
Citation: Kozak, J.; Tyszczuk-Rotko,

K.; Wójciak, M.; Sowa, I.; Rotko, M.

Electrochemically Pretreated Sensor

Based on Screen-Printed Carbon

Modified with Pb Nanoparticles for

Determination of Testosterone.

Materials 2022, 15, 4948. https://

doi.org/10.3390/ma15144948

Academic Editors: Michael

Moustakas and Catherine

Dendrinou-Samara

Received: 29 June 2022

Accepted: 14 July 2022

Published: 15 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Electrochemically Pretreated Sensor Based on Screen-Printed
Carbon Modified with Pb Nanoparticles for Determination
of Testosterone
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Abstract: Testosterone (TST), despite its good properties, may be harmful to the human organism
and the environment. Therefore, monitoring biological fluids and environmental samples is impor-
tant. An electrochemically pretreated screen-printed carbon sensor modified with Pb nanoparticles
(pSPCE/PbNPs) was successfully prepared and used for the determination of TST. The surface
morphology and electrochemical properties of unmodified and modified sensors were characterized
by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning and trans-
mission electron microscopy (SEM and TEM), and energy-dispersive X-ray spectroscopy (EDS).
Selective determinations of TST at the pSPCE/PbNPs were carried out by differential pulse ad-
sorptive stripping voltammetry (DPAdSV, EPb dep.and TST acc. of −1.1 V, t Pb dep.and TST acc. of 120 s,
∆EA of 50 mV, ν of 175 mV s−1, and tm of 5 ms) in a solution containing 0.075 mol L−1 acetate
buffer of pH = 4.6 ± 0.1, and 7.5 × 10−5 mol L−1 Pb(NO3)2. The analytical signal obtained at the
potential around −1.42 V (vs. silver pseudo-reference electrode) is related to the reduction pro-
cess of TST adsorbed onto the electrode surface. The use of pSPCE/PbNPs allows obtaining a
very low limit of TST detection (2.2 × 10−12 mol L−1) and wide linear ranges of the calibration
graph (1.0 × 10−11–1.0 × 10−10, 1.0 × 10−10–2.0 × 10−9, and 2.0 × 10−9–2.0 × 10−8 mol L−1). The
pSPCE/PbNPs were successfully applied for the determination of TST in reference material of human
urine and wastewater purified in a sewage treatment plant without preliminary preparation.

Keywords: testosterone; electrochemical preparation; screen-printed carbon sensor; lead nanoparticles;
differential-pulse adsorptive stripping voltammetry; human urine; wastewater

1. Introduction

Hormones regulate many types of cellular and physiological functions in the human
body, such as reproduction, growth, and differentiation [1]. Testosterone (TST), chemically
known as 17β-hydroxyandrost-4-en-3-one, is the principal endogenous androgenic–anabolic
steroid in humans. In the human body, it is produced primarily in the testes of males and
in the ovaries of females, while small amounts are produced by adrenal glands in both
sexes [2,3]. In men, TST plays a key role in the development of male reproductive tissues
such as the testis and prostate, as well as in promoting secondary sexual characteristics such
as increased muscle, bone mass, and the growth of body hair. Moreover, TST is essential
for health and well-being as well as the prevention of osteoporosis. Testosterone abuse is
widespread among sportsmen willing to increase aggressiveness, strength, and recovery,
making it the most frequently reported substance in steroid misuse. The World Anti-Doping
Agency prohibited its use to ensure fair play and protect athletes from possible adverse side
effects such as heart attack, high blood pressure, liver disease, or mental effects [2,4]. TST
can be an ingredient in pharmaceuticals. In the urine of an average man, TST is present at a
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level of 10−8 mol L−1, but in the case of hormone therapy using TST, these concentrations
can be several times higher [5]. Currently, we are dealing with increasing pollution of the
environment with various types of pharmaceuticals, including hormones. TST is one of
the organic micropollutants present in the environment and in natural waters and can
cause adverse biological effects on humans and wildlife below the physiological levels
(sub-ng L−1) [6,7]. Due to the fact that TST concentrations detected in the environment are
in the order of 10−12–10−11 mol L−1 (groundwater [8] and municipal wastewater [9]), it is
necessary to develop highly sensitive methods of measuring this hormone.

