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ABSTRACT Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and
epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for
predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced
recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans
multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild
isolates, experimental evolution for 140–190 generations, and inbreeding by selfing for 13–16 generations. The panel contains 22% of single-
nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing
fine resolution and high nucleotide diversity across . 95% of the genome. We apply it to study the genetic basis of two fitness components,
fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we
should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not
feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis
with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor (r2 , 10%),
requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.
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complex trait; QTL; MPP; multiparental populations; Multiparent Advanced Generation Inter-Cross (MAGIC)

MOST measurable features of organisms vary among
individuals. Outlining the genetic dimension of this

variation, and how this varies across populations and traits,
has important implications for the applicationof genomicdata

to predict disease risk and agricultural production, for esti-
mationof heritability, and for understanding evolution (Lynch
andWalsh 1998; Barton and Keightley 2002). Complex traits
are defined by being multifactorial. They tend to be influ-
enced by many genes and to be plastic in the presence of
environmental variation, and the manner in which pheno-
typic variation emerges from the combined effects of causal
alleles is rarely clear. Although phenotype prediction and
some aspects of evolution can often be well approximated
by considering additive effects alone, nonadditive interac-
tions between alleles at different loci (with marginal additive
effects) may explain a large fraction of trait variation yet re-
main undetected due to low statistical power (Phillips 2008).
Adding further complication, one cannot usually assume that
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genetic and environmental effects are homogeneous or in-
dependent of one another (Barton and Turelli 1991; Félix
and Barkoulas 2015), nor that the genetic markers used for
mapping quantitative trait loci (QTL) are faithfully and uni-
formly associated with causal alleles (Yang et al. 2010; Speed
et al. 2012).

Human height, for example, is the canonical quantitative
trait, an easily measured, stable attribute with high heritabil-
ity (�80%) whenmeasured in families (Galton 1886); Fisher
1930; Visscher et al. 2010). Hundreds of common QTL
[minor allele frequency (MAF) . 5%] of small effect have
been detected by genome-wide association studies (GWAS),
explaining in sum a small fraction (�20%) of heritability
(Wood et al. 2014). A recent study with . 73 105 people
showed that close to 100 uncommon, larger effect QTL
(0.1% , MAF , 5%) explain a mere extra 5% of heritability
(Marouli et al. 2017). It has taken methods of genomic selec-
tion in animal breeding, and dense genetic marker informa-
tion (Meuwissen et al. 2001;Meuwissen and Goddard 2010),
to show that common, undetected QTL can potentially ex-
plain a large fraction of the variability in human height and
common diseases (Yang et al. 2010; Speed et al. 2016). Thus,
in perhaps many cases, the so-called problem of the missing
heritability may be synonymous with high polygenicity (Hill
et al. 2008; Manolio et al. 2009). The contribution of statis-
tical epistasis to variation in human height (as a variance
component orthogonal to additive and dominance effects)
is likely to be modest (Visscher et al. 2010), but nonetheless
important for predicting individual phenotypes and for un-
derstanding the long-term response to selection. Molecular
genetics and biochemistry suggest that nonadditivity is ubiq-
uitous [an idiosyncratic sample of studies showing effects of
natural variation on organismal traits includesMukai (1967),
Whitlock and Bourguet (2000), Bonhoeffer et al. (2004),
Carlborg et al. (2006), Shao et al. (2008), Zwarts et al.
(2011), Gaertner et al. (2012), Corbett-Detig et al. (2013),
Huang et al. (2014), Bloom et al. (2015), Monnahan and
Kelly (2015), Paaby et al. (2015), Chirgwin et al. (2016),
and Forsberg et al. (2017)], but the general importance of
epistasis for explaining missing heritability, shaping fitness
landscapes, maintaining genetic diversity, facilitating the
evolution of recombination, and generating the additive ge-
netic variance on which selection can act, continues to be
debated (Cheverud and Routman 1995; Wolf et al. 2000;
Hill et al. 2008; Phillips 2008; Rockman 2012; Hansen
2013; Hemani et al. 2013; Weinreich et al. 2013; Mackay
et al. 2014; Barton 2017).

Alongside GWAS, inbred line crosses in model systems
have been instrumental for our understanding of the genetics
of complex traits, given the opportunity for control of con-
founding environmental covariates and accurate measure-
ment of breeding values. Crosses among multiple parental
strains in particular—such as those now available for mice
(Churchill et al. 2004), Drosophila (Macdonald and Long
2007), maize (Buckler et al. 2009; McMullen et al. 2009),
wheat (Huang et al. 2012; Mackay et al. 2014; Thepot et al.

2015), rice (Bandillo et al. 2013), tomato (Pascual et al.
2015), and Arabidopsis (Kover et al. 2009), among others—
have been developed to better sample natural genetic varia-
tion. Greater variation also allows the effects of multiallelic
loci to be studied and, subject to effective recombination,
improved QTL resolution. If large populations and random
mating are imposed for long periods, gains in resolution can
be dramatic (Valdar et al. 2006; Rockman and Kruglyak
2008), though this comes with increased opportunity for se-
lection to purge diversity (e.g., Rockman and Kruglyak 2009;
Baldwin-Brown et al. 2014).

