optimal design, where machine learning tools
(XGBoost/Bayesian optimization and self-validated ensemble (SVEM)) were used to optimize the process
and predict lipid mix ratio. The investigation included material attributes, their respective ratios, and
process attributes. The critical responses like particle size (PS), polydispersity index (PDI), Zeta potential,
pKa, heat trend cycle, encapsulation efficiency (EE), recovery ratio, and encapsulated mRNA were eval-
uated. Overall prediction of SVEM (>97%) was comparably better than that of XGBoost/Bayesian opti-
mization (>94%). Moreover, in actual experimental outcomes, SVEM prediction is close to the actual data
as confirmed by the experimental PS (94e96 nm) is close to the predicted one (95e97 nm). The other
parameters including PDI and EE were also close to the actual experimental data.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Xi’an Jiaotong University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The coronavirus pandemic has prompted rapid development of
nucleic acid-based vaccines, which have been expanded to cancer,
chronic disease therapeutics, protein/enzyme replacement therapy,
passive immunization, vaccines of influenza, malaria, and herpes
simplex, and cellular reprogramming [1e4]. Breakthroughs in the
medical application of messenger RNA (mRNA) were made using
microfluidic techniques, and lipid nanoparticles (LNPs) have
emerged as the leading technology for nucleic acid delivery [5,6].
LNPs are typically composed of ionizable lipids, phospholipids,
cholesterol, and lipid-anchored polyethylene glycol (PEG)ylated
lipid, with ionizable lipids being the most important for protein
expression and delivery [7,8]. The United States Food and Drug
Administration (USFDA) states that particle size (PS) and size dis-
tribution are “critical quality attributes (CQAs)” for liposomal drug
products [9]. Therefore, advanced process control of the critical
factors is essential for developing robust continuous biologics
manufacturing [10].
).
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The production of LNPs consists ofmainly two steps: an upstream
process to prepare LNPs and a downstream process to remove an
organic solvent (ethyl alcohol) and exchange buffers [11]. Micro-
fluidic devices, which are easy to scale up, have high reproducibility,
and can be used on an industrial scale, are mainly used in the up-
stream process [11]. Various factors, such as pH, ethanol content, and
flow rate, must be evaluated to optimize the manufacturing condi-
tions [12]. The downstream process mainly involves solvent removal
and buffer exchange via dialysis. It has been reported that the fusion
of LNPs increases the PS, which needs to be controlled to minimize
the phenomenon. A previous study showed that the PS can be sta-
bilized when dialysis is performed in two steps [13]. Moreover,
lyophilized mRNA-LNPs have a simple design, quick manufacturing,
enhanced safety, high efficacy, and improved thermostability
compared to the previous studies [14e16].

Recently, several studies have reported that LNP ingredient
factors and manufacturing conditions can be optimized using tools
such as design of experiment (DOE), partial least squares (PLS),
principal component analysis (PCA), XGBoost, Bayesian optimiza-
tion, and the self-validated ensemble model (SVEM) [17e21]. It is
still challenging to obtain accurate prediction with machine
learning (ML) tools partly due to small DOE experimental size,
which may prevent from partitioning data into training and
University. This is an open access article under the CC BY-NC-ND license (http://
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validation sets. A better strategy would be necessary to improve
out-of-sample prediction from other ML tools [22]. SVEM model is
often used as a predictive approach to DOE with small dataset and
to accelerate time-to-market while reducing cost. Moreover, it is
possible to virtually screen RNA therapeutics with improved sta-
bility [23]. The SVEM model allows the scientist to use the same
design for model validation. A prior study created SVEM model
with 16-run definitive screening design (DSD) to reliably predict
the behavior of chosen response as applied to 28-run central
composite design [24].

Although recent advances in ML tools have led to the incorpo-
ration of predictive modeling on experimental data, subsequently
generated models have well-documented issues when imple-
mented in practice [25]. Typically, the predictability of such models
improves when the validation datasets are considered [26]. How-
ever, in many cases, the size of the experimental datasets is small
due to some limitations such as resource constraints. Furthermore,
the sizewill be reducedwhen a portion of the dataset is retained for
conductingmodel validation. On a number of occasions, the dataset
size may lead to a different relationship between predictors and
responses, inestimable model terms, and in some cases, even poor
predictive performance [26,27]. Specifically, if the objective of the
experimenter is to determine which factors affect the responses or
simply opt to screen the observed experimental datasets, the high-
order polynomial or interaction terms may be insignificant. In
addition, a simple and reduced model often generates a high pre-
diction error compared to complex models [28]. In another
circumstance where the number of factors exceeds the number of
observations, although it is not a standard practice to fit in a su-
persaturated model, similar cases can be frequently observed while
conducting predictive modeling runs.

In the present study, I-optimal design is used as a DOE method
to obtain simple operational conditions. ML tools are used to
optimize and predict the manufacturing process conditions and
lipid mixture ratio of mRNA-LNP formulations at the same time.
The tools are beneficial when dealing with a small experimental
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dataset, which is difficult for grouping [29]. Moreover, SVEM, a ML
tool, is simpler compared to XGBoost/Bayesian optimization as it
does not need separate training and validation datasets. For the
optimization, DOE runs are split into training and validation sets
with first 22 runs and later 2 runs, respectively. Other 2 indepen-
dent experiments are performed to test the SVEM prediction
accuracy.

2. Materials and methods

2.1. Materials

The following are obtained from Avanti Polar Lipids, Inc.
(Alabaster, AL, USA): 1,2-di-O-octadecenyl-3-triMAP(-methyl-
ammoniumpropane) (DOTMA; 104872-42-6),1,2-dioleoyl-3-triMAP
(DOTAP; 132172-61-3), 1,2-dioleoyl-3-diMAP (DODAP; 127512-29-
2

2), 3b-hydroxy-5-cholestene (cholesterol, mentioned
as ‘chol’ hereafter; 57-88-5), 1,2-Distearoyl-sn-glycero-3-(PC-phos-
phocholine) (DSPC; 816-94-4), 1,2-dioleoyl-sn-glycero-3-PC (DOPC;
4235-95-4), 1,2-dimyristoyl-sn-glycero-3-PC (DMPC; 18194-24-6),
1,2-distearoyl-sn-glycero-3-(PE-phosphoethanolamine) (DSPE;
1069-79-0); 1,2-dioleoyl-sn-glycero-3-PE (DOPE; 4004-05-1), 1,2-
Dilauroyl-sn-glycero-3-PE (DLPE; 42436-56-6); 1,2-distearoyl-rac-
glycerol-(PEG2K-polyethylene glycol-2K) (DSG; 308805-39-2); 1,2-
dimyristoyl-rac-glycero-3-methoxyPEG2K (DMG; 160743-62-4), 1,2-
dipalmitoyl-sn-glycero-3-PE-N-amino(PEG2K (DPPE; 2342575-85-
1), and N-palmitoyl-sphingosine-1-succinyl(methoxyPEG2K)
(Ceramide; 212116-78-4). The (6Z,9Z,28Z,31Z)-heptatriacont-
6,9,28,31-tetraene-19-yl-4-(dimethylamino) butanoate (Dlin-MC3-
DMA, mentioned as ‘MC3’ hereafter; 1224606-06-7) is obtained
from Xiamen Sinopeg Biotech Co., Ltd. (Xiamen, China). Citric acid,
sodium citrate, and sucrose are obtained from Sigma-Aldrich Co. (St.
Louis, MO, USA). The first sample of mRNA (CKD Bio-P1) is supplied
by Enzynomics (Daejeon, Korea), and the second sample of mRNA is
synthesized using an mMESSAGE mMACHINE™ T7 transcription kit
(ThermoFisher Scientific Inc., MA, USA). Phosphate buffer saline (PBS
(10�), pH 7.4) is obtained from Gibco Inc. (Waltham, MT, USA);
Tris(hydroxymethyl)aminomethane (TRIS Ultrapure) is obtained
from Duchefa Biochemie B.V (Haarlem, The Netherlands); ethanol
(>99.5%) is obtained from Daejung Chemicals & Metals Co., Ltd.
(Siheung, Korea); and water (DEPC-Diethyl pyrocarbonate) is pro-
vided by IntronBio Inc. (Burlington, MA, USA).

