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Abstract
Background: With the explosion of microarray studies, an enormous amount of data is being
produced. Systematic integration of gene expression data from different sources increases
statistical power of detecting differentially expressed genes and allows assessment of
heterogeneity. The challenge, however, is in designing and implementing efficient analytic
methodologies for combination of data generated by different research groups.

Results: We extended traditional effect size models to combine information from different
microarray datasets by incorporating a quality measure for each gene in each study into the effect
size estimation. We illustrated our method by integrating two datasets generated using different
Affymetrix oligonucleotide types. Our results indicate that the proposed quality-adjusted weighting
strategy for modelling inter-study variation of gene expression profiles not only increases
consistency and decreases heterogeneous results between these two datasets, but also identifies
many more differentially expressed genes than methods proposed previously.

Conclusion: Data integration and synthesis is becoming increasingly important. We live in a high-
throughput era where technologies constantly change leaving behind a trail of data with different
forms, shapes and sizes. Statistical and computational methodologies are therefore critical for
extracting the most out of these related but not identical sources of data.

Background
The introduction of DNA microarray technology has ena-
bled investigators to screen thousands of genes simultane-
ously. One of the main goals of these studies is to identify
differentially expressed genes between two biological con-
ditions. For example, many studies [1-4] have been per-
formed in prostate cancer research to find candidate
markers. Since laboratory protocols, microarray platforms
and analysis techniques used in these studies were not
identical, it is difficult to make a comparison among the
results obtained from them. However, systematic integra-

tion of gene expression data from different sources
increases statistical power of detecting differentially
expressed genes and allows assessment of heterogeneity.
Meta-analysis is a classical statistical methodology for
combining results from different studies addressing the
same scientific questions, and it is becoming particularly
popular in the area of medical and epidemiological
research [5]. Meta-analysis methods have recently been
applied to the analysis of microarray data [6-11].
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Rhodes et al. [6] focused on combining p-values for each
gene from the individual studies to estimate an overall p-
value for each gene across all studies. Their method has
been applied to four prostate cancer microarray datasets,
two of which are cDNA microarray data and the remain-
der Affymetrix microarray data. Samples in each data set
were taken from prostate cancer cases, but were analyzed
with different platforms. Differential expression was
assessed independently for each gene in each dataset.
Since the method chosen to combine results across studies
was based on the statistical confidence measure, the p-
value, not on the expression level, this strategy avoids
direct comparisons of data sets and related cross-platform
normalization issues. Choi et al. [7] focused on integrat-
ing effect size estimates to obtain an overall estimate of
the average effect size. Effect size is used to measure the
magnitude of treatment effect in a given study. Using the
same datasets as those used by Rhodes et al. [6], they dem-
onstrated that their method can lead to the discovery of
small but consistent expression changes with increased
sensitivity and reliability.

Parmigiani et al. [9] developed a correlation-based
method for assessing reproducibility of gene expression
studies with application to lung cancer. They demon-
strated that their method can improve correlation across
the various studies. Jiang et al. [10] used a distribution
transformation method to integrate two lung cancer stud-
ies and proposed a gene shaving-based classification
approach to identify a small list of differentially expressed
genes between lung cancer and normal patients. They
noted that many of the selected genes have been experi-
mentally validated.

Although some of the above studies (for example Rhodes
et al. [6], Choi et al. [7], Parmigiani et al. [9]) demon-
strated the utility of integrating cDNA and Affymetrix
microarray data, other investigators argued against this
approach. Kuo et al. [12] compared Affymetrix and spot-
ted cDNA gene expression measurements based on 60 cell
lines from the National Cancer Institute. They found low
correlation between the actual gene measurements from
the two technologies, and concluded that "data from spot-

ted cDNA microarrays could not be directly combined
with data from synthesized oligonucleotide arrays." More-
over, they concluded that it was unlikely that the two
types of data could be transformed or normalized into a
common standardized index. Jarvinen et al. [13] deter-
mined the level of concordance between microarray plat-
forms by analyzing breast cancer cell lines with in situ
synthesized oligonucleotide arrays, commercial cDNA
microarrays and custom-made cDNA microarrays. Their
results demonstrated that data from different microarray
platforms are variable to the extent that direct integration
of data from different platforms may be complicated and
unreliable.