Among the popular analytical methods used for the detection of TST, chromatographic
methods can be indicated, e.g., high-performance liquid chromatography coupled with
tandem mass spectrometry (HPLC-MS/MS) [10], isotope dilution ultra-performance liquid
chromatography–tandem mass spectrometry (ID-UPLC-MS/MS) [11], liquid chromatogra-
phy coupled with mass spectrometry (LC-MS) [12,13], and gas chromatography coupled
with mass spectrometry (GC-MS) [14,15]. Other methods that allow us to determine TST
are capillary electrophoresis (CE) [16,17] and the molecularly imprinted plasmon resonance
method [18]. While chromatographic methods are extremely effective, most have many dis-
advantages, such as cost and long and complicated sample pretreatment, usually involving
different types of derivatization, extraction, and purification prior to analysis.

On the other hand, electrochemical methods provide fast, low-cost on-site analysis
with high specificity and high sensitivity [4,6]. However, there are only a few studies
available on the voltammetric determination of testosterone. Most of them show the use
of conventional working electrodes such as glassy carbon electrodes modified in various
ways—modified with a lead film (PbFE) [19], a cationic surfactant (GCE/CTAB) [4], or a
cationic surfactant and a bismuth film (GCE/CTAB/BiF) [3]. It can also include maltodextrin-
modified paste electrodes based on various carbon materials (graphite, graphene, carbon
nanotubes, and fullerene C60) [1], the hanging mercury drop electrode (HMDE) [20], the
edge plane pyrolytic graphite electrode modified with single-walled carbon nanotubes
(SWNTs-EPPGE) [2], and a gold electrode modified with a double-layered molecularly im-
printed polymer (AuE/DMIP) [21]. The lowest detection limit at the conventional working
electrode, equal to 1.0 × 10−14 mol L−1, was obtained on the AuE/DMIP. However, the
preparation of this electrode requires many reagents and a multi-step procedure consisting
of cleaning the gold surface and electrodepositing the first conductive polymer layer, and
then another one forming the DMIP. The final step is to remove the testosterone template
and dry the electrode.

Unlike individual working electrodes in electrochemical analysis, all electrodes of
screen-printed sensors (SPEs), i.e., reference, working, and counter electrodes, are printed
and integrated on the same substrate. SPEs represent a modern analytical chemistry trend
in miniaturization [22,23]. Screen-printed electrodes have advantages such as simplicity of
construction and operation, diversification of the selection of electrode materials, low cost,
design flexibility, reliability for detecting different substances, portability, and simplicity of
modification of the electrodes for various uses [24]. An SPE is a good electrode due to its
mass production, low cost, and low background current [25]. Conductive inks from screen-
printed carbon electrodes (SPCEs) contain carbon with organic solvents, bonding pastes
(e.g., polyester resin, ethyl cellulose, or epoxy-based polymer binder), and some additives
that provide functional properties. The presence of these additional non-conductive materi-
als can lead to a slowdown in the kinetics of heterogeneous electrochemical reactions [26].
The main purpose of the SPCE pretreatment is to remove the organic components of the ink
or contaminants and to increase the surface roughness or functionality [27]. The following
methods of pretreatment of SPEs can be found in the literature—heat treatment [27], oxy-
gen plasma treatment [28], chemical treatment [29], polishing [30,31], and electrochemical
treatment [32–34].

Nanomaterials are chemical substances or materials that are manufactured and used
at a very small scale [35]. Among the nanomaterials, carbon nanomaterials are often used
today as electrode modifiers. We can distinguish here graphene, carbon black (CB), carbon
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nanofibers (CNFs), carbon nanotubes (CNTs), and carbon nanohorns (CNHs). Carbon
nanomaterials have proven to be efficient electrode materials as they exhibit remarkable
electronic, mechanical, and chemical properties; high surface areas; low electrical resistance;
excellent electrical conductivity; and low cost. Additionally, the ability to functionalize
their surfaces with antibodies, nucleic acids, or catalysts can lead to enhanced analytical
performance, including sensitivity and selectivity [36–38]. Another group of commonly
used nanomaterials is nanoparticles (NPs), mainly metal nanoparticles. Due to their small
size, nanoparticles can increase the surface area of the electrode used. In addition, metallic
nanoparticles can increase the mass transport speed and provide fast electron transfer
between the electroactive species and the electrode surface, which increases the sensitivity
of the electrodes used [39,40].