2.2. In vitro transcription of mRNA

Based on the manufacturer's protocol, nanoluciferase encoding
mRNA (Nluc-4895) is prepared from linearized pDNA by in vitro
transcription using a mMESSAGE mMACHINE™ T7 toolkit. Nluc-
4895 is purified using a MEGAclear™ transcription clean-up kit
and quantified using absorbance, as illustrated in the manufac-
turer's protocol, before storing at�80 �C until use. The reaction rate
(r) of in vitro transcription of mRNA is explained by Eq. (1) [20].
where Eq. (1) illustrates the effect of the concentration of nucleo-
tide (cNTP), pyrophosphate (cPPi), promoter (cDNA), cap analog (ccap),
mRNA (cmRNA), and inhibition from nucleoside (KI,NTP). Eq. (1) in-
cludes Monod constant of nucleotide (KM,NTP), promoter (KM,DNA),
cap analog (KM,cap), and mRNA (KM,mRNA). The denominator terms
within the square brackets describe the initiation process of in vitro
transcription.

2.3. Experimental design

(a) The following four material attributes are considered as
input variables to evaluate eight responses (PS, polydispersity in-
dex (PDI), Zeta potential (ZP), pKa, heat trend cycle, encapsulation
efficiency (EE), recovery ratio, and encapsulated mRNA (Table 1)):
ionizable lipid type (DOTAP, DOTMA, DODAP, MC3), phospholipid
type (DSPC, DOPC, DMPC, DSPE, DOPE, DLPE), PEGylated lipid type



Table 1
Types of material attributes, material ratios, and processing conditions considered for the I-optimal experimental design.

Types Parameters Factors (independent variables)

Material attributes Ionizable DOTAP, DOTMA, DODAP, MC3
Phospholipid DSPC, DOPC, DMPC, DSPE, DOPE, DLPE
PEGylated lipid DMG, DSG, DPPE, ceramide
PEGylated lipid amount (%) 1.5, 1.6, 2.5

Material ratio Phospholipid-to-PEGylated lipid ratio 3.76, 4.00, 5.88, 6.25, 6.27, 6.67
Ionizable-to-chol ratio 1.0818, 1.0843, 1.1077, 1.2987, 1.3021, 1.3333
N/P ratio 6, 8, 10

Processing condition FRR (mL/min) 3, 4, 5
TFR (mL/min) 12, 15, 20

DOTAP: 1,2-dioleoyl-3-triMAP; DOTMA: 1,2-di-O-octadecenyl-3-triMAP(-methylammonium propane); DODAP: 1,2-dioleoyl-3-diMAP; MC3: (6Z,9Z,28Z,31Z)-
heptatriacont-6,9,28,31-tetraene-19-yl-4-(dimethylamino) butanoate; DSPC: 1,2-Distearoyl-sn-glycero-3-(PC-phosphocholine); DOPC: 1,2-dioleoyl-sn-glyc-
ero-3-PC; DMPC: 1,2-dimyristoyl-sn-glycero-3-PC; DSPE: 1,2-distearoyl-sn-glycero-3-(PE-phosphoethanolamine); DOPE: 1,2-dioleoyl-sn-glycero-3-PE; DLPE:
1,2-Dilauroyl-sn-glycero-3-PE; DSG: 1,2-distearoyl-rac-glycerol-(PEG2K-polyethylene glycol-2K); DMG: 1,2-dimyristoyl-rac-glycero-3-methoxyPEG2K; DPPE:
1,2-dipalmitoyl-sn-glycero-3-PE-N-amino(PEG2K; Ceramide: N-palmitoyl-sphingosine-1-succinyl(methoxyPEG2K); N/P: nitrogen from lipid and phosphate
from nucleic acid; FRR: flow rate ratio; TFR: total flow rate.
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(DMG, DSG, DPPE, ceramide), PEGylated lipid amount (1.5%�2.5%),
and nitrogen from lipid and phosphate from nucleic acid (N/P) ratio
(6e10); (b) two material ratios: phospholipid-to-PEGylated lipid
(3.76�6.67) and ionizable-to-chol (1.0818�1.3333); (c) two pro-
cessing conditions: aqueous-to-organic phase ratio (flow rate ratio
(FRR), 3 to 5) and production speed (total flow rate (TFR),
12�20 mL/min); and (d) probable ionizable/phospholipid/chol/
PEGylated lipid combination (mol%). The 24 mRNA-LNP experi-
mental runs are designed using an I-optimal DOE (Table 2), in
which the main effects are not confounded with two-factor in-
teractions, while non-linear correlations can be detected [21]. The
full model includes two- and three-way interactions, quadratic and
partial cubic terms for process factors, and Scheffe cubic terms for
mixture factors, which add quadratic effects for the continuous
process factors and their quadratic effects with other non-mixture
factors. The non-linear quadratic model, as illustrated by Eq. (2), is
Table 2
I-optimal experimental design for themanufacture of messenger RNA-lipid nanoparticles
ratios, and two processing conditions.

Factors (independent variables)

S. No. Ionizable
lipid

Phospholipid PEGylated
lipid

PEGylated
lipid (%)

Ionizab

1 DOTAP DOPE DSG 2.5 1.1077
2 DOTAP DSPE DMG 1.6 1.0843
3 DOTAP DMPC DPPE 1.6 1.3021
4 DOTAP DOPC Ceramide 1.5 1.2987
5 DOTAP DSPC Ceramide 1.6 1.3021
6 DOTMA DLPE DMG 1.6 1.3021
7 DOTMA DOPE DPPE 1.5 1.2987
8 DOTMA DSPE DPPE 1.6 1.3021
9 DOTMA DMPC DSG 1.5 1.2987
10 DOTMA DOPC DSG 1.6 1.0843
11 DOTMA DSPC Ceramide 2.5 1.3333
12 DODAP DLPE DPPE 2.5 1.1077
13 DODAP DOPE DMG 1.6 1.0843
14 DODAP DSPE Ceramide 1.5 1.2987
15 DODAP DMPC DMG 2.5 1.3333
16 DODAP DOPC DMG 2.5 1.3333
17 DODAP DSPC DSG 1.6 1.3021
18 MC3 DLPE DSG 1.6 1.3021
19 MC3 DOPE Ceramide 2.5 1.3333
20 MC3 DSPE DSG 2.5 1.3333
21 MC3 DMPC Ceramide 1.6 1.0843
22 MC3 DOPC DPPE 1.6 1.3021
23 MC3 DSPC DPPE 1.5 1.0818
24 MC3 DSPC DMG 1.5 1.2987

DOTAP: 1,2-dioleoyl-3-triMAP; DOTMA: 1,2-di-O-octadecenyl-3-triMAP(-methylammon
6,9,28,31-tetraene-19-yl-4-(dimethylamino) butanoate; DSPC: 1,2-Distearoyl-sn-gly
dimyristoyl-sn-glycero-3-PC; DSPE: 1,2-distearoyl-sn-glycero-3-(PE-phosphoethanolam
DSG: 1,2-distearoyl-rac-glycerol-(PEG2K-polyethylene glycol-2K); DMG: 1,2-dimyristoy
PEG2K; Ceramide: N-palmitoyl-sphingosine-1-succinyl(methoxyPEG2K); N/P: nitrogen f