Better known as amodel for functional biology (Corsi et al.
2015), the nematode Caenorhabditis elegans has also contrib-
uted to our understanding of complex traits and their evolu-
tion. C. elegans shows extensive variation in complex traits,
and sex-determination and breeding mode (selfing and out-
crossing) can be genetically manipulated at will (Johnson
and Wood 1982; Hodgkin and Doniach 1997; Gems and
Riddle 2000; Knight et al. 2001; Barrière and Félix 2005;
Gutteling et al. 2007; Diaz and Viney 2014; Gray and Cutter
2014; Teotónio et al. 2017). QTL for traits such as embry-
onic lethality (Rockman and Kruglyak 2009), pesticide re-
sistance (Ghosh et al. 2012), and telomere length (Cook
et al. 2016) have been found by association studies in an
expanding panel of inbred wild isolates, the C. elegans nat-
ural diversity resource [CeNDR; https://elegansvariation.
org/ and Cook et al. (2017)]. Complex traits have also been
studied using collections of recombinant inbred (Rockman
and Kruglyak 2009) and introgression lines (RILs and ILs;
Doroszuk et al. 2009) derived by crossing the laboratory
domesticated N2 strain (Sterken et al. 2015) and the diver-
gent Hawaiian wild isolate CB4856 (e.g., Andersen et al.
2014, 2015), or other biparental crosses (e.g., Duveau and
Félix 2012; Noble et al. 2015). GWAS and line crosses have
given insights into how natural selection has shaped pheno-
typic variation in C. elegans and related nematodes. For
example, an N2/CB4856 RIL panel has been used to argue
that selection on linked sites largely explains the distribu-
tion of QTL effects for mRNA abundance (Rockman et al.
2010). Lastly, C. elegans is also one of the main models for
experimental evolution (Gray and Cutter 2014; Teotónio
et al. 2017). Mutation accumulation line panels in partic-
ular have long been used to estimate mutational heritabil-
ity (Estes and Lynch 2003; Baer et al. 2005; Estes 2005;
Baer 2008; Halligan and Keightley 2009; Phillips et al.
2009) and to argue that standing levels of genetic varia-
tion in natural populations for complex traits can be
explained by a mutation–selection balance (Etienne et al.
2015; Farhadifar et al. 2016). As yet, existing C. elegans
RIL panels are limited to biparental crosses, and yield coarse
QTL mapping resolution.

A prominent characteristic of C. elegans is its mixed
androdioecious reproductive system, with hermaphro-
dites capable of either selfing, from a cache of sperm pro-
duced late in larval development (Hirsh et al. 1976), or
outcrossing with males (Maupas 1900). Sex determination
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is chromosomal, with hermaphrodites XX, and XO males
maintained through crosses and rare X chromosome non-
disjunction during hermaphrodite gametogenesis (Nigon
1949). Because males are typically absent from selfed
broods but are half the progeny of a cross, twice the male
frequency in a population is the expected outcrossing rate
(Stewart and Phillips 2002; Cutter 2004). Natural popu-
lations have low genetic diversity and very high linkage
disequilibrium (LD), with generally weak global popula-
tion structure and high local diversity among typically ho-
mozygous individuals at the patch scale (Barrière and
Félix 2005, 2007; Cutter et al. 2009). Average single-
nucleotide polymorphism (SNP) diversity is in the order of
0.3% (Cutter 2006) though highly variable across the ge-
nome, reaching$ 16% in some hypervariable regions (Thompson
et al. 2015). Low diversity and high LD is due to the predom-
inance of inbreeding by selfing, which reduces the effective
recombination rate and elevates susceptibility to linked se-
lection (Graustein et al. 2002; Rockman et al. 2010; Andersen
et al. 2012). Crosses between wild isolates have revealed
outbreeding depression (Dolgin et al. 2007; Chelo et al.
2014), presumably due to disruption of epistatic allelic inter-
actions (e.g., Gaertner et al. 2012).

Perhaps as a consequenceof lowbut significant outcrossing
(and a metapopulation demographic structure), several loci
have been found to be under some formof balancing selection
(e.g., Seidel et al. 2008; Ghosh et al. 2012; Greene et al.
2016). Moreover, evolution experiments involving crosses
among multiple strains have shown that high rates of out-
crossing can persist given heritable variation for mating traits
(Anderson et al. 2010; Teotónio et al. 2012; Masri et al.
2013), and that frequent outcrossing in moderately-sized
populations may have facilitated loss of genetic diversity by
partial selective sweeps, with excess heterozygosity main-
tained by epistatic selection on overdominant loci (e.g.,
Chelo and Teotónio 2013; Chelo et al. 2014).