In classical meta-analysis, quality measures have often
been used when combining results across studies. It has
been argued that studies of a higher quality will give more
accurate estimates of the true parameter of interest, and
therefore studies of high quality should receive a higher
weight in the analysis summarizing across studies [14].
The Affymetrix microarray technology has been used
worldwide. Its success has been demonstrated by numer-
ous publications in scientific journals. However, it is well-
known that only part (approximately 40–50%) of the
whole genome is expressed in any specific tissue type, so
there are many genes showing low expression and ran-
dom variability across samples. Furthermore, some genes
will be measured less precisely by some technologies, or
studies, than others.

Therefore, our ability to develop powerful statistical meth-
ods for efficiently integrating and weighting information
from related genomic experiments will be critical in the
success of the massive investment made on genomic stud-
ies. The focus of this paper is to design and implement a
quality measure appropriate for Affymetrix microarray
data. Using our quality measure, we weighted the impor-
tance of each gene in each experiment and incorporated
our quality measure into the effect size model proposed
by Choi et al. [7] to model inter-study variation of gene
expression profiles. We believe that applying this
approach can lead to a more accurate description of
expression patterns than Choi et al's method [7].

Table 1: Quality scores for selected probe sets at a sensitivity parameter s = 0.2

Quality Score

Probe Set Harvard Study Michigan Study Harvard Study Michigan Study

38249_at 0.663 0.001 0.255 4.050
32180_s_at 0.263 0.732 0.829 0.194
37174_at 0.001 0.495 4.050 0.437
32318_s_at 0.795 0.795 0.142 0.142

λ̂
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Scatter plots of (a) quality-weighted and (b) quality-unweighted mean expression values for the 6124 common probe sets in the Harvard and Michigan datasets based on normal (healthy) samplesFigure 1
Scatter plots of (a) quality-weighted and (b) quality-unweighted mean expression values for the 6124 common probe sets in the 
Harvard and Michigan datasets based on normal (healthy) samples.
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Results
We used two data sets consisting of gene expression pro-
files in lung cancer and normal subjects. These datasets
were collected using different chip types of the Affymetrix
oligonucleotide microarrays and were conducted by two
research groups, one from Harvard and the other from
Michigan (see Methods section for details). A list of 6124
common probe sets found in the two datasets was used
for data analysis in this study [10]. We developed a quality
weight for each gene in each study by modeling the log of
the detection p-values with an exponential distribution,
and then summarizing across arrays and groups within
each study (see Methods). In order to visualize the effect
of the proposed quality weighting, we calculated the
mean expression value of each probe set across all normal
samples, where the expression variation presumably is
less heterogeneous than among the cancer samples. The
mean expression value of a probe set in a study is the esti-
mated average of the probe set's intensity values across all
normal samples in the study. Figure 1 shows the scatter
plot of the average expression values of the probe sets in
the Harvard dataset plotted against that of the Michigan
dataset: (a) weighted by the quality score (see Methods
section for our definition of the quality score), and (b) un-
weighted. This plot is intended to be illustrative only – our
algorithm weights the test statistics, rather than the gene
expression measures. In Figure 1(a), it can be seen, as
expected, that many of the genes with low levels of expres-
sion are associated with low quality weights.

We show examples of quality scores for selected probe sets
in Table 1. The two datasets may have very different detec-
tion p-value distributions, which are reflected in the qual-
ity scores. Figure 2 shows a box plot of the detection p-
values for one probe set from Table 1. When the two data-
sets give small p-values (e.g., last line in Table 1), the min-
imum p-value may be much smaller in one dataset than
another. Both, however, will give high quality scores with
an appropriate choice of the sensitivity parameter s that
adjusts how the quality measure interprets the detection
p-values.

Figure 3 shows the adjusted and unadjusted quantile –
quantile (Q-Q) plots of the observed vs. expected Q val-
ues. Q is the test statistic we used for assessing heterogene-
ity, and is described in detail later in the Methods section.
In the adjusted Q-Q plot, the quality score was used as a
weight in the computation of Q while it was not consid-
ered in the unadjusted Q-Q plot. From these graphs, we
can see that the quantiles of the observed Q values are far

from the expected quantiles of a  distribution, suggest-
ing that these two datasets generated heterogeneous
results beyond random sampling errors. Therefore, we
applied the random effect model in this study. The quan-
tiles of the Q statistic were closer to the quantiles of the

expected chi-square distribution when quality-adjustment
was considered (Figure 3(a)) than when it is was not (Fig-
ure 3(b)). The variance for the unadjusted Q values was
9.45, but it was reduced to 3.31 when quality adjustment
was used. This result suggests that the incorporation of the
adjusted quality measure into effect size estimation can
increase consistency and decrease heterogeneity between
these two datasets.