3

obtained using JMP® Pro version 17 (SAS Institute Inc., Cary, NC,
USA) [30].
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where X1, X2, and Xn are factors; b0 is constant; bi, bij, and bii are
regression coefficients for linear, interaction, and quadratic terms,
respectively. Moreover, n, Y , and ε are the number of variables,
response, and experimental error, respectively.
2.4. Preparation of mRNA-LNPs using microfluidics

Each lipid is individually dissolved in ethanol. Subsequently, the
amount of each lipid is taken and constituted at 6M ratios (ionizable/
phospholipid/chol/PEGylated lipid) (Table 3), which gives ionizable-
(mRNA-LNP) with threematerial attributes, a PEGylated lipid amount, threematerial

le-to-chol ratio Phospholipid-
to- PEGylated
lipid ratio

N/P ratio FRR
(mL/min)

TFR
(mL/min)

3.76 10 4 15
5.88 8 5 12
6.25 10 3 15
6.67 6 3 12
6.25 6 5 20
6.25 10 4 20
6.67 8 5 20
6.25 6 4 15
6.67 6 3 12
5.88 10 5 15
4.00 8 3 15
3.76 6 5 12
5.88 6 3 15
6.67 10 5 15
4.00 8 5 15
4.00 10 3 20
6.25 8 4 12
6.25 8 3 15
4.00 10 5 12
4.00 6 3 20
5.88 8 4 20
6.25 8 4 15
6.27 10 3 12
6.67 6 5 15

ium propane); DODAP: 1,2-dioleoyl-3-diMAP; MC3: (6Z,9Z,28Z,31Z)-heptatriacont-
cero-3-(PC-phosphocholine); DOPC: 1,2-dioleoyl-sn-glycero-3-PC; DMPC: 1,2-
ine); DOPE: 1,2-dioleoyl-sn-glycero-3-PE; DLPE: 1,2-Dilauroyl-sn-glycero-3-PE;
l-rac-glycero-3-methoxyPEG2K; DPPE: 1,2-dipalmitoyl-sn-glycero-3-PE-N-amino(-
rom lipid and phosphate from nucleic acid; FRR: flow rate ratio; TFR: total flow rate.



Table 3
Different proportions of ionizable, phospholipid, chol, and PEGylated lipids were used to develop I-optimal experimental messenger RNA-lipid nanoparticles (mRNA-LNP)
formulations and the corresponding Ionizable-to-chol ratio and phospholipid-to-PEGylated lipid ratio.

S. No. Ionizable Phospholipid Chol PEGylated lipid (%) Ionizable-to-chol ratio Phospholipid-to-PEGylated lipid ratio

1 46.3 9.4 41.8 2.5 1.1077 3.76
2 46.3 9.4 42.7 1.6 1.0843 5.88
3 50 10 38.5 1.5 1.2987 6.67
4 46.3 8.4 42.8 2.5 1.0818 3.36
5 50 10 37.5 2.5 1.3333 4.00
6 50 10 38.4 1.6 1.3021 6.25

Chol: 1,2-dioleoyl-3-diMAP (DODAP, 127512-29-2), 3b-hydroxy-5-cholestene.
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to-chol ratios of 1.0818,1.0843,1.1077, 1.2987,1.3021, and 1.3333, and
phospholipid-to-PEGylated lipid ratios of 3.36, 3.76, 4.00, 5.88, 6.25,
and 6.67. Aqueous samples of mRNA (CKD Bio-P1 and Nluc-4895) are
prepared in 100mM citrate buffer (pH 4.5) at N/P ratios of 6, 8, or 10.
The initial and waste amounts are set at 0.45 and 0.05 mL, respec-
tively. The mRNA and lipid mix are infused in a toroidal micromixer
cartridge (TrM) of a NanoAssemblr® Benchtop (Precision Nano-
Systems Inc., Vancouver, BC, Canada) [31]. The reaction rate of the
microfluidics process is calculated from Eq. (3), while the pH value of
the final mRNA-LNP formulation is calculated using Eq. (4), which is
a Henderson-Hasselbalch equationwhere the pH of buffer systems is
obtained with negative logarithm of acid (cHA) and conjugated base
concentration (cA-) with acid constant (pKa) [20].

r¼ k:cmRNA:cionizable:cphospholipid:cChol:cPEG (3)

pH¼ pKa þ log
�
cA�
cHA

�
(4)

LNP formulations are dialyzed (MWCO 10 kDa, Thermo Scien-
tific, Rockford, IL, USA) against 100 times the LNP volume of 10 mM
Tris buffer (pH 7.4) for 24 h under magnetic stirring. The buffer is
exchanged with a fresh Tris buffer at the 2nd and 4th h. The LNP
formulations are concentrated using a centrifuge (Eppendorf
Manufacturing Co., Hamburg, Germany) at 5000 g for 30 min with
Amicon® Ultra (MWCO 100 kD, Sigma-Aldrich) and filtered with a
PALL capsule (MWCO 300 kD) in a Tangential Flow Filtration system
(TFF; Minimate™ PALL Life Sciences, Ann Arbor, MI, USA). To ensure
a nuclease-free environment, the glassware is sterilized at a high
temperature (�300 �C) for at least 12 h. All other equipment are
treated with RNaseZap™ (Thermo Scientific) before use.
2.5. Particle size, PDI, and Zeta potential

Dynamic light scattering (DLS; Zetasizer Nano ZS, Malvern In-
struments Ltd., Worchestershire, UK) equipped with a 633 nm
HeeNe laser and a detection angle of 90� is used to measure the PS,
PDI, and ZP. The mRNA-LNPs are initially diluted with water (DEPC-
treated) to a concentration of 100 mg/mL and allowed to stabilize for
30 min before measurements [26]. DLS measures Z-average hy-
drodynamic size (Dz, Eq. (5)) and broadness of the size distribution
(PDI) of particles dispersed in a liquid medium based on Stokes-
Einstein equation [32].

Dz ¼ kBT
3phDt;avg

(5)

where, Dz, kB, T , h, and Dt;avg are hydrodynamic diameter, Boltz-
mann's constant, thermodynamic temperature, dynamic viscosity,
and translational diffusion coefficient, respectively.
4

ZP is measured using a laser-Doppler velocimetry method. The
dispersant refractive index (RI) and viscosity are 1.33 and 0.8872 cP,
respectively, and the material absorbance and refractive index (RI)
are 0.01 and 1.49, respectively. Analysis is performed three times
for each sample, and mean values are taken (n ¼ 10, (3 � 10) 30
runs in each measurement).

2.6. pKa measurement

The mRNA-LNP sample is diluted to 6.25 ng/mL total mRNA in
Tris buffer and transferred to a quartz cuvette (ZEN2112) to mea-
sure the size in a Zetasizer Nano ZS with configuration set at ab-
sorption of 0.001 at 25 �C, viscosity of 0.888 cP, and RI of 1.335.
Previously, the instrument is equilibrated to 25 �C for 30 s, with no
delay between measurements. The observed data are fitted to the
extended HendersoneHasselbalch equation, which is represented
by Eq. (6), to obtain the pKa [33].

J¼Jmax �Jmax �Jmin

1þ 10
pKa�pH

n

(6)

where extreme values of pH limits are maximum and minimum
Jmax and Jmin, respectively. The apparent pKa is calculated as the
pH corresponding to 50% LNP protonation, which is fitted using a
nonlinear sigmoidal doseeresponse.