Only one study describes the determination of testosterone using screen-printed
sensors [41]. The TST determination procedure presented in the article [41] used SPEs
modified with molecularly imprinted polymer (MIP). A very low LOD was obtained on
this electrode, equal to 3.5 × 10−17 mol L−1. However, the preparation of the SPE/MIP
is laborious and time-consuming and requires steps such as electropolymerizing the MIP
on the surface of the working electrode in the presence of a high concentration of TST as
a template and then removing this template. Therefore, a very simple procedure for the
preparation of the modified screen-printed sensor was proposed while maintaining the
high sensitivity and selectivity of the sensor. In this work, the combination of the valuable
properties of screen-printed carbon electrode (SPCE) and lead nanoparticles (PbNPs), as
well as the electrochemical pretreatment step in the fabrication of a novel voltammetric
sensor of TST, was proposed for the first time. The use of a lead film glassy carbon
electrode for TST determination was described in the literature [19]. However, as far as
we know, the application of an electrochemically pretreated screen-printed carbon sensor
modified with Pb nanoparticles (pSPCE/PbNPs) has never been reported. Moreover, it
is the first time a voltammetric sensor has been used in TST determinations not only in
body fluids (urine) but also in environmental samples (wastewater). It is worth adding
that the samples do not require preliminary preparation. To specify the advantages of
PbNPs and the use of the electrochemical pretreatment step, the pSPCE/PbNPs were
characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS),
scanning and transmission electron microscopy (SEM and TEM), and energy-dispersive
X-ray spectroscopy (EDS).

2. Materials and Methods
2.1. Apparatus

Transmission electron microscopy (TEM) analysis was performed by means of a
high-resolution transmission electron microscope Tecnai G2 T20 X-TWIN (FEI) equipped
with an energy dispersive X-ray spectrometer (EDS). The samples were prepared for analy-
sis by scratching the film from the surface of the electrode and placing it on a TEM copper
grid. Moreover, microscopic images of the pSPCE/PbNPs surface were attained with a
high-resolution scanning electron microscope Quanta 3D FEG (FEI, USA) (acceleration
voltage of 5.0 kV, working distance of 9.3 mm, magnification of 25,000×).

All voltammetric studies were made using a µAutolab electrochemical analyzer
(Eco Chemie, Utrecht, The Netherlands) controlled by GPES 4.9 software. The standard
quartz electrochemical cell with a volume of 10 mL composed of a commercially avail-
able screen-printed carbon sensor (SPCE, DropSens, Spain, Ref. C150) was applied for
experiments. The SPCE sensor consisted of a screen-printed carbon working electrode, a
platinum screen-printed auxiliary electrode, and a silver screen-printed pseudo-reference
electrode. The µAutolab analyzer controlled by FRA 4.9 software was used for electrochem-
ical impedance spectroscopy (EIS) measurements.

HPLC analyses were performed on a VWR Hitachi Elite LaChrom HPLC with a PDA
detector using an Ascentis Express C18 column (15 cm × 2.1 mm i.d., 2.7 µm).
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2.2. Reagents and Solutions

Appropriate amounts of Merck reagent (Darmstadt, Germany), testosterone propi-
onate, were dissolved in ethanol to obtain a 10−3 mol L−1 solution of TST. This solution was
diluted with ethanol to obtain a 10−4 mol L−1 solution of TST or with 0.1 mol L−1 acetate
buffer of pH = 4.6 ± 0.1 to obtain 10−5 or 10−6 mol L−1 solutions of TST. The supporting
electrolyte, acetate buffer of pH = 4.6 ± 0.1, was prepared with reagents (CH3COONa and
CH3COOH) purchased from Merck. The 10−3 mol L−1 stock solutions of Fe(III), Ca(II),
Cu(II), Mg(II), Cd(II), Ni(II), V(V), glucose (GL), dopamine (DA), ascorbic acid (AA), uric
acid (UA), epinephrine (EP), and adenine (AD) were prepared from Merck reagents in
deionized water before starting the set of experiments and stored at 4 ◦C in the dark until
used. HPLC-grade acetonitrile was purchased from Merck. The solutions were prepared
using ultra-purified water supplied by a Milli-Q system.

2.3. Fabrication of pSPCE/PbNPs and Voltammetric Determination of TST

The scheme of sensor fabrication and voltammetric measurements of TST at the
pSPCE/PbNPs is presented in Figure 1. The commercially available SPCE was simultaneously
electrochemically pretreated and electrochemically decorated by lead nanoparticles (PbNPs) in
0.075 mol L−1 acetate buffer of pH = 4.6± 0.1 containing 7.5 × 10−5 mol L−1 Pb(NO3)2. After
placing a fresh electrode in the solution, 15 consecutive differential-pulse voltammograms
were recorded (an electrochemical cleaning step at a potential of 0.5 V (Eclean.) for 10 s (tclean.),
modification of the surface with PbNPs at a potential of −1.1 V (EPb dep.) for 120 s (tPb dep.), a
scan rate (ν) of 175 mV s−1, an amplitude (∆EA) of 50 mV, a modulation time (tm) of 5 ms, and
a differential-pulse scan from −1.1 to −1.7 V). Then, after rinsing the electrode with water,
it was allowed to dry for 10 min at room temperature. The sensor was electrochemically
pretreated only once before a series of measurements of TST.
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Figure 1. Scheme of sensor fabrication and voltammetric measurements of TST at the pSPCE/PbNPs.