To identify a list of potentially "significant" genes, we
adapted the false discovery rate (FDR) algorithm imple-
mented in [30]. We first calculated the adjusted z statistics
for all genes based on random-effects model (REM).
Genes were then ranked by the magnitude of their z statis-
tic values. A permutation-based approach was used to
obtain the corresponding expected ordered z statistic. The
potentially "significant" genes are genes with a distance
between the ordered z statistic from the observed data and
that of the permuted data exceeding a given threshold
(delta). Figure 4 shows the relationship between the
number of significantly differentially expressed genes and
different delta levels. As we see in this figure, the quality-
adjusted REM can identify many more significant genes
than the quality-unadjusted REM model at any fixed level
of delta.

We calculated the estimated FDR for each given delta. As
expected, the number of genes called significant increased
as the value of delta decreased, but at the cost of an
increasing FDR. The estimated FDR was zero down to a
delta of 0.6, where 228 genes were called significant in the
quality-adjusted model and 153 genes in the quality-
unadjusted model. In order to get a manageable gene list,
we arbitrarily set delta at 1.1. At this delta level, we
selected 29 differentially expressed genes (representing 32
probe sets) at a FDR of 0% when the quality weight was
incorporated into the estimation of the effect size. How-
ever, when the quality measure was not used (Choi et al's
method [7]), we only selected 20 differentially expressed
genes (representing 21 probe sets) at a FDR of 0%. All the
20 genes were also in the top of the list of the 29 genes
identified with the quality-weights. Tables 2 and 3 show
the selected differentially expressed genes between nor-
mal and lung adenocarcinoma patient samples using the
quality-adjusted and quality-unadjusted models,
respectively, with genes ordered based on their z statistic
values [see Additional files 1 and 2]. As can be seen in
Tables 2 and 3, 4 of the 9 genes that were selected by our
method, but not by Choi et al's method, have also been
identified by several other groups including Jiang et al.
[10], Beer et al. [15] and Bhattacharjee et al. [16]. In par-
ticular, some of these 4 genes, such as TEK and TGFBR2,
have been experimentally validated (shown in Table 3 of
Jiang et al.[10]). For a cutoff of an adjusted z value of 1.96
(corresponding to a 5% level of significance), the quality-

χ1
2
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adjusted model identified 9 significantly expressed genes
while the quality-unadjusted model identified only 2 of
the 9 significantly differentially expressed genes. All these
results suggest that our proposed method may have
increased sensitivity to detect more differentially

expressed and biologically relevant genes than Choi et al's
method [7].

We compared genes identified with our method with
genes identified by Jiang et al. [10], Beer et al. [15] and

Detection p-values for a sample probe set (38249_at)Figure 2
Detection p-values for a sample probe set (38249_at). H1 and H2 denote the detection p-values in normal and lung cancer 
groups, respectively, for the Harvard study; whereas M1 and M2 denote the detection p-values in normal and lung cancer 
groups, respectively, for the Michigan study.
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Quantile – Quantile plots of the observed versus the expected Q statistic: (a) with quality adjustment, and (b) without quality adjustmentFigure 3
Quantile – Quantile plots of the observed versus the expected Q statistic: (a) with quality adjustment, and (b) without quality 
adjustment.

(a)

(b)
Page 6 of 11
(page number not for citation purposes)



BMC Bioinformatics 2005, 6:128 http://www.biomedcentral.com/1471-2105/6/128
Bhattacharjee et al. [16], sixteen of the 29 genes identified
by our proposed model were also detected in at least one
of these studies. In particular, we observed that 6 of the 29
genes were consistently identified in the other three stud-
ies. There were 13 of the 29 genes that were uniquely iden-
tified in our study. Some of these are plausible candidates
for lung adenocarcinoma. For example, Walker et al. [17]
found that G protein-coupled receptor kinase 5 (GRK5) is
a key gene regulating airway response, that may have
implications in obstructive airway diseases.