2.7. Heat trend cycle

The heat trend cycle of the mRNA-LNP formulations is deter-
mined using a Q-2000 differential scanning calorimetry (DSC) (TA
Instruments, New Castle, DE, USA) [34]. Each mRNA-LNP formula-
tion sample (⁓2 mL) is pipetted into Tzero aluminum pan and
sealed, with a blank pan employed as a reference. DSC measure-
ments are performed at a scan rate of 10 �C/min from 20 �C
to �50 �C under a nitrogen flow of 50 mL/min. The thermal pa-
rameters are interpreted using software provided with the instru-
ment. Thermal events during the heat trend cycle were assumed to
represent buffer compositions. They often have a broad exothermic
hump associated with the eutectic crystallization of salts from the
solutions [34].

2.8. Encapsulation efficiency (EE)

A Quant-iT™ RiboGreen® RNA Assay Kit (Invitrogen™, Thermo
Fisher Scientific) is used to quantify the amount of encapsulated
mRNA and its concentration as a percentage [12]. To determine the
un-encapsulated mRNA, the sample is diluted to the expected total
mRNA concentration using 1 � Tris-ethylenediaminetetraacetic acid
(EDTA) (TE) buffer, and RiboGreen® dye (100 mL) was added and
incubated for 5 min. To determine the encapsulated mRNA, the
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sample is diluted to the expected total mRNA concentration using
1 � TE buffer containing 0.5% (V/V) Triton X-100 (Sigma-Aldrich),
incubated for 5 min, measured at fluorescence wavelength
lem¼ 535 nm and lex¼ 485 nmusing a UVeVis plate reader (TECAN
Spark, Morrisville, NC, USA), and plotted against a calibration curve,
prepared up to 2 mg/mL (R2 � 0.9999) [35]. The procedure is based
on the supplier's protocol. The limit of detection (LOD) and limit of
quantification (LOQ) are calculated for mRNA (8 and 30 mg/mL,
respectively). The analyses are performed between the LOQ and
2 mg/mL.

2.9. Recovery ratio

The theoretical weight of the mRNA-LNP sample is noted. After
the sample is prepared from the microfluidics, the final weight is
calculated. The recovery ratio is calculated by deducting the final
weight from the theoretical weight and expressed in percent, as
given in Eq. (7).

Recovery ratio¼ theoretical weight � observed weight
theoretical weight

� 100%

(7)

2.10. Encapsulated mRNA

Encapsulated mRNA is the total amount of mRNA covered by
the lipid mixture, which is available in the recovered final weight
after microfluidics preparation and expressed as a percentage
using Eq. (8).

Encapsulated mRNA¼ recovery ratio� encapsulation efficiency

(8)

2.11. XGBoost model

The XGBoost model is an optimized distributed gradient
boosting library, which is both efficient and flexible [36]. Eight
output responses are used to build an individual model using 13
input factors. Twenty-four formulations are used to construct the
model. The learning rate and number of rounds are set within (0.05
and 0.3) and (5 and 30), respectively. The importance of each factor
is calculated, and the critical process parameters are determined on
the basis of the high importance of the values. Different number of
estimators and regularization strengths are evaluated [37].

2.12. Bayesian optimization

The Bayesian optimization model is implemented to optimize
the experimental factors based on previous outcomes obtained in
terms of probability distributions [36]. A prior study suggested that
machine learning approaches, such as artificial neural networks,
were capable of tuning the PS [38]. The benefit of the present
XGBoost and Bayesian optimization models is that they can
promptly optimize the factors with a few experiments. The
XGBoost model is used to determine the process factors of the
microfluidic instrument, which can be further implemented to
obtain the desired output responses with Bayesian optimization.

2.13. SVEM

The SVEM model is a type of bootstrapping method with frac-
tionally weighted bootstrapping. Every time a different fractional
weight is assigned to each data point while maintaining the design
structure [19]. During themodel fitting, the SVEM assigns each data
point to either training or self-validation as 1 or 0, respectively. In
the case of validation, the weights are assigned reversely. For self-
5

validation purposes, the original dataset is considered as a
training set, while a copy of the original dataset is generated and
allocated as a “self-validation set.” The fractional weights are
assigned in pairs such that a large weight in a training set will
balance with a small weight in a self-validation set, as illustrated in
Eq. (9). This type of correlation allows the model to function as a de
facto validation set. The system requirements recommended to run
SVEMmodel in the JMP® Pro version 17 software (SAS Institute Inc.,
Cary, NC, USA) are 64-bit CPU, Windows 10 or 11 (except Windows
10S edition), and 4 GB or more RAM [39e41].

Generate : ui � U ½0;1� for i¼1…N

Training FW : wT ;i ¼ F�1ðuiÞ¼ logðuiÞ for i¼1…N

Self � validation FW : wV ;i ¼ F�1ð1� uiÞ¼ logð1� uiÞ
for i¼1…N

(9)

First, N random uniform weights (0,1) are generated, followed
by an inverse probability distribution to obtain fractional weights,
as illustrated in Eq. (9). U [0,1] represents uniform distribution and
F indicates cumulative distribution function.
3. Results and discussion

3.1. Evaluation of the effects of different factors on outcomes

Twenty-four formulations are designed with nine factors
(ionizable lipid, phospholipid, PEGylated lipid, ionizable-to-chol,
PEGylated lipid amount, phospholipid-to-PEGylated lipid, FRR,
TFR, and N/P ratio) using I-optimal DOE (Table 2), and the subse-
quent eight outcomes (PS, PDI, ZP, pKa, heat trend cycle, EE, re-
covery ratio, encapsulated mRNA) are presented in Table 4. The
dataset distribution of the output responses is illustrated in Fig. 1,
where the means of PS, PDI, ZP, pKa, heat trend cycle, EE, recovery
ratio, and encapsulated mRNA are 66.84 ± 15.25 nm, 0.17 ± 0.09,
1.18 ± 0.83 mV, 6.28 ± 0.44, �16.59 ± 3.91 �C, 88.66% ± 6.47%,
89.54% ± 3.11%, and 79.39% ± 6.50%, respectively.

The outcomes are further analyzed based on the specific input
factors, as illustrated in Fig. 2. It is found that formulation with
DOTAP (ionizable lipid) gives a comparably larger PS, ZP (Fig. 2A),
and EE (Fig. 2B), whereas PDI and pKa are smaller compared to the
formulations using other ionizable lipids. A prior study found that
mRNA-LNPs with a larger PS can induce transgene expression in
mouse immune cells and demonstrate superior effects as a thera-
peutic cancer vaccine [42]. Additionally, design of LNP bymodulating
lipid is particularly essential for organ-specific, cell-specific delivery,
biodegradability, and multi-functionality [43]. The outcomes of ZP
and EE using DOTAP ionizable lipids are consistent with those of the
prior study [26]. The ionizable lipids incorporated in themRNA-LNPs
prevent hydrolysis and colloidal destabilization when lyophilized in
the presence of 20% (w/V) sucrose [44]. On the contrary, the for-
mulations with MC3 lipids resulted in a smaller PS, ZP, and EE, but
higher PDI and pKa values. A prior study found that PS and ZP were
crucial and directly impacted in vivo behavior and cellular internal-
ization [45]. Particularly, 50�100 nm LNP are approved for mRNA-
LNP vaccine delivery in a clinical setting [46]. Among the PEGy-
lated lipid types, PDI is higher with the formulations with DSG
(Fig. 2C), whereas the formulations with ceramide have higher ZP.
Among the phospholipids, the formulations prepared with that of
DMPC and DOPE have better thermostability (Fig. 2D), whereas the
formulations with DSPE have comparably lower stability. A lower N/
P ratio favors ZP, whereas a higher N/P ratio favors thermal stability
and enhances the recovery ratio (Fig. 2E).