The pSPCE/PbNPs fabricated were used for TST determination in the same solution
(0.075 mol L−1 acetate buffer of pH = 4.6 ± 0.1 containing 7.5 × 10−5 mol L−1 Pb(NO3)2) in
which it had been prepared. Only a specified amount of TST standard solution (concentra-
tion of TST in the range of 1.0 × 10−11–2.0 × 10−8 mol L−1) or sample was introduced into
the supporting electrolyte. The procedure consists of an electrochemical cleaning step at a
potential of 0.5 V (Eclean.) for 10 s (tclean.), simultaneous modification of the surface with
PbNPs, and accumulation of TST at a potential (EPb dep. and TST acc.) of −1.1 V for a time
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(tPb dep. and TST acc.) of 120 s. Differential-pulse scans were registered from −1.1 to −1.7 V
with ν of 250 mV s−1, ∆EA of 150 mV, and tm of 5 ms.

2.4. HPLC/PDA Analysis

Chromatographic conditions were established based on the literature [42] with slight
modification. A mixture of acetonitrile and water (65:35 v/v) at a flow rate of 0.25 mL min−1

was used as the mobile phase. The temperature was set at 30 ◦C. The injection volume was
10 µL, and the analytical wavelength was 240 nm.

2.5. Sample Analysis

The reference material of human urine (Medidrug Basis-line U) and wastewater
purified in a sewage treatment plant (Lublin, Poland) were analyzed using the DPAdSV
and HPLC/PDA methods. The desired concentrations of TST were added to the samples,
and they were directly analyzed without any separation steps.

3. Results and Discussion
3.1. Characteristics of Sensors

In the first phase of the research, the differential-pulse adsorptive stripping voltam-
metry (DPAdSV) technique was used to characterize TST behavior at the pSPCE/PbNPs
sensor. The studies were performed in 0.1 mol L−1 acetate buffer of pH equal to 4.6 ± 0.1
containing 7.5 × 10−5 mol L−1 Pb(NO3)2 and 2.0 × 10−9 mol L−1 TST. For comparison,
the DPAdSV curves were recorded under the same conditions at the unmodified SPCE
and the SPCE/PbNPs that was not electrochemically pretreated. The studies (Figure 2A)
showed that the use of modification with lead nanoparticles was necessary to obtain a
reduction in the TST signal. Moreover, the application of electrochemical pretreatment of
the SPCE (15 consecutive DPV measurements: 0.5 V for 10 s, −1.1 V for 120 s, scan from
−1.1 to −1.7 V in the solution used further for TST determinations, rinsing with water and
drying for 10 min) practically does not change the TST peak current (1.80 vs. 1.74 µA), but
significantly improves its shape and shifts the peak potential of TST towards less negative
potential values (−1.45 vs. −1.36 V). Furthermore, the electrochemical pretreatment signifi-
cantly improves the repeatability of the analytical signal (Figure 2B, 2.0 × 10−9 mol L−1