This molecular and population genetic foundation sug-
gests that study of C. elegans may be fruitful for our under-
standing of the contribution of within- and between-locus
nonadditive interactions to complex traits and their evolu-
tion. Here, we present a panel of 507 genome-sequenced
RILs obtained by intercrossing 16 wild isolates, and cultur-
ing at high outcrossing rates in populations of � 104 for
140–190 generations of experimental evolution, followed
by inbreeding by selfing for 13–16 generations. The C. ele-
gans Multiparental Experimental Evolution (CeMEE) RIL
panel complements existing C. elegans mapping resources
by providing fine-mapping resolution and high nucleotide
diversity. Using simulations, we show that the CeMEE panel
can give gene-level resolution for common QTL with effects
as low as 5%. Using subsets of RILs, we investigate the ge-
netic basis of two fitness components, fertility and adult
hermaphrodite body size, by variance decomposition under
additive and additive-by-additive epistatic models, and by ge-
nome-wide one- and two-dimensional (1D and 2D, respec-
tively) association testing. We find that the genetic basis of

both traits, particularly fertility, is highly polygenic, with a
significant role for interactions of large effect.

Materials and Methods

CeMEE derivation

Thepanelwas derived in three stages (Figure 1). First, 16wild
isolates (AB1, CB4507, CB4858, CB4855, CB4852, CB4856,
MY1, MY16, JU319, JU345, JU400, N2 (ancestral), PB306,
PX174, PX179, and RC301; obtained from the Caenorhabditis
Genetics Center) were inbred by selfing for 10 generations to
ensure homozygosity, then intercrossed to funnel variation
into a single multiparental hybrid population, as described
in Teotónio et al. (2012). Each of the four funnel phases
comprised multiple pairwise, reciprocal crosses at moderate
population sizes (see Supplemental Material, and figure S1
and supporting information of Teotonio et al. (2012) for full
details of replication and population sizes).

Second, the multiparental hybrid population was evolved
for 140 discrete generations at population sizes of N � 104

(outcrossing rate � 0:5;Ne � 103), to obtain the A140 pop-
ulation [as reported in Teotónio et al. (2012), Chelo and
Teotónio (2013), and Chelo et al. (2013)]. Sex-determination
mutations were then mass introgressed into the A140, while
maintaining genetic diversity, to generate monoecious (obli-
gately selfing hermaphrodites) and trioecious (partial selfing
with males, females, and hermaphrodites) populations, as de-
tailed in Theologidis et al. (2014). Further replicated experi-
mental evolution was carried out for 50 generations under two
environmental regimes: (1) a control regime (conditions as
before), with the wild-type androdioecious reproductive sys-
tem (CA50 collectively); and (2) a gradual exposure to an in-
creasing gradient of NaCl, from 25 mM (standard NGM-lite
medium; United States Biological) to 305mM until generation
35 and thereafter, varying reproductive system (GX50,
where X is androdioecious, monoecious, or trioecious). Al-
though trioecious populations started evolution with only
0:1% of hermaphrodites, by generation 50 they were abun-
dant [50%; see figure S7 in Theologidis et al. (2014)].
Androdioecious populations maintained outcrossing rates
of. 0.4 until generation 35, soon after losingmales to finish
with an outcrossing rate of�0.2 by generation 50 [figure S5
in Theologidis et al. (2014)]. This complex experimental
evolution scheme was designed to study the effects of re-
productive system on the genetics and evolution of complex
traits; however, here we consider this structure only in so far
as it is relevant to the mapping of quantitative traits in the
panel as a whole.

Finally, hermaphrodites were inbred by selfing to obtain
RILs. Population samples (. 103 individuals) were thawed
from 280� and maintained under standard laboratory con-
ditions for two generations. At the third generation, single
hermaphrodites were picked at the late-third to early-fourth
larval stage (L3/L4) and placed in wells of 12-well culture
plates, containing M9 medium (25 mM NaCl) seeded with
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Escherichia coli. Lines were propagated at 20� and 80% rela-
tive humidity (RH) by transferring a single L3/L4 individual
for 16 (A140 population) or 13 generations (4–7 days be-
tween transfers). At each passage, parental plates were kept
at 4� to prevent growth until offspring production was veri-
fied, and in cases of failure two additional transfers were
attempted before declaring line extinction. Inbreeding was
done in several blocks from 2012 to 2016, in two different
locations. A total of 709 RILs were obtained and archived
at 280�. Full designation of CeMEE RILs and subpanels are
in File S1 and File S2.

Sequencing and genotyping

Full details of sequencing, genotype calling, and variant
filtration can be found in the supplementalmaterial. In brief,
founders were sequenced to $ 303 depth with Illumina
50 or 100 bp paired-end reads, and variants were called
against the WS245 C. elegans N2 reference genome (GATK

3.3-0 HaplotypeCaller; McKenna et al. 2010). After depth,
quality, zygosity, and frequency filtering, we arrived at a
final set of 388,201 founder SNP markers at which to geno-
type RILs.

RILs were sequenced with 100 or 150 bp paired-end reads
to amean depth of 5.13. Genotypes were imputed by Hidden
Markov Model (HMM), considering the 16 founder states
and mean base qualities of reads. After removing closely re-
lated lines, we retained 178 A140 RILs, 118 CA50 RILs (from
three replicate populations), 127 GA50 RILs (three repli-
cates), and 79 GT50 RILs (two replicates). The 98 GM50 RILs
(two replicates) are derived from monoecious populations
and are highly related on average, grouping together into a
small number of “isotypes.” To prevent the introduction of
strong structure, we discarded all but five below a panel-wide
pairwise identity threshold for the purposes of trait mapping
(taking the line with greatest sequence coverage for each
isotype, grouped by mean pairwise identity among lines of
all other subpanels + 5 SD). In total, the CeMEE comprises
507 RILs from five subpanels, with 352,583 of the founder
markers segregating within it. Raw and filtered founder var-
iant calls are in File S3 and File S4, and imputed RIL geno-
types are in File S5.