Table 4
Different outcome responses were obtained from 24 messenger RNA-lipid nanoparticles (mRNA-LNP) formulations.

Responses (Dependent variables)

S. No. PS (nm) PDI ZP (mV) pKa Heat trend cycle (�C) EE (%) Recovery ratio (%) Encapsulated mRNA (%)

1 66.55 0.120 1.34 6.11 �7.04 93.176 90.912 84.708
2 78.57 0.107 1.97 5.66 �15.75 92.391 87.143 80.512
3 96.95 0.071 2.33 6.21 �7.62 96.439 94.508 91.143
4 94.42 0.069 3.09 5.87 �17.93 95.558 96.634 92.342
5 92.45 0.099 3.26 5.59 �18.03 91.141 90.233 82.239
6 75.26 0.212 0.43 5.86 �12.04 93.162 92.322 86.009
7 77.76 0.208 0.87 6.19 �17.91 91.161 88.842 80.989
8 78.82 0.178 0.96 6.04 �19.14 92.526 91.103 84.294
9 82.88 0.258 2.09 5.62 �19.65 92.043 87.392 80.438
10 69.44 0.222 0.80 5.57 �12.79 90.146 93.890 84.638
11 82.11 0.233 1.74 5.83 �16.78 92.571 87.758 81.238
12 51.13 0.087 0.47 6.73 �20.96 91.816 85.555 78.553
13 50.99 0.073 0.97 6.10 �21.11 93.363 87.359 81.561
14 51.89 0.067 0.64 6.59 �14.54 91.361 88.761 81.093
15 57.25 0.203 0.61 6.80 �18.07 90.261 91.000 82.138
16 57.00 0.211 0.59 6.62 �14.63 93.491 90.001 84.143
17 57.13 0.198 1.00 6.57 �18.26 90.138 87.358 78.743
18 55.88 0.320 0.84 6.75 �18.35 79.216 85.499 67.729
19 57.44 0.374 0.16 6.81 �14.03 74.532 94.088 70.126
20 56.43 0.331 1.12 6.49 �21.41 84.168 85.525 71.985
21 51.82 0.149 0.86 6.63 �18.06 75.923 90.140 68.437
22 56.13 0.156 0.84 6.70 �18.75 80.542 88.878 71.584
23 51.08 0.146 0.16 6.84 �13.93 77.349 93.135 72.039
24 54.70 0.090 1.12 6.57 �21.44 85.416 92.508 79.017

PS: particle size; PDI: polydispersity index; ZP: Zeta potential; EE: encapsulation efficiency.

Fig. 1. Distribution of the outcome responses. (A) Particle size (PS), (B) polydispersity index (PDI), (C) Zeta potential (ZP), (D) pKa, (E) heat trend cycle, (F) encapsulation efficiency
(EE), (G) recovery ratio, (H) encapsulated mRNA obtained from the experimental runs. To the right side of the histogram, quantile plots are drawn where the Q1 (25% quartile),
median (50% quartile), Q3 (75% quartile), maximum value, and minimum value are indicated. The red line indicates the mean along with its standard deviation.
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Fig. 2. Effect of factors on the responses of the messenger RNA-lipid nanoparticles (mRNA-LNP) vaccine formulations. (A) Effect of ionizable lipids on particle size, polydispersity
index (PDI), and Zeta potential. (B) Effect of ionizable lipids on pKa and encapsulation efficiency (EE). (C) Effect of PEGylated lipid on PDI and Zeta potential. (D) Effect of phos-
pholipid on heat trend cycle and recovery ratio. (E) Effect of nitrogen from lipid and phosphate from nucleic acid (N/P) ratio on Zeta potential, heat trend cycle, and recovery ratio.
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3.2. Principal component analysis

The PCA tool is specifically implemented to identify the major
responses and reduce the dimension [47]. In our study, the datasets
are evaluated using PCA tools, which suggests that [PS & ZP] (0.80)
and [EE and encapsulated mRNA] (0.91) have a strong (close to 1)
7

and positive correlation, whereas [PS and pKa] and [ZP and pKa]
have a negative correlation, as shown in scatterplot diagram
(Fig. 3). The library for the PCA tool is built from different material
attributes, processing conditions (Table 1), and experimental out-
comes (Table 2) [48]. This approach is particularly beneficial to
identify the particles in the protein formulations [49].



Fig. 3. Scatterplot matrix plotted between different outcome responses. Particle size, polydispersity (PDI), Zeta potential, pKa, heat trend cycle, encapsulation efficiency (EE),
recovery ratio, and encapsulated mRNA illustrate the correlation between the responses. The principal component analysis tool from JMP Pro® was used to determine the cor-
relations. Higher intensity of red indicates stronger positive correlation, whereas higher intensity of blue indicates stronger negative correlation.
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3.3. Partial least squares (PLS) analysis

The PLS analysis of the response datasets (particle size, PDI, ZP,
pKa, heat trend cycle, EE, recovery ratio, and encapsulated mRNA)
are provided in Fig. 4, which can interpret the significant factors
and influence of the two-factor correlation. Both PS and PDI are
positively affected by the ionizable-to-chol ratio and negatively
influenced by the PEGylated lipid and phospholipid-to-PEGylated
lipid ratios (Fig. 4A). Similarly, ZP is positively affected by the
ionizable-to-chol ratio and negatively influenced by the PEGylated
lipid, FRR, and N/P ratio (Fig. 4A). Other output responses (pKa, heat
trend cycle, EE, recovery ratio, and encapsulated mRNA) are posi-
tively influenced by the PEGylated lipid and phospholipid-to-
PEGylated lipid ratio (Fig. 4B). Although the ionizable-to-chol ra-
tio appeared to be a significant factor (Fig. 4C), an ionizable lipid has
no significant contribution toward EE (Fig. 4B), which is contrary to
prior findings [20]. One possible reason for this discrepancy is that
the evaluation of the entire dataset library made it difficult to
identify significant ionizable lipids from the ionizable-to-chol ratio;
thus, the formulations may require optimization as a next step,
which is discussed in the subsequent section. In case of the heat
trend cycle and recovery ratio, the outcome is also positively
affected by the N/P ratio (Fig. 4B). When the variable importance
8

parameter is set at 0.8, the major influencing factors are the
ionizable-to-chol ratio (0.9285), PEGylated lipid (0.9942),
phospholipid-to-PEGylated lipid (1.0970), and N/P ratio (1.5669,
Figs. 4C and D).