Discussion
In this study we proposed a measure to quantify Affyme-
trix gene chip data quality for each gene in each study. The
quality index measures the performance of each probe set
to detect its intended target. Furthermore, we extended a
traditional effect size model by using the quality index as
a weight for combining information from different chip
types of Affymetrix microarrays, and incorporating this
weight into a random-effects meta-analysis model. We
illustrated the advantages of our proposed methods using
the Harvard and Michigan gene expression datasets used
in [18]. This approach of using the detection p-values to
weight the gene expression estimates can be applied in a
more general context and to other microarray meta-anal-
ysis methods, such as that of Rhodes et al [6].

The assumption of a group-specific exponential distribu-
tion for the negative log detection p-values is a very rough
approximation. The true distribution is probably closer to
the two-parameter log-beta distribution. However, due to
the fact that there are only 16–20 probe pairs per probe set
used in the Wilcoxon test statistic for the detection p-val-
ues, the p-values follow a somewhat discrete distribution.
In particular for highly-expressed genes, the p-values for
all samples in a group may have the same near-zero value.
Estimation of two-parameters is therefore impossible. It
would be worth investigating the sensitivity of the per-
formance of this quality-weighting approach to the distri-
butional assumption.

The performance of the weighting also depends on the
sensitivity parameter s. In this study, a high s was needed
since a lower cutoff gave almost all genes extremely low
quality scores. This is a consequence of the observed
detection p-value distributions. These data were created in
2001, and since that time the quality of the oligonucle-
otide array technology has improved with more specific
probe selections and optimized experimental conditions.
For expression data obtained today, smaller values of s
would be more appropriate. For example, in an analysis of
a dataset generated more recently using improved
oligonucleotide technology (not shown), using s = 0.05
gave good performance.

The discrepancy between the calculated and expected val-
ues for the Q test of heterogeneity was smaller when our
quality measure was incorporated than when it was not,
as suggested by the quantile-quantile plots, but overall
there still remains some variability that has not been fully
captured by the weight function, emphasizing the need
for a more elaborate weighting strategy and sensitivity
analyses.

From a biological point of view, lung adenocarcinoma
may be heterogeneous originating from different causes
[19] and methods like cluster analysis in which subtypes
of relatively homogeneous groups of disorders can be
identified might be useful. The focus of our paper was to
introduce a methodology that can be used to integrate
data, and as such the grouping of the samples as "dis-
eased" versus "normal" was primarily used to identify
genes that discriminate the two groups in a broader sense
than at a higher resolution in which sub types could be
identified.

Choi et al. [7] have also provided a brief Bayesian inter-
pretation of their effect size model to integrate informa-
tion from multiple microarray studies. They argued that a
Bayesian approach could offer a more flexible and robust
modeling strategy. We did not consider this issue in this
study. It will be interesting to investigate how our

Relationship between number of significantly expressed genes and different delta levels, obtained from fitting the ran-dom effects modelFigure 4
Relationship between number of significantly expressed 
genes and different delta levels, obtained from fitting the ran-
dom effects model.
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proposed quality measure could be incorporated into
their Bayesian framework in the future.

Methods
Data source and preprocessing
We selected two Affymetrix microarray data sets from the
4 lung cancer data sets provided by the organizers of the
Critical Assessment of Microarray Data Analysis
(CAMDA) conference [18]. These datasets were collected
using different versions of the Affymetrix oligonucleotide
microarrays and were conducted by two research groups,
one from Harvard and the other from Michigan. The
Michigan study [15] used the HuGeneFL Affymetrix chip,
containing 7,129 probe sets, each with 20 probe pairs.
This study included 86 lung adenocarcinoma patient sam-
ples and 10 normal samples. The Harvard study [16] used
the HG_U95Av2 chip with 12,625 probe sets, each with
16 probe pairs. This study included 17 normal and 127
lung adenocarcinoma patient samples. We use the word
"sample" interchangeably with "array". The main objec-
tives addressed in these two studies were to identify
differentially expressed genes related to lung adenocarci-
noma, and genes whose expression was related to patient
survival. Our interest is in the former. We developed a
new method for identifying genes that are differentially
expressed between the cancer and normal samples, by
modelling the effect size and integrating information
from the Harvard and Michigan studies.