We estimated residual heterozygosity for 25 A140 lines
sequenced to . 203 coverage (single sample calls using
GATK 3.3-0 HaplotypeCaller, variant filtration settings
MQ , 50.0 || DP , 5 || MQRankSum , 212.5 || SOR ,
6 || FS. 60.0 || ReadPosRankSum,28.0 || QD, 10.0 ||
DP.mean3 3). Mean heterozygosity in these lines at foun-
der sites is 0.095% (SD 0.042%, range 0.033–0.18%).

Genetic marker sets

Four subsets of the 352,583 founder SNPs segregating in the
CeMEE panel are used for analysis (referenced in the corre-
sponding sections), which we define here:

1. Subset of 248,668 markers used for GWAS with MAF .
0.05 in phenotyped lines.

2. Subset of 88,508 markers pruned of strong local LD (gen-
erated by LDAK in a two-pass window-based filtering on
r2 , 0.98 (see Heritability and phenotype prediction), used
for analysis of interchromosomal LD and panel structure.

3. Subset of 4960 markers used for 2D testing, with MAF .
0.05, weak local LD (Plink –indep-pairwise, window =
200 kb, step = 10, r2 , 0.5), # 5 missing or ambiguous
imputed genotypes, and filtering across marker pairs for
the presence of all four two-locus homozygote classes at a
frequency of $ 3 in at least one test.

4. Subset of 256,535 diallelic sites shared between the CeMEE
and CeNDR panel with no missing or heterozygous calls.

CeMEE genetic structure

Differentiation from natural isolates and founders: We
compared similarity within and between the CeMEE RILs and
152 sequenced wild isolates from the CeNDR panel (release

Figure 1 CeMEE derivation. The multiparental intercross funnel phase
comprised four stages of pairwise crosses and progeny mixing, carried
out in parallel at controlled population sizes. One hybridization cycle for
a single-founder cross is inset at left: in each cycle, multiple reciprocal
crosses were initiated, increasing in replicate number and census size
each filial generation. F1 and F2 progeny were first sib-mated, then
reciprocal lines were merged by intercrossing the F3 and expanding
the pooled G4 (for three to four generations) before commencing the
next reduction cycle. The resulting multiparental hybrid population was
archived by freezing, and samples were thawed and maintained for
140 nonoverlapping generations of mixed selfing and outcrossing un-
der standard laboratory conditions to generate the A140 population.
Hermaphrodites were then sampled from the A140 and selfed to gen-
erated the A140 RILs. Additionally, the outbred A140 population was
evolved for a further 50 generations under the same conditions (CA) or
under adaptation to a salt gradient with varying sex ratios (GT, GM, and
GA lines; Theologidis et al. 2014). See Materials and Methods for de-
scription of subpanels, and Teotónio et al. (2012) for details of replicate
numbers and population sizes for each funnel generation. CA, control
adapted lines; CeMEE, C. elegans multiparental experimental evolution
panel; GA, gradual adaptation androdioecious; GM, gradual adaptation
monoecious; GT, gradual adaptation trioecious; RILs, recombinant in-
bred lines.

1666 L. M. Noble et al.

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300406/-/DC1/FileS1.txt
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300406/-/DC1/FileS2.txt
http://www.wormbase.org/db/get?name=N2;class=Strain
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300406/-/DC1/FileS3.zip
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300406/-/DC1/FileS4.zip
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.117.300406/-/DC1/FileS5.zip ;


20160408). The distributions for all pairwise genotype and
haplotype (% identity at 0.33 cM scale in F2 map distance)
distances are plotted in Figure S1 in File S22, using marker
set 4.

LD (r2) was computed for founders and CeMEE RILs at
the same set of sites (marker set 2, additionally filtered
to MAF . 1/16, then subsampled by a factor of 10 for
computational tractability), and plotted against genetic
distances [obtained by linear interpolation from the
N2/CB4856 map, scaled to F2 distances (Rockman and
Kruglyak 2009)]. To assess the presence of subtle, long-
range LD in the form of interchromosomal structure, we
compared mean r2 among chromosomes to a null distribu-
tion generated by permutation, where associations be-
tween chromosomes are randomized within each RIL
genome and the contribution of allele frequency differenti-
ation between subpanels is controlled. In each permutation
(n = 5000), RIL genotypes (marker set 2) were randomly
subsampled to equal size across chromosomes, split by
chromosome, then shuffled within each subpanel, before
taking the mean correlation across chromosomes as the test
statistic (or omitting all single and pairwise chromosome
combinations). The effect of local LD pruning is to reduce
the weighting of long haplotypes in strong LD, to better
assay weak interactions involving loci distributed through-
out the majority of the genome. Permutation code is in File
S6 (interchromLD.R).