3.4. Optimization of the mRNA-LNP formulations

The output responses are crucial for the stability, efficacy, and
quality of the mRNA-LNP formulations and thus are termed as crit-
ical quality attributes (CQAs), as listed in Table 5. The constraints are
set to the CQAs as PS in a range of 40e120 nm, PDI < 0.3, ZP in be-
tween 1 and 4 (irrespective of positive or negative charge), pKa in
between 5 and 7, thermal stability when temperature rose by more
than�25 �C, EE> 75%, recovery ratio> 85%, and encapsulatedmRNA
> 70% (Table 5). Similar study has been conducted with alphavirus-
based self-amplifying RNA (saRNA) LNP as an alternative to mRNA
vaccinewhere DOTAP/DOTMA lipid produce LNP with particle size <
200 nm (PDI< 0.3, EE> 90%). It is slightly large in sizewhich requires
optimization. Conversely, low toxicity, dose-sparing property,
versatility, and simple manufacturing process facilitate a rapid
response against future pandemics [50]. Another study found that
antibody titer increased with increasing LNP size until 100 nm, and
then started to decrease and confirmed that LNP size in a range of



Fig. 4. Partial least squares analysis of the outcome responses. (A) Particle size, polydispersity (PDI), and Zeta potential (ZP). (B) pKa, heat trend cycle, and encapsulation efficiency
(EE). (C) Recovery ratio, encapsulated mRNA, and variable importance table.
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60e150 nm showed a robust immune response without impacting
on immunogenicity in non-human primates [51]. Therefore, particle
size in DOE set to 40�120 nm. Based on the constraints, the expected
outcomes of PS and pKa are set to “in range,” the likely outcome of
PDI is set to “minimize,” and the desired outcomes of the remaining
responses (Fig. 5A): ZP, heat trend cycle, EE, recovery ratio, and
encapsulated mRNA, are set to “maximize.” Based on these optimi-
zation criteria, the graph is plotted against the phospholipid-to-
PEGylated lipid vs. the ionizable-to-chol ratio, where the predicted
responses are obtained as a PS of 62.91 nm (Fig. 5B), PDI of 0.19 (Fig.
5C), ZP of 4.52 (Fig. 5D), pKa of 6.32 (Fig. 5E), heat trend cycle
of�14.63 �C (Fig. 5F), EE of 93.53% (Fig. 5G), recovery ratio of 99.80%
(Fig. 5H), and encapsulatedmRNA of 96.69%, when the factors are set
as a PEGylated lipid amount of 1.58, a FRR of 3.50, a TFR of 19.88, and
a N/P ratio of 9.91, with ionizable lipid DODAP, phospholipid DOPE,
and PEGylated lipid DMG-PEG2K.

The probable zone of interest that meets the pre-defined criteria is
allocated as the design space that falls under the defined constraints
Table 5
Constraints established on the critical quality attributes (CQAs) of messenger RNA-
lipid nanoparticles (mRNA-LNP) formulations along with the desired outcomes of
the responses.

Responses Symbols Constraints Desired outcomes

PS (Y1) 40 nm � Y1 � 120 nm In range
PDI (Y2) Y2 � 0.3 Minimize
ZP (Y3) (±) 1 � Y3 � (±) 4 In range
pKa (Y4) 5 � Y1 � 7 In range
Heat trend cycle (Y5) �25 �C � Y2 Maximize
EE (Y6) 75% � Y4 Maximize
Recovery ratio (Y7) 85% � Y4 Maximize
Encapsulated mRNA (Y8) 70% � Y4 Maximize

PS: particle size; PDI: polydispersity index; ZP: Zeta potential; EE: encapsulation
efficiency.
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(shaded region in yellow). Similarly, as before, one of the mRNA-LNP
formulations is chosen within the design space, which gives the pre-
dicted responses as a PS of 73.62nm, PDI of 0.35, ZP of 0.16, pKaof 6.20,
heat trend cycle of �21.44 �C, EE of 96.44%, recovery ratio of 96.63%,
and encapsulated mRNA of 91.74%, when the factors are set to a
PEGylated lipid amount of 2, a FRR of 4, a TFR of 16, and an N/P ratio of
8,with ionizable lipid DOTAP, phospholipid DOPE, and PEGylated lipid
DSG-PEG2K (Fig. 5). This work is supported by previous research
where the quality by design (QbD) approach has been useful to opti-
mize the mRNA manufacturing process, reduce out-of-specification,
and contribute to a continuous manufacturing platform [20].
3.5. Monte Carlo simulation

Based on the design space and optimization, Monte Carlo
simulation is performed (n ¼ 10,000) and an R2 and P value of the
predicted dataset are statistically evaluated. The PS (0.9981,
0.0197), PDI (0.9832, 0.0163), ZP (0.9954, 0.0477), pKa (0.9800,
0.0239), heat trend cycle (0.9988, 0.0122), EE (0.9980, 0.0215), re-
covery ratio (0.9200, 0.0365), and encapsulated mRNA (0.9500,
0.0463) are found to be statistically significant when the P value is
considered at 0.05, which suggests that the statistical conclusions
are robust. Therefore, predictive modeling is further supported by
machine learning tools in subsequent studies. From the above ob-
servations, it can be assured that the DOE results show a superb
regression with an R2 � 0.92, and it can be considered that the
regression is sufficiently accurate for the target outcomes.
3.6. Measurement system analysis (MSA) and process capability
analysis

MSA is performed using X-bar and R chart for 10,000 simula-
tions, as shown in Fig. 6. The acceptable range is determined by



Fig. 5. Optimization of outcome responses. (A) Desirability, (B) particle size, (C) polydispersity index (PDI), (D) Zeta potential, (E) pKa, (F) heat trend cycle, (G) encapsulation
efficiency (EE), (H) recovery ratio, and (I) encapsulated mRNA.
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tolerance interval analysis using a portion of the simulated popu-
lation (n ¼ 172). The measurement values of the outcome re-
sponses, PS, PDI, ZP, pKa, heat trend cycle, EE, recovery ratio, and
encapsulated mRNA were 51.59 nm, 82.09 nm, 0.08 to 0.36,
0.35e2.01 mV, 5.84 to 6.72, �20.50 �C to �12.68 �C, 82.19%%e
95.13%, 86.43%%e92.65%, and 72.87%%e85.89%, respectively. For
the above measurements, the lower and higher control limits of the
responses are calculated using Eq. (S1) and Eq. (S2) and the X-bar
chart limits are obtained as PS (Fig. 6A, 65.02 nme69.06 nm), PDI
(Fig. 6B, 0.16 to 0.20), ZP (Fig. 6C, 1.05 mVe1.30 mV), pKa (Fig. 6D,
6.15 to 6.35), heat trend cycle (Fig. 6E, �17.5 �C to �16.0 �C), EE
(Fig. 6F, 87.8%e88.9%), recovery ratio (Fig. 6G, 88.7%e90.9%), and
encapsulated mRNA (Fig. 6H, 77.9%e80.9%). A process “in control”
refers to a stable and predictable process that avoids unnecessary
adjustments.

Themean and range of average values are found to bewithin the
control limits (Fig. 6), which are further tested with process capa-
bility analysis using Eqs. (S5), (S6), and (S7), and illustrated in Fig. 7.
The blue solid curve and black dotted curve represent the samples
within the group and overall groups, respectively. The Cpk values of
the outcome responses, PS, PDI, ZP, pKa, heat trend cycle, EE, re-
covery ratio, and encapsulated mRNA are 2.046 (Fig. 7A), 1.584
(Fig. 7B), 1.260 (Fig. 7C), 1.475 (Fig. 7D), 1.313 (Fig. 7E), 1.294
(Fig. 7F), 1.315 (Fig. 7G), and 1.843 (Fig. 7H), respectively. A Cpk
10
value > 1.300 indicates the proximity of the observed value to a
target and consistency around the average performance of the
manufacturing process with a 4 s capacity. These values are
important for designing 6s and ensuring product quality during
continuous manufacturing of mRNA-LNP formulation [50].

3.7. Processing conditions optimization using XGBoost and
Bayesian optimization

Precise control of CQAs in mRNA-LNP manufacturing is critical
for the desired output responses. XGBoost is used to understand
the importance of the parameters (Fig. 8). The experimental values
(y-axis) and predicted values (x-axis) of PS, PDI, ZP, pKa, heat trend
cycle, EE, recovery ratio, and encapsulated mRNA are shown in Figs.
8AeH, respectively. Based on the predicted values of the outcome
responses, the predictive accuracy of the XGBoost model is calcu-
lated for PS, PDI, ZP, pKa, heat trend cycle, EE, recovery ratio, and
encapsulated mRNA in terms of R2, RMSE, and MAE, where the
corresponding values are obtained as (0.9971, 0.4932, 0.3663),
(0.9756, 0.0078, 0.0045), (0.9897, 0.0411, 0.0230), (0.9886, 0.0277,
0.0200), (0.9981, 0.1136, 0.0732), (0.9516, 0.7034, 0.4109), (0.9496,
0.4041, 0.2791), and (0.9414, 0.9054, 0.6322), respectively. All of the
parameters have R2 > 0.95, RMSE < 0.91, and MAE < 0.63 (Table 6),
which suggests that the XGBoost model has good predictive ability.