TST RSD of 24.77 vs. 3.58%, n = 10). In summary, the electrochemical pretreatment step
was crucial for a nicely shaped and repeatable signal, which has already been described
in the literature [33]. It is worth adding that in contrast to the works described so far [43],
in the electrochemical pretreatment step, the same solution and parameters as for the TST
determination were used, which simplifies the electrode preparation step and reduces the
consumption of reagents.Materials 2022, 15, 4948 6 of 17 
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The interfacial electron transport ability of the unmodified SPCE and the electrochemi-
cally pretreated SPCE/PbNPs was studied using EIS and CV techniques in 0.1 mol L−1 KCl
containing 5.0 mmol L−1 K3(Fe(CN)6). The CV curve displayed a pair of well-defined
redox peaks of (Fe(CN)6)3-/4- at the unmodified SPCE (Figure 3A, curve a). In the case
of the pSPCE/PbNPs (Figure 3A, curve b), the peak-to-peak separation (∆E) increases
from 123.6 to 169.0 mV, which is ascribed to the inhibition of the electrochemical reac-
tion process by the PbNPs modification and electrochemical pretreatment. Moreover, the
rate of the electron transfer at the SPCE and the pSPCE/PbNPs was calculated as the
relative peak separations (χ0) by dividing ∆E by 59 mV. The χ0 values for the SPCE and
pSPCE/PbNPs were greater than the theoretical value (χ0 = 1) and were equal to 2.09 and
2.86, respectively. Furthermore, the pSPCE/PbNPs show a higher anodic current intensity
than the SPCE. The new peak at a potential around −0.5 V is related to the oxidation
of lead from the pSPCE/PbNPs surface. The obtained results indicate that the PbNPs
modification and electrochemical pretreatment inhibit the electron transfer kinetics. In
addition, the Randles–Sevcik equation, CV curves recorded at scan rates of 5–150 mV s−1,
and the dependence between the anodic peak current (Ip) and the square root of the scan
rate (v1/2) (Figure 3B) were used to calculate of the electrochemically active electrode area
(As) of the SPCE and pSPCE/PbNPs [44]. The As values of the SPCE and pSPCE/PbNPs
were calculated to be 0.072 and 0.22 cm2, respectively. It is evident that the PbNPs mod-
ification and electrochemical pretreatment significantly increase the As. Moreover, the
impedance spectra (Nyquist plots) were recorded at the SPCE and pSPCE/PbNPs in the
frequency range from 50 kHz to 1 Hz (Figure 3C). According to the experimental results,
the charge transfer resistance (Rct) values obtained for the SPCE and pSPCE/PbNPs are
146.7 and 121.3 Ω, respectively. The pSPCE/PbNPs are characterized by lower Rct and
good conductivity.
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Figure 3. (A) Cyclic voltammograms recorded at the SPCE (a) and pSPCE/PbNPs (b) using the scan
rate of 100 mV s−1; (B) the relationship between the anodic peak current (Ip) and the square root
of the scan rate (υ1/2) obtained at the SPCE (a) and pSPCE/PbNPs using the scan rate from 5 to
150 mV s−1; (C) Nyquist plots of the SPCE (a) and pSPCE/PbNPs (b) registered at a potential of
0.2 V, in the frequency range from 50 kHz to 1 Hz. All results were performed in 0.1 mol L−1 KCl
and 5.0 mmol L−1 K3(Fe(CN)6).

In order to specify the advantages of PbNPs and the use of the electrochemical pre-
treatment step, the pSPCE/PbNPs were also characterized by scanning and transmission
electron microscopy (SEM and TEM) and energy-dispersive X-ray spectroscopy (EDS). The
SEM image of the pSPCE/PbNPs shows cracks formed during the drying of the SPCE
surface (Figure 4A). Moreover, the characteristic structure of the carbon layer obtained by
the screen-printing technique is visible in the higher resolution SEM image (Figure 4B).
However, the presence of electrochemically deposited lead nanoparticles (PbNPs) was
only detected using a high-resolution transmission microscope equipped with an energy
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dispersive X-ray spectrometer (EDS) (Figure 4C,D). The EDS analysis confirms that the
black dots contain very small amounts of lead (mass % = 0.11), which confirms that the
electrochemically deposited lead is rewarded in the form of nanoparticles.
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Figure 4. The SEM (A,B) and TEM (C) images of the pSPCE/PbNPs surface. (D) The EDS spec-
trum of the highlighted fragment of the pSPCE/PbNPs. The concentration of Pb(NO3)2 was
7.5 × 10−5 mol L−1.