Reconstruction of ancestral haplotypes and genetic map
expansion: For each RIL, founder haplotypes were inferred
with the RABBIT HMM framework implemented in Math-
ematica (Zheng et al. 2015), conditioning on the recombi-
nation frequencies observed for the N2/CB4856 RILs
(scaled to F2 map length; coordinates are in File S7
WS220_geneticMap.txt) (Rockman and Kruglyak 2009).
Realized map expansion was estimated by maximum like-
lihood for each chromosome, before full marginal recon-
struction (explicitly modeling recombination on the X
chromosome and autosomes) using posterior decoding
under the fully-dependent homolog model (depModel).
Under this model, appropriate for fully inbred diploids,
chromosome homologs are assumed to have identical
ancestral origins (prior identity by descent probability
f ¼ 1), and the recombination junction density (transition
probability) is given by the estimated map expansion (Ra)
and genotyping error rates (set to 53 1025 for founders and
53 1023 for RILs based on likelihood from a parameter
sweep). Sites called as heterozygous or missing in the foun-
ders, or unresolved to ½0; 1� by the genotype imputation
HMM in RILs, were set to NA (missing data) before recon-
struction. To summarize performance, per marker posterior
probabilities were filtered to . 0.2, and haplotype lengths
and breakpoints were estimated from run lengths of marker
assignments, taking the single best haplotype (if present),
maintaining haplotype identity (if multiple assignments of
equal probability), or the first among equals otherwise.

To test reconstruction accuracy as a function of haplotype
length, we performedmatched simulations varying only the
number of generations of random mating (code in File S8
RABBIT_simulations.R). Starting from a single population
representing all founders [N = 1000, corresponding to the
expected Ne during experimental evolution (Chelo and
Teotónio 2013)], mating occurred at random with equal
contribution to the next generation. Recombination be-
tween homologous chromosomes occurred at a rate of
50 cM, with full crossover interference, and the probability
of meiotic crossover based on distances between marker
pairs obtained by linear interpolation of genetic positions
(Rockman and Kruglyak 2009). For each chromosome,
10 simulations were run sampling at 10, 25, 50, 100,
150, 200, 250, and 300 generations, and haplotype recon-
struction was carried out as above. Maximum likelihood
estimates of realized map expansion for simulations were
used to calibrate a model for prediction of the effective
number of generations in the RILs. With increasing gener-
ation number, Ra was progressively underestimated due to
unresolved small recombination events (e.g., 14% mean de-
viation at generation 300). Given this, we used a second-
degree polynomial regression of Ra on the known number of
generations, which was significantly preferred over a linear
fit by likelihood ratio test (LRT).

Population stratification: Population stratification was
assessed using principal component (PC) decomposition,
and supervised and unsupervised discriminant analysis of
PCs (DAPC; Jombart et al. 2010). In all cases, decomposi-
tion was of genotypes pruned of strong local LD (marker
set 2), mean centered, and scaled to unit variance.

Of the first 50 PCs, 10 are individually significantly asso-
ciated with subpanel identity by ANOVA (linear regression of
each PC on subpanel identity, tested against an intercept only
model by LRT, P, 0.05 after Bonferroni correction). Seven of
the top 10 PCs are significant, though others up to 38 are also
associated, showing that multiple sources of structure con-
tribute to the major axes of variation.

For DAPC [R package adegenet, Jombart (2008)], we used
100 rounds of 10-fold cross-validation to determine the num-
ber of PCs required for optimal subpanel assignment accu-
racy (the mean of per-group correct assignments). This
value (40 PCs) was then used to infer groups by unsuper-
vised k-means clustering (default settings of 10 starts, 105

iterations) with the number of groups selected on the Bayesian
Information Criterion (BIC).

Phenotyping

Fertility: In the experimental evolution scheme under which
the CeMEE RILs were generated, a hermaphrodite’s contri-
bution to the next generation is the number of viable embryos
that survive bleaching (laid, but unhatched, or in utero) that
subsequently hatch to L1 larvae 24-hr later. We treat this
phenotype as fertility, and measured it for individual worms
of 230 RILs. Full details are provided in File S22. In brief, we
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used manually-scored plate-based assays of the number of
viable embryos produced by single adult hermaphrodites,
with two independent plates for most RILs, which we con-
sider as replicates for estimation of repeatability (see below).
In total, the median number of measurements per line was
43 (range 4–84). Final trait values were the Box–Cox trans-
formed line coefficients from a Poisson generalized linear
model (log link) with fixed categorical effects of plate row,
column, and edge (exterior rows and columns), and the
count of offspring per worm as response variable (model S1
in supplemental material). Data for 227 RILs passed filtering
(raw data are in File S9, model coefficients are in File S10),
coming fromRILs of three subpanels (170A140, 45GA50, and
12 GT50). Subpanel explains 4% of the variance in this trait,
with GA50 RILs having higher mean fertility than the A140
(linear regression of trait values on subpanel identity, regres-
sion coefficient = 0.43, P ¼ 0:01; see Figure S2 in File S22).