Fig. 6. X�bar (top) and R chart (bottom) plots for simulated dataset, where the average and range of each response values are within the respective upper and lower control limits.
(A) Particle size, (B) polydispersity index (PDI), (C) Zeta potential), (D) pKa, (E) heat trend cycle, (F) encapsulation efficiency (EE), (G) recovery ratio, and (H) encapsulated mRNA.
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Furthermore, Bayesian optimization is implemented on the
above predicted datasets using Gaussian process regression, where
the input factors are fed to an acquisition function to selectively
obtain a desired outcome. In the current scenario, the PS is targeted
between 62.70 nm and 72.64 nm (Fig. 9A) and a PDI between 0.07
Fig. 7. Process capability analysis illustrated by the blue curve (distribution within the grou
index (PDI), (C) Zeta potential, (D) pKa, (E) heat trend cycle, (F) encapsulation efficiency (EE)
lower and upper specification limits (LSL and USL) while middle green line represent its me
the specification.
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and 0.17 (Fig. 9B), which is achieved when the input factors, i.e.,
ionizable-to-chol ratio, PEGylated lipid amount, phospholipid-to-
PEGylated lipid, FRR, TFR, and N/P ratio, are set to 1.17, 1.50, 3.76,
4.22 mL/min, 17.85 mL/min, and 9.76, respectively. Similarly, ZP in a
range of þ0.55 mV to þ0.90 mV (Fig. 9C) and preferred pKa in a
p) and dotted curve (distribution of overall groups). (A) Particle size, (B) polydispersity
, (G) recovery ratio, and (H) encapsulated mRNA. Left and right (red) lines represent the
an value. The sharp intensity in y-axis direction shows that the conditions easily meet



Fig. 8. Plot of actual vs. predicted values of outcome responses using XGBoost tool. (A) Particle size (PS), (B) polydispersity index (PDI), (C) Zeta potential (ZP), (D) pKa, (E) heat trend
cycle, (F) encapsulation efficiency (EE), (G) recovery ratio, and (H) encapsulated mRNA.
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range of 6.36e6.54 (Fig. 9D) can be obtained when the input fac-
tors, i.e., ionizable-to-chol ratio, phospholipid-to-PEGylated lipid,
FRR, TFR, and N/P ratio, are set to 1.33, 3.76, 3 mL/min, 12 mL/min,
and 10, respectively. The PEGylated lipid amount slightly differs in
those two output conditions. For ZP, the predicted PEGylated lipid
amount is 2.5%, whereas in the case of pKa, the predicted PEGylated
lipid amount is 1.5% (Figs. 9C and D).

A stable heat-resistant mRNA-LNP formulation is targeted at a
temperature of �11.60 �C (between �12.82 �C and �10.39 �C)
(Fig. 9E), which can be attained if the input factors, i.e., ionizable-to-
chol ratio, PEGylated lipid amount, phospholipid-to-PEGylated
lipid, FRR, TFR, and N/P ratio, are fixed at 1.15, 2.22%, 6.10, 3.89
mL/min, 17.49 mL/min, and 9.21, respectively. Similarly, an mRNA-
LNP formulation with a high EE (>88%) can be predicted when
Bayesian optimization for the input factors (i.e., ionizable-to-chol
ratio, PEGylated lipid amount, phospholipid-to-PEGylated lipid,
FRR, TFR, and N/P ratio) is set as 1.15, 2.02%, 5.15, 4.00mL/min,16.78
mL/min, and 8.22, respectively (Fig. 9F). Alternatively, a recovery
ratio > 89% can be predicted when the input factors, i.e., ionizable-
to-chol ratio, PEGylated lipid amount, phospholipid-to-PEGylated
lipid, FRR, TFR, and N/P ratio, are set to 1.14, 1.61%, 4.84, 4.13 mL/
min, 15.14 mL/min, and 7.27, respectively (Fig. 9G). In another
Table 6
Based on the experimental and predicted outcomes, the prediction accuracy of the
XGBoost model is calculated and expressed in terms of R2, RMSE, and MSE.

Responses R2 RMSE MSE

PS 0.9971 0.4932 0.3663
PDI 0.9756 0.0078 0.0045
ZP 0.9897 0.0411 0.0230
pKa 0.9886 0.0277 0.0200
Heat trend cycle 0.9981 0.1136 0.0732
EE 0.9516 0.7034 0.4109
Recovery ratio 0.9496 0.4041 0.2791
Encapsulated mRNA 0.9414 0.9054 0.6322

PS: particle size; PDI: polydispersity index; ZP: Zeta potential; EE: encapsulation
efficiency; RMSE: root mean square error; MSE: mean squared error.
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scenario, encapsulated mRNA levels >78% can be estimated if those
six factors are changed to 1.19, 1.56%, 5.34, 3.94 mL/min, 15.83 mL/
min, and 7.96, respectively (Fig. 9H).

3.8. Lipid mix ratio prediction for desired mRNA-LNPs using the
SVEM model

SVEM model is implemented to predict the probable lipid mix
ratio, which will give the targeted output responses as mentioned
in above Bayesian optimization. The feasible lipid mix ratio
(ionizable, phospholipid, and others (chol þ PEGylated lipid)) is
shaded in red, while the least feasible lipid ratio is shaded in blue
(Fig. 10). The low amount of ionizable lipid (0.10e0.20), high
amount of phospholipid (0.85e0.90), and medium quantity of
others (chol þ PEGylated lipid, 0.30 to 0.65) favor the targeted re-
sponses (Fig. 10A). Specifically, the amounts of chol and PEGylated
lipid in the other components are high (0.95e1.00) and low
(0e0.05), respectively (Fig. 10B). A prior study demonstrated that
such in silico nanoparticle composition screening had potential
applications in predicting de novo biological experiments [51]. In
the present case, Fig. 10 shows the possible region of the lipid mix
composition (high intensity in red color) that meets the optimized
(target) conditions discussed in above section.

The SVEM model is fed to forward regression, Lasso, and neural
network, which give a predictive accuracy in terms of R2, RASE, and
AAE (Table 7). All three SVEM models have delivered the desired
outcomes. When the models are thoroughly compared, the pre-
dictive accuracy of the models is in the order of
SVEM�Fwd_regression < SVEM�Lasso < SVEM�Neural model,
listed in this order based on high R2 and low RASE and AAE values
(Table 7). For instance, the predictive accuracy of PS in terms of R2 is
in the order of SVEM�Fwd_regression: 0.9910 < SVEM�Lasso:
0.9977 < SVEM�Neural: 0.9980. Similarly, the predictive accuracy
of PS in terms of RASE is in the order of SVEM�Fwd_regression:
1.3921 > SVEM�Lasso: 0.7012 > SVEM�Neural: 0.6556 and in
terms of AAE, is in the order of SVEM�Fwd_regression:



Fig. 9. Bayesian optimization of outcome responses. (A) Particle size, (B) polydispersity index (PDI), (C) Zeta potential), (D) pKa, (E) heat trend cycle, (F) encapsulation efficiency
(EE), (G) recovery ratio, and (H) encapsulated mRNA. N/P: nitrogen from lipid and phosphate from nucleic acid; FRR: flow rate ratio; TFR: total flow rate.