We converted the probe level data to a single expression
measure for each probe set using the robust multi-array
average (RMA) algorithm [20], which provides higher spe-
cificity and sensitivity in detecting differentially expressed
genes. We used 6124 common probe sets in these two
studies for the data analysis in our study. These probe sets
were selected based on a sequence-based probe matching
method, which is believed to produce more consistent
results when comparing similar biological data sets
obtained by different microarray platforms [10,21]. The
detailed procedure used to select these probe sets can be
found in the Data processing Section of [10].

Quality measure for Affymetrix Genechip data
Affymetrix genechip microarrays are used to monitor gene
expression for thousands of transcripts. Each transcript is
represented as a probe set, and a probe set is made up of
probe pairs comprised of Perfect Match (PM) and Mis-
match (MM) probe cells. The level of expression of a gene
product is estimated using the intensities of each probe
pair in a probe set. Therefore, the probe-specific variability
in a probe set can be used as a measure of the performance
of that probe set. The detection algorithm proposed by
[22] generates a detection p-value, which represents the
probability that the probe set (gene) expression is above
zero (i.e., turned on), and measured reliably and consist-

ently. A lower p-value is considered as a useful indicator
that the measured gene expression is valid and reliable
[22]. Specifically, the p-value is based on testing whether
the probe-specific differences (PM-MM) are almost always
positive. We used the detection p-values to define quality
measures for probe sets, summarizing across the arrays
and experiments. We realize that some genes may be truly
"off" under some experimental conditions and hence a
large detection p-value may be providing useful informa-
tion. However, if a gene is "off" under all experimental
conditions, we argue that analysis of this gene contributes
little to understanding of the experiment.

For any gene, let pvalue denote its detection p-value and xlg
denote - log(pvaluelg) for sample l in group g. We assume
that each study compares G groups, where there are ng
samples in group g, and g = 1, 2, ..., G. For example, in the
lung cancer data, G = 2, since adenocarcinoma samples
are compared to controls. It is well known that p-values
follow a uniform distribution when there is no signal, and
therefore, we expect xlg to follow an exponential distribu-
tion with mean λ = 1 if the gene is not expressed. In order
to develop a single quality measure for each gene across
all samples in one study, we use this relationship with the
exponential distribution to motivate a quality measure.
We assumed that the detection p-value for a single gene of
sample l in group g follows the distribution

xlg = - log (pvaluelg) ~ Exponential (λg),

where different distributions of expression can be
expected in each group g. It should be noted that we are
modeling the p-value of one gene, across the samples in a
group. This is different from the approaches of Allison et
al. [23] and Pounds et al. [24] who modeled the distribu-
tion of p-values across genes. Although the true distribu-
tion of the xlg may not be exponential, this assumption
leads to a simple model where the one parameter can be
estimated by a closed-form expression. Hence, the param-
eter λg for each gene, study and group g can be estimated
by:

where  is the usual sample mean. This is a maximum

likelihood estimator (MLE) with well-known asymptotic
optimality properties [25].

To combine across the groups, we assumed a sensitivity
parameter s. It is defined as the probability that a repre-
sentative probe set in a particular treatment group shows
a detectable signal, assuming that the relevant

ˆ ,λg
g
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n
g

n

x
xg

= =

=
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distribution (exponential or beta) holds. It can be thought
of as the equivalent to a detection p-value defined for a
whole group rather than for one array, and an appropriate
value for s should be chosen with this interpretation in
mind. For example, the default settings by Affymetrix soft-
ware for the detection calls are p = 0.06 for a "Marginal"
call, and p = 0.04 for a "Present" call, although these can
be altered by the user. In practice, the appropriate choice
of s may depend on the signal-detection capability of
particular technologies. We recommend plotting the dis-
tribution of quality scores for different choices of s, and
choosing a value that clearly distinguishes genes of low
quality (scores near zero) from high quality genes (scores
near 1).

The sensitivity parameter s is a chosen cutoff, so that genes
that are "off" or poorly measured across all experimental
conditions will have pvalue ≥ s, or in other words,

. Therefore, we can
define a quality measure across the groups, for each gene
and each study as:

The choice of the maximum gives more weight to genes
measured with high quality in at least one group, thereby
allowing a gene that is "off" in one condition and "on"
under another condition to provide useful information in
the analysis. We treat this quality score as a weight for each
gene in the subsequent analysis.