Adult hermaphrodite body size: The area of adult hermaph-
rodite worms was measured using a Multi-Worm Tracker
(Swierczek et al. 2011). Data were generated in two labo-
ratory locations over several years, recording the relative
humidity and temperature at the time of assay (see supple-
mental material for full details). Final trait values were the
Box–Cox transformed line coefficients from a linear model
incorporating fixed effects of year, nested within location,
and humidity and temperature, nested within location
(model S3 in Supplemental Methods). Data for 410 RILs
passed filtering, with two independent thaw blocks for most
RILs (raw data are in File S11 and final trait values are in File
S12). Data come from RILs of three subpanels (165 A140,
118 CA50, and 127 GA50), which explain 17% of variance in
this trait. GA50 RILs aremuch larger than the A140 (regression
coefficient = 0.94, P, 10216; see Figure S2 in File S22), and
this is not driven by technical covariates: data acquisition for
A140 RILs and GA50 RILs was relatively balanced with respect
to location and time, and GA50 RILs are significantly larger
across all five laboratory/year blocks.

Fertility and body size show significant phenotypic and
genetic correlations [Figure S2 in File S22; see also
Poullet et al. (2016)], justifying the latter being consid-
ered a fitness-proximal trait. For 202 lines with data for
both traits, the phenotypic correlation= 0.35 (Spearman’s r
for the final trait model coefficients used for QTL map-
ping, P ¼ 2:33 1027), and genetic correlation rG ¼ 0:54
(ss;f/

ffiffiffiffiffiffiffiffiffiffiffi
s2
s s

2
f

q
;where ss;f is genetic covariance between size

and fertility, was estimated by restricted/residual maximum
likelihood (REML) [R package sommer, Covarrubias-Pazaran
(2016)] using unweighted additive genetic similarity A
(see below).

Heritability and phenotype prediction

Repeatability: Repeatability was estimated from ANOVA of
the line replicate means for each trait as R ¼ s2

a/(s
2
a þ s2

e ),
where s2

a ¼(mean square among lines 2 mean square
error)/n0, and n0 is a coefficient correcting for a varying

number of observations (124 plate means) per line (Lessells
and Boag 1987; Sokal and Rohlf 1995). Assuming equal
variance and equal proportions of environmental and
genetic variance among replicates, R represents an upper
bound on broad-sense heritability (Falconer 1981; Hayes
and Jenkins 1997). Fertility data were square root-transformed
to decouple the mean and variance.

Assumptions: In inbred, isogenic lines, broad-sense herita-
bility can also be estimated by linear mixed-effects model
(LMM) from the covariance between genetic and phenotypic
variances. However, the measurement of genetic similarity is
subject to a number of assumptions and is (almost) always, at
best, an approximation (Speed and Balding 2015).

Afirst assumption is thatallmarkersare thecausal allelesof
phenotypic variation. However, it is unavoidable thatmarkers
tag the (unknown) causal alleles to different degrees due to
variable LD. A second, usually implicit, assumption in calcu-
lating genetic similarity is the weight given to markers as a
function of allele frequency. Greater weight has typically been
given to rare alleles in human research, which has support
under scenarios of both selection and neutrality (Pritchard
2002). A third assumption, related to the first two, is the
relationship between LD and causal variation. If the relation-
ship is positive—causal variants being enriched in regions of
high LD—then heritability estimated from all markers will be
upwardly biased, since the signal from causal variation con-
tributes disproportionately to genetic similarity (Speed et al.
2012).

Theuseofwhole-genome sequencing largely addresses the
first assumption, given (as here) very highmarker density and
an accurate reference genome, although in the absence of full
de novo genomes from long-read data for each individual, the
contribution of large-scale copy number and structural vari-
ation, and new mutation, will remain unknown. To account
for the second and third assumptions, we used LDAK (v5.0)
to explicitly account for LD in the CeMEE (decay half-life =
200 kb,min-cor (minimum squared correlation coefficient)=
0.005, min-obs (minimum percentage of non-missing data
permarker)= 0.95; Speed et al. 2012). Heritability estimates
were not sensitive to variation in the decay parameter over a
10-fold range or to the measurement unit (physical or genetic),
and we used physical distance. Across the set of 507 RILs,
88,508 segregating markers were used after local LD-based
pruning (marker set 2) and, of these, 22,984 markers received
nonzero weights (File S13). LD weighting can magnify the ef-
fects of genotyping errors. We tested the effect of excluding
17,740 markers with particularly low local LD (mean r2 over
a 20-marker window , 0.3, or the ratio of mean r2 to that of
the window mean , 0.3) before estimation of LD weights.
Heritability estimates were largely unchanged (within the
reported intervals), as were our general conclusions on var-
iance components and model performance.