3.2. Mechanism and Optimization Procedure

In order to identify the involved TST reduction mechanism at the pSPCE/PbNPs, the
effect of scan rate was investigated. The cyclic voltammograms of 0.075 mol L−1 acetate
buffer of pH ± 0.1 containing 7.5 × 10−5 mol L−1 Pb(NO3)2 and 5.0 × 10−6 mol L−1 TST
were recorded at scan rates from 5 to 250 mV s−1. Figure 5A demonstrates the CVs obtained
for three scan rate values (35, 50, and 75 mV s−1). There is a cathodic peak and no anodic
peak in the CVs of TST, indicating an irreversible electrode process. The TST reduction mech-
anism (Figure 5C) is well described in the literature [3]. It shows that the electrode process
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for TST is two-proton coupled two-electron transfer. As can be seen in Figure 5B, the TST
signal (Ip) increases non-linearly with the square root of the scan rate (υ). The non-linear
Ip/υ plot with the regression equation of Ip (µA) = 0.74 × υ1/2 ((mV s−1)1/2) − 2.17 indi-
cates that the faradic reaction is controlled by an adsorption process.
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Additionally, the effect of pH value (acetic acid and acetate buffer) on the reduc-
tion peak current of 1.0 × 10−8 mol L−1 TST was studied. The progress of Ip with pH
shows that (Figure 6A) this parameter increased up to pH 4.6 ± 0.1, and therefore, an
acetate buffer of pH 4.6 ± 0.1 was selected for further studies. Furthermore, the TST
reduction process was analyzed at various concentrations (from 0.025 to 0.125 mol L−1)
of acetate buffer (pH 4.6 ± 0.1) at the pSPCE/PbNPs. The fixed concentration of TST
(1.0 × 10−8 mol L−1) was added to the supporting electrolyte. According to the results,
the highest peak current was obtained at an acetate buffer concentration of 0.075 mol L−1.
Then, the effect of Pb(NO3)2 concentration was evaluated in the range of 2.5 × 10−5 to
1.25 × 10−4 mol L−1 towards the reduction peak current of 1.0 × 10−8 mol L−1 TST. As
exposed in Figure 6B, when increasing the Pb(NO3)2 concentration, the TST response also
increases up to 7.5 × 10−5 mol L−1, and therefore, this concentration value was chosen.
Moreover, the impact of DPAdSV procedure parameters, such as simultaneous modification
of the surface with PbNPs and accumulation of TST potential (EPb dep. and TST acc.) and time
(tPb dep. and TST acc.), amplitude (∆EA), scan rate (ν), and modulation time (tm), on the peak
currents of 1.0 × 10−8 mol L−1 TST was investigated. The EPb dep. and TST acc. were tested in
the range from −0.8 to −1.3 V. The results (Figure 6C) show that the highest TST signal was
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obtained for −1.1 V (tPb dep. and TST acc. was equal to 120 s), and hence this value was chosen
as optimal. Next, for the selected value of the potential, the effect of tPb dep. and TST acc. in
the range of 15–300 s was examined. The tPb dep. and TST acc. of 120 s was selected for further
study (Figure 6D), but the stage of simultaneous modification of the surface with PbNPs
and accumulation of TST can be extended to obtain lower detection limits.
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Figure 6. The dependence of pH (A), Pb(NO3)2 concentration (B), EPb dep. and TST acc. (C), and
tPb dep. and TST acc. (D) on 1 × 10−8 mol L−1 TST signal. The DPAdSV parameters: tm of 10 ms,
∆EA of 50 mV and ν of 40 mV s−1. The mean values of Ip are given with the standard deviation
for n = 3.

In order to investigate the effect of ∆EA (from 25 to 200 mV), the reduction peak current
of TST was measured (Figure 7A). The best responses were obtained with ∆EA of 150 and
175 mV. For further studies, the value of 150 mV was chosen. Figure 7B depicts the effect
of ν in the range of 25–200 mV s−1 on the TST signal. The TST reduction signal increased
by increasing υ up to 200 mV s−1. Due to the better repeatability of the TST signal, υ of
175 mV s−1 was selected as optimal. The tm was checked in the range from 2 to 40 ms. The
highest TST signal was recorded for the tm of 5 ms (Figure 7C).
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3.3. Voltammetric Determination of TST

The determination of TST at different concentrations was performed at the pSPCE/PbNPs
by the DPAdSV technique under the developed conditions. Figure 8 shows the obtained
results. As the concentration of TST increased, the related reduction peak current also
increased. The plot of the peak current against TST concentration exhibited three lin-
ear ranges. The first one was from 1.0 × 10−11 to 1.0 × 10−10 mol L−1, the second one
was from 1.0 × 10−10 to 2.0 × 10−9 mol L−1, and the third one was from 2.0 × 10−9

to 2.0 × 10−8 mol L−1. The detection (LOD) and quantification (LOQ) limits were esti-
mated to be 2.2 × 10−12 and 7.3 × 10−12 mol L−1, respectively, using LOD = 3SDa/b
and LOQ = 10 SDa/b equations (SDa—standard deviation of intercept (n = 3); b—slope of
calibration curve) [45].
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Figure 8. The DPAdSVs of the pSPCE/PbNPs in the presence of various TST concentrations (a→ k,
1.0 × 10−11–2.0 × 10−8 mol L−1) in 0.075 mol L−1 acetate buffer of pH 4.6 ± 0.1 and 7.5 × 10−5 mol
L−1 Pb(NO3)2 (A).Calibraion graph of TST (B). The obtained average values of the peak current are
shown with standard deviation for n = 3. The DPAdSV parameters: tm of 5 ms, ∆EA of 150 mV, ν of
175 mV s−1, EPb dep. and TST acc. of −1.1 V and EPb dep. and TST acc. of 120 s.
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The linear range and the LOD of the pSPCE/PbNPs were compared with other
previously reported voltammetric sensors, and the data are presented in Table 1. It can be
seen that only two studies describe the determination of TST with a lower LOD [21,41].
However, the preparation of these electrodes (SPEs modified with a molecularly imprinted
polymer and AuE modified with a double-layered molecularly imprinted polymer) requires
a more expensive apparatus; the procedures are more labor-intensive, and more chemicals
are used.