Modelling effect size with quality-adjusted weights
In order to simplify the discussion, we consider two
groups, treatment (t) and control (c) groups, in study i =
1,2,...,k. Let nit and nic denote the number of treatment and
control samples in study i, respectively. For each gene, let
µ denote its overall mean effect size, a measure of the aver-
age differential expression for that gene, and let yi denote
the observed effect size for study i. We modeled effect size
using the hierarchical model:

Where τ2 is the between-study variability and  is the
within-study variance, measuring the sampling error for
the ith study. Choi et al. [7] used the standardized mean
difference as a measure of the observed treatment differ-
ence yi. This well-known estimator of treatment difference
found in Hedges and Olkin's [26] work is

where  and  are the average gene expression values
in the treatment and control groups of study i, respec-

tively, and  is the pooled standard deviation.

For a study with n samples, an approximately unbiased

estimator of  is given by [26]. The

estimated variance  of the unbiased effect size is given
by [27]

In a fixed-effects model (FEM), the error of the observed
effect sizes is fully assigned to sampling error only, ignor-
ing the between study variance, so τ2 = 0 and yi ~ N (µ,

). On the other hand, a random-effects model (REM)
considers that each study estimates a different treatment
effect θi. These parameters are drawn from a normal
distributionθi ~ N(µ, τ2).

To assess whether FEM or REM is most appropriate, we
tested the hypothesis τ = 0 using the following test statis-
tic, which is a modification of Cochran's test statistic [28]
that incorporates our quality measure for each study

where  and

 is the weighted least squares estimator that ignores
between study variations. Under the null hypothesis of τ

= 0, this statistic follows a  distribution. We followed
Choi's approach [7] to draw quantile-quantile plots of Q
to assess whether a FEM or REM model is appropriate. If
the null hypothesis of τ = 0 is rejected, we estimate τ based
on the method developed by DerSimonian and Laird [29]

Therefore, we can estimate µ that corresponds to a ran-
dom effects model by
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where . Under the REM,

The z statistics to test for treatment effect under REM is

However, when there are only a small number of arrays in
each group, the estimates of standard error s for each gene
can be very variable. Some genes might by chance have
very small standard errors, and therefore appear highly
significant. To address this problem, different approaches
have been developed for "smoothing" the variance esti-
mates by borrowing information from the ensemble of
genes. This can assist in inference about each gene individ-
ually. For example, Tusher et al. [30], Efron et al. [31] and
Broberg [32] used t-statistics where an offset was added to
standard deviation while Smyth [33] proposed a t-statistic
with a Bayesian adjustment to the denominator. We took
the offset s0 as the quantile of the gene-wise standard
errors that minimizes the coefficient of variation of the z
statistics [30]. Therefore, we can calculate the adjusted z
statistics (used in this study) to test for treatment effect
under REM as

The adjusted z statistics for FEM is the same as that for
REM except that τ2 = 0. Note that all these expressions
refer to a single gene. The adjustment for computing z sta-
tistic was also used by Garrett-Mayer et al. [34].

Assessment of differentially expressed genes
We performed a multiple testing procedure, as described
by Dudoit et al. [35], to evaluate statistical significance for
differentially expressed genes in the combined studies.
The false discovery rate (FDR) [36] has become a popular
error measure for this purpose. Tusher et al. [30] devel-
oped a permutation-based method to calculate FDR for
evaluating differentially expressed genes. We adapt their
approach to our meta-analytic framework as follows:

1. For each gene j, j = 1,2,..., J, in the original data, com-
pute the adjusted z statistic Z1,...,ZJ based on the meta-
analysis procedure described in the previous section

2. Order these z statistic values to obtain Z(1) ≤,..., ≤ Z(J)

3. Create B random permutations within both studies. For
each permutation b = 1,2,... B, produce the adjusted z sta-
tistic Z1,b,..., ZJ,b for gene j = 1,2,..., J

4. Compute expected order z statistics:

5. The potentially "significant" genes are those that have a

distance between Z(j) and , greater than a

given threshold delta (∆). Therefore, we can find the

smallest positive Z(j) such that , say t1.

Similarly, we can find the largest negative Z(j), say t2

6. The estimated FDR for the selected significant genes at
the given delta (∆) is given by:
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