Modeling: Given m SNPs, genetic similarity is calculated by
first scaling S, the n3mmatrix of mean centered genotypes,
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where Si;j is the number ofminor alleles carried by line i (of n)
at marker j and frequency f, to give X:

Xi;j ¼
�
Si;j2 2fj

�
3

�
2fjð12fjÞ

�a
2

; (1)

The additive genetic similarity matrix (GSM) A is then
XXT=m: Here, a scales the relationship between allele fre-
quency and effect size (Speed et al. 2012), a ¼ 21 corre-
sponds to the assumption of equal variance explained per
marker (an inverse relationship of effect size and allele
frequency), while common alleles are given greater weight
at a . 0. We tested a 2 ½21:5; 2 1; 2 0:5; 0; 0:5; 1� and re-
port results that maximized prediction accuracy. With Y the
mean centered vector of n phenotype values scaled to unit
variance, the additive model fit for estimating genomic
heritability (h2) is then:

Y ¼ Pm
Abþ e;

with  b � N
�
0;s2

g

�
;   e � N

�
0;s2

e

� (2)

where b represents random SNP effects capturing genetic
variance s2

g ; and e is the residual error capturing environmen-
tal variance s2

e : Given Y and A, heritability can be estimated
from REML estimates of genetic and residual variance as
h2 ¼ s2

g=ðs2
g þ s2

e Þ: Note that we use the terms h2 and geno-
mic heritability interchangeably here for convenience, al-
though in some cases nonadditive covariances are included.
We assume RILs are fully inbred.

The existence of near-discrete recombination rate domains
across chromosomes has led to a characteristic structure of
nucleotide variation, correlated with gene density and func-
tion (Cutter et al. 2009). Variation also varies widely among
chromosomes (Rockman et al. 2010; Andersen et al. 2012).
This heterogeneity is not captured by aggregate genome-
wide similarity with equal marker weighting (Speed et al.
2012; Goddard et al. 2016). To better reflect observed LD,
markers were first weighted by the amount of genetic varia-
tion they tag along chromosomes (Speed et al. 2012). Given
m weights, wi; . . . ;wm; genetic effects for the basic model
become:

b � N �
0;ws2

g
	
W
�

(3)

where W is a normalizing constant. Second, we jointly mea-
sured the variance explained by individual chromosomes
(and by genetic variation in recombination rate domains
within each chromosome), which can potentially improve
the precision of heritability estimation if causal variants are
not uniformly distributed by allowing variance to vary among
partitions. Third, we tested epistatic as well as additive
genetic similarity with (1) the entrywise (Hadamard)
product of additive GSMs, giving the probability of allele
pair sharing (Henderson 1985; Jiang and Reif 2015), (2)
higher exponents up to fourth-order interactions, and (3)
haplotype-based similarity at multi-gene scale. Additional

similarity components (additive or otherwise) are added
as random effects to the above model to obtain indepen-
dent estimation of variance components (see supplemen-
tal materials for details).

Model fit was assessed by phenotype predictions from
leave-one-out cross-validation, calculating the genomic best
linear unbiased prediction (GBLUP) (Meuwissen et al. 2001;
VanRaden 2008) for each RIL and returning the squared
correlation coefficient (r2) between observed and predicted
trait values (carried out in LDAK). To avoid bias associated
with sample size, all models were unconstrained (nonerror
variance components were allowed to vary outside 0–1 dur-
ing convergence) unless otherwise noted, which generally
gave better likelihood for multi-component models.

GWAS

1D tests: For single trait, single marker association, we fitted
LMMs:

Y ¼ bX þ gþ e;  with  g � N
�
0;s2

gA
�
;   e � N

�
0;s2

e

�
(4)

where X is the matrix of fixed effects (SNP genotype) and b is
the effect on phenotypic variation that is estimated. g are the
random effects describing genetic covariances (Equation 3)
accounting for nonindependence among tests due to an as-
sumed polygenic contribution to phenotype, with A the n3 n
GSM from themost predictive additive fit found for each trait,
and e is residual error. The above model was compared to a
null model excluding genotype effects by LRT (fit using the
LIMIX Python package, https://github.com/limix/limix).
GWAS P-values for size and fertility are in File S14, using
genetic similarities in File S15 and File S16.

To assess the mapping resolution and power of the
CeMEE panel, we carried out GWAS according to themodel
above for simulated phenotypes. We simulated a single
additive locus (h2 from 1 to 30%) and a background poly-
genic component of equal variance (scenarios of 10, 100,
or 1000 loci), chosen at random from SNPs with MAF .
0.05, with genetic and environmental effect sizes drawn
independently from the standard normal distribution
(code is in File S17, GWAS_simulations). GWAS was carried
out 1000 times for each scenario, controlling for relatedness
with LD-weighted additive genetic similarity (a ¼ 2 0:5).
Power was estimated from a binomial generalized linear
model considering all three polygenic scenarios together.
Precision, the fraction of significant QTL that are true posi-
tives, was assessed after masking a 1-cM window around the
simulated causal SNP. Detection intervals around QTL were
defined as a drop in the logarithm of odds (LOD) score of
2 (Morton 1955), and were calculated from similarly pow-
ered markers with $ MAF, with P-values converted to LOD
scores as x2=23 logð2Þ=log10ð2Þ (Nyholt 2000). True posi-
tives were defined as cases where the exact simulated site
was detected, and false positives were 2-LOD drop QTL
among all other markers detected at a 5% significance per-
mutation threshold (see below).
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All 507 lineswereused for simulation, and allGWAS tested
248,668 markers with MAF . 0.05 (marker set 1; code is in
File S18, GWAS_traits.py). Significance thresholds were
established by permutation (Anderson and Ter Braak 2003),
with phenotypes generated by permuting phenotype residuals
given the estimated relatedness among lines to ensure ex-
changeability in the presence of polygenic causal effects or
structure (A), using the R package mvnpermute (Abney
2015). Significance level a is the corresponding percentile
of the minimum P-values from 1000 permutations.