Table 1. Comparison of techniques for analysis of TST.

Electrode Method Linear Range [mol L−1] LOD
[mol L−1] Application Ref.

SWNT-EPPGE SWV 5.0 × 10−9–1.0 × 10−6 2.8 × 10−9 Urine [2]

GCE/BiF + CTAB SWAdSV 1.0 × 10−9–4.5 × 10−8 3.0 × 10−10 Pharmaceutical
formulations, urine [3]

HMDE AdSV 1.0 × 10−8–7.3 × 10−6 5.0 × 10−9 Pharmaceutical
formulations [20]

MD/graphite DPV 1.0 × 10−8–1.0 × 10−6 4.1 × 10−8 Saliva [1]
MD/Graphene DPV 1.0 × 10−7–1.0 × 10−6 6.7 × 10−9 Saliva [1]

MD/CNTs DPV 1.0 × 10−10–1.0 × 10−6 1.4 × 10−11 Saliva [1]
MD/fullerene C60 DPV 1.0 × 10−8–1.0 × 10−6 1.5 × 10−8 Saliva [1]

SPE/MIP CV 3.5 × 10−18–3.5 × 10−15 3.5 × 10−17 Urine [41]
PbFE (GCE/PbF) SWAdSV 2.0 × 10−8–3.0 × 10−7 9.0 × 10−9 Urine [19]

AuE/DMIP SWV 1.0 × 10−14–1.0 × 10−13 1.0 × 10−14 Urine [21]

GCE/CTAB SWAdSV 1.0 × 10−8–7.0 × 10−8 1.2 × 10−9 Pharmaceutical
formulations, urine [4]

pSPCE/PbNPs DPAdSV
1.0 × 10−11–1.0 × 10−10

2.0 × 10−10–2.0 × 10−9

2.0 × 10−9–2.0 × 10−8
2.2 × 10−12 Urine, wastewater This work

SWNT-EPPGE—edge plane pyrolytic graphite electrode modified with single-walled carbon nanotubes;
GCE/BiF + CTAB—glassy carbon electrode modified with bismuth film and cetyltrimethylammonium bro-
mide; HMDE—hanging mercury drop electrode; MD/graphite—maltodextrin-modified paste electrode based on
graphite; MD/graphene—maltodextrin-modified paste electrode based on grapheme; MD/CNTs—maltodextrin-
modified paste electrode based on carbon nanotubes; MD/fullerene C60—maltodextrin-modified paste elec-
trode based on fullereneC60; SPE/MIP—screen-printed electrode modified with molecularly imprinted poly-
mer; PbFE—lead film electrode; AuE/DMIP—gold electrode modified with a double-layered molecularly
imprinted polymer; GCE/CTAB—glassy carbon electrode modified with cetyltrimethylammonium bromide;
pSPCE/PbNPs—electrochemically pretreated screen-printed carbon electrode modified with lead nanoparticles;
SWV—square-wave voltammetry; SWAdSV—square-wave adsorptive stripping voltammetry; AdSV—adsorptive
stripping voltammetry; DPV—differential-pulse voltammetry; CV—cyclic voltammetry; DPAdSV—differential-
pulse adsorptive stripping voltammetry.