Fig. 10. Determination of the sweet spot from the lipid mix ratio that can give the target outcomes using a self-validated ensemble model (SVEM).(A) Prediction of the response
(red: most desirable, blue: least desirable) using a lipid mix ratio of ionizable, phospholipid, and the others (Chol þ PEGylated lipid). (B) Prediction of the response using Chol,
PEGylated lipid, and the others (ionizable lipid þ phospholipid).
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Table 7
Prediction accuracy of three subclasses of the self-validated ensemble (SVEM) model: SVEM-Fwd_regression, SVEM-Lasso, and SVEM-Neural are evaluated and expressed in
terms of R2, RASE, and AAE.

Responses SVEM�Fwd_regression SVEM�Lasso SVEM�Neural

R2 RASE AAE R2 RASE AAE R2 RASE AAE

PS 0.9910 1.3921 0.8270 0.9977 0.7012 0.4935 0.9980 0.6556 0.3337
PDI 0.9851 0.0101 0.0070 0.9893 0.0086 0.0048 0.9908 0.0080 0.0027
ZP 0.9689 0.1402 0.0761 0.9693 0.1392 0.0814 0.9742 0.1276 0.0374
pKa 0.9919 0.0382 0.0221 0.9990 0.0137 0.0095 0.9994 0.0103 0.0048
Heat trend cycle 0.9710 0.6386 0.4194 0.9696 0.6545 0.4541 0.9816 0.5094 0.1542
EE 0.9941 0.4671 0.3532 0.9964 0.3663 0.2459 0.9976 0.3004 0.0900
Recovery ratio 0.9929 0.2464 0.1561 0.9940 0.2275 0.1236 0.9945 0.2177 0.0868
Encapsulated mRNA 0.9875 0.6964 0.4069 0.9884 0.6703 0.3686 0.9899 0.6270 0.1911

PS: particle size; PDI: polydispersity index; ZP: Zeta potential; EE: encapsulation efficiency; RMSE: root mean square error; AAE: average absolute error.

Table 8
Independent experimental runs of messenger RNA-lipid nanoparticles (mRNA-LNP) vaccine formulations along with the actual outcomes and the predicted outcomes.

Factors (independent variables)

S. No. Ionizable
lipid

Phospholipid PEGylated
lipid

PEGylated lipid Ionizable-
to-chol ratio

Phospholipid-
to- PEGylated
lipid ratio

N/P ratio FRR (mL/min) TFR (mL/min)

1 DOTMA DOPE Ceramide 1.6 1.3137 3.83 10 4 13
2 MC3 DMPC DSG 1.9 1.0888 5.96 6 4 13

Responses (Experimental)

S. No. PS (nm) PDI ZP (mV) pKa Heat trend cycle (℃) EE (%) Recovery ratio (%) Encapsulated mRNA (%)

1 94.42 0.069 3.09 5.87 �17.93 95.558 96.282 91.736
2 96.95 0.071 2.33 6.21 �7.62 96.439 94.389 90.653

Responses (Predicted)

S. No. PS (nm) PDI ZP (mV) pKa Heat trend cycle (℃) EE (%) Recovery ratio (%) Encapsulated mRNA (%)

1 95.16 0.061 3.29 5.91 �17.32 95.880 96.444 92.268
2 97.34 0.069 2.26 6.23 �7.78 96.768 94.486 90.810

DOTMA: 1,2-di-O-octadecenyl-3-triMAP(-methylammonium propane); MC3: (6Z,9Z,28Z,31Z)-heptatriacont-6,9,28,31-tetraene-19-yl-4-(dimethylamino) butanoate; DMPC:
1,2-dimyristoyl-sn-glycero-3-PC; DOPE: 1,2-dioleoyl-sn-glycero-3-PE; DSG: 1,2-distearoyl-rac-glycerol-(PEG2K-polyethylene glycol-2K); Ceramide: N-palmitoyl-sphingo-
sine-1-succinyl(methoxyPEG2K); PS: particle size; PDI: polydispersity index; ZP: Zeta potential; EE: encapsulation efficiency; N/P: nitrogen from lipid and phosphate from
nucleic acid; FRR: flow rate ratio; TFR: total flow rate.
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0.8270 > SVEM�Lasso: 0.4935 > SVEM�Neural: 0.3337 (Table 7).
Consistently, equivalent results have been obtained for other
output responses (PDI, ZP, pKa, heat trend cycle, EE, recovery ratio,
encapsulated mRNA). Therefore, it can be implied that high pre-
diction performance is achieved with a small sample size [22]. This
is possible because of the fractional random weight bootstrap that
assigns anti-correlated training and validation weights to individ-
ual observations. The eventual SVEM model is the outcome of the
average of bootstrappedmodels. SVEMmodel performs better than
single model selection approaches. The mRNA-LNP vaccine for-
mulations under the zone marked in red (Fig. 10) can be experi-
mentally obtained and optionally conducted comprehensive
second-phase investigation [19]. In order to achieve the desired
outcomes from the practical experiments, both ML tools focus on
lipid composition and process factors. Specifically, SVEM is simpler
compared to XGBoost/Bayesian optimization as it does not need
separate training and validation datasets, avoids complications that
arise in traditional DOE with mixture-process experiments, and
enables QbD approach into the RNA vaccine production process
[11,19]. A prior study implemented lightGBM algorithm to predict
the mRNA-LNP formulations with better IgG titer, validated with
in vivo test on ACE2 expression, and attempted to recognize the
ionizable lipid, which serves a major role in nucleic acid thera-
peutics (with > 87% accuracy) [25]. Alternatively, we have
attempted to predict ionizable lipid type, ratio of different lipids,
and process conditions with other two ML tools and found that
SVEM could be a simpler and reliable option to optimize and pre-
dict the conditions (accuracy >97%). Two independent mRNA-LNP
14
vaccine formulations are prepared based on the optimization and
compared to the SVEM�Fwd_regression prediction (Table 8),
which suggests the SVEM prediction is close to the actual experi-
mental outcomes. For instance, PS (experimental), 94e96 nm is
approximately close to PS (predicted), 95e97 nm, which is
consistent with a prior study [52]. mRNA vaccine with a particle
size close to 110 nm showed improved immunoprophylactic and
therapeutic tumor suppression in mice [53]. When delving into the
model, incorporation of the neural network further improves the
existing model [39e41]. Incorporation of ML tools in prediction and
determination of optimal conditions lead to improve accuracy,
reproducibility, and speed while it reduces cost, saves time, elimi-
nates chemical consumption, reduces equipment use, and de-
creases human error, which can be significant in the development
of efficient mRNA-LNP vaccine, scale-up, and even continuous
manufacturing [54]. Another benefit can be the simultaneous pre-
diction of all responses at the same time.

4. Conclusions

It is challenging to optimize both bioprocessing conditions and
the lipid mix ratio of the mRNA-LNP formulations simultaneously
while considering eight possible outcomes. In this case, dimen-
sionality reduction is performed to select the significant factors,
followed by XGBoost and Bayesian optimization for bioprocess
optimization and the SVEM model for lipid mix ratio prediction.
These ML tools i.e., XGBoost and Bayesian optimization are
particularly appealing to formulation scientists because of the
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possibility to simultaneously analyze multiple outcomes (eight
responses) by conducting a small-size experimental design (24
experiments). The experimental outcomes were tested with pre-
dicted responses > 94% using the XGBoost model and tuned with
Bayesian optimization. Based on the prediction, the lipid mix ratio
can also be designed to give targeted outcomes with predictive
accuracy > 97% using the SVEM model.
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