In order to investigate the selectivity of the DPAdSV procedure with the use of the
pSPCE/PbNPs for TST determination, increasing concentrations of potential interferents
were added to the supporting electrolyte. The tolerance limit was defined as the concen-
tration that gave an error of ≤10% in the determination of 1.0 × 10−9 mol L−1 TST. It was
noted that studied substances have negligible effects on the peak current of TST (Figure 9).
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3.4. TST Determination in Real Samples

The high performance of the DPAdSV procedure at the pSPCE/PbNPs for TST de-
termination makes it a great potential for the analysis of environmental and biological
samples. Therefore, the practical ability of DPAdSV at the pSPCE/PbNPs was checked by
the determination of TST in reference material of human urine and wastewater samples
purified in a sewage treatment plant without any separation steps. The samples were
spiked with a known concentration of TST standard solution and analyzed by the stan-
dard addition method. Table 2 presents the obtained results. The very low value of LOD
(2.2 × 10−12 mol L−1) allows for the use of small sample volumes and multiple dilutions
of the sample in the electrolyte solution (10 × dilution of wastewater and 1000 × dilution
of urine, which contributes to minimizing the interference from the sample matrix). The co-
efficient of variation values obtained between 0.8 and 4.7% indicate very good repeatability
of the signal. The recovery values were between 98.7 and 104.5%, which confirms a satisfac-
tory degree of accuracy of the DPAdSV procedure at the pSPCE/PbNPs. The DPAdSVs
registered during the determination of TST in real samples are shown in Figure 10. The
HPLC/PDA was applied to compare the results of TST analysis in samples without prelim-
inary preparation. However, the concentrations of TST were below the LOD and LOQ of
HPLC/PDA. The calculated LOD and LOQ for the standard solution were 7.5 × 10−8 and
2.5 × 10−7 mol L−1, respectively.
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Table 2. The outcomes of TST determination in reference material of human urine and wastewater
purified in a sewage treatment plant.

TST Concentration [µmol L−1] ± SD (n = 3)

Sample Added Found DPAdSV Found in
Electrochemical Cell

Coefficient of
Variation * [%] Recovery ** [%]

Purified
wastewater

0.0003 0.000297 ± 0.000012 0.0000297 ± 0.0000012 4.05 99.0
0.002 0.00201 ± 0.000026 0.000209 ± 0.0000017 0.80 100.5

RM of human
urine

0.03 0.0296 ± 0.0012 0.0000296 ± 0.0000012 4.07 98.7
0.02 0.209 ± 0.0017 0.000209 ± 0.0000017 1.29 104.5

* Coefficient of variation [%] = (SD × 100)/Found DPAdSV, ** Recovery [%] = (Found DPAdSV × 100)/Added.
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Figure 10. The DPAdSVs recorded for the determination of TST in reference material of human urine
(A,B) and wastewater samples purified in a sewage treatment plant (C,D): (A): (a) 10 µL of sample + 0.03,
(b) as (a) + 0.03, (c) as (a) + 0.06 nM TST, (B): (a) 10µL of sample + 0.2, (b) as (a) + 0.2, (c) as (a) + 0.4 nM TST,
(C): (a) 1 mL of sample + 0.03, (b) as (a) + 0.03, (c) as (a) + 0.06 nM TST, and (D): (a) 1 mL of sample + 0.2,
(b) as (a) + 0.2, (c) as (a) + 0.4 nmol L−1. TST. The DPAdSV parameters: ∆EA of 150 mV, tm of 5 ms, ν of
175 mV s−1, EPb dep. and TST acc. of−1.1 V and EPb dep. and TST acc. of 120 s.
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4. Conclusions

In summary, in this study, for the first time, an electrochemically pretreated screen-
printed carbon electrode modified with lead nanoparticles (pSPCE/PbNPs) was intro-
duced for trace analysis of testosterone (TST). The pSPCE/PbNPs were characterized by
cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning and
transmission electron microscopy (SEM and TEM), and energy-dispersive X-ray spec-
troscopy (EDS). The electrochemical pretreatment of the SPCE surface and electrochem-
ical modification with PbNPs reduce the charge transfer resistance, inhibit the electron
transfer kinetics, and significantly increase the active surface area of the sensor, which
is translated into a significant increase in the TST reduction peak current. The DPAdSV
procedure using the pSPCE/PbNPs is a highly sensitive and selective method for the
determination of TST. The use of the pSPCE/PbNPs allows obtaining a very low limit
of TST detection (2.2 × 10−12 mol L−1) and wide linear ranges of the calibration graph
(1.0 × 10−11–1.0 × 10−10, 1.0 × 10−10–2.0 × 10−9, and 2.0 × 10−9–2.0 × 10−8 mol L−1).
The practical ability of DPAdSV at the pSPCE/PbNPs was successfully confirmed by
the determination of TST in spiked reference material of human urine and wastewater
samples purified in a sewage treatment plant without any separation steps. These findings
suggest that it is a promising analytical electrochemical sensing procedure for TST analysis
in environmental and biological samples. Furthermore, the advantage of the sensor is its
portability, which is very promising for quick field analysis.
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