Given correlation between traits, we also tested phenotype
residuals for each trait after linear regression on the other, and
a multi-trait LMM fitting general and specific effects. No
markers were significant in any case (analysis not shown).

2D tests: We tested for epistasis over a reduced search space
(marker set 3), on the assumption of complete homozygosity,
for a total of 19,913,422 marker pairs (inter- and intrachromo-
somal).Weuseda two-levelhierarchicalprocedure,first testinga
full linear model (M1; main and interaction effects) against a
reduced model (M0; intercept only) by ANOVA, taking as sum-
mary statistic the P-value from an LRT. Significance at level
1 was tested against a null distribution generated by full pheno-
type permutation (i.e., no additive or interaction effects), with
a ¼ 10% from the minimum values seen for each chromosome
pair (n.5000 permutations). We then tested the interaction
term specifically for marker pairs significant at level 1 using a
parametric bootstrap (Bůžková et al. 2011): M1 was fitted to
responses sampled with replacement from M2 (n = 10,000),
taking the interaction P-value as test statistic, and then compar-
ing the observed statistic to the null distribution (significance
declared at P , 0.01). Code is in File S19 2D_hierarchical.py.

M0 : Y ¼ mþ e
M1 : Y ¼ mþ bi Xi þ bj Xj þ bij Xij þ e

H0ð1Þ: bi ¼ bj ¼ bij ¼ 0
M2 : Y ¼ mþ bi Xi þ bj Xj þ e

H0ð2Þ: bij ¼ 0

(5)

We initially ignored relatedness for 2D testing, then fitted
LMMs as above (Equation 2) with genetic covariance A for
candidate interactions (R package hglm; Shen et al. 2014).
From eight candidate interactions for size, we excluded two
for which interaction P-values by LMM were almost an order
of magnitude higher. The six remaining candidates changed
little (three were lower by LMM). For fertility, interaction
P-values were largely insensitive to relatedness (lower for
six of eight cases by LMM). Models were also fitted to raw
trait values (in addition to the power transformed values) to
assess scale effects. One interaction for fertility was signifi-
cant for transformed values only andwas excluded. The amount
of phenotypic variance explained by interactions for each trait
was estimated by linear model adjusted R2; jointly fitting all
main and two-locus interactions. These estimates were similar
to those from LMM variance components, fitting random effects
corresponding to additive and additive-by-additive genetic

similarity separately at candidate interactions and back-
ground markers (point estimates were 6% lower for size
and , 1% lower for fertility).

We also tested for excess weaker polygenic interactions by
taking the sum of log likelihood ratios (LRs) for each marker
against all other markers on one other chromosome (2D sum
tests). Significance was tested at a single threshold (LR. 16,
around the maximum value seen among pairwise interaction
null P-values), using the equivalent of the above hierarchical
procedure: LRs for M1 vs. M0 were first summed for each
marker and compared to a null distribution generated by full
phenotype permutation. Candidate markers significant at
level 1 (a = 0.01) were then tested for significance of the
interaction terms against a distribution of LR sums from null
additive models for tests with LR . 16 in the observed data.
This was repeated 1000 times, with permutation order fixed
across bootstraps to maintain correlation structure, and sig-
nificance was declared at P , 0.01. Code is in File S20,
2D_sumLRbootstrap.R.

Data availability

Sequence data are available from the National Center for
Biotechnology Information Sequence Read Archive under
BioProject PRJNA381203. Raw and processed phenotype
and genotype data, and analysis scripts are provided as
supplemental material (see DataDocument) and archived in
FigShare under DOI: 10.6084/m9.figshare.5466574.v1. RILs
are available from the authors.

Results and Discussion

CeMEE differentiation from natural populations

The CeMEE panel of RILs draws variation from 16 founders,
and shuffles the diversity they contain through. 150 gener-
ations of predominant outcrossing at moderate population
size. Isolates used to create the panel together carry �25%
of single-nucleotide variants known to segregate in the global
C. elegans population (CeNDR; Cook et al. 2017). The foun-
ders vary considerably in distance to the N2 reference strain,
with the Hawaiian CB4856 and German MY16 isolates to-
gether contributing over half of all markers, while CB4507
is closely related to N2 (Figure S4A in File S22). Comparison
of pairwise genetic distances in the CeMEE and 152 se-
quenced wild isolates (including a small number of more re-
cently isolated, highly divergent lines) illustrates the scale of
novelty generated by the multiparental cross (Figure S1 in
File S22). The CeMEE RILs occupy a substantial subspace of
CeNDR genotypic diversity, without the extensive haplotype
sharing among wild isolates and with the creation of many
new multigenic haplotypes (Figure S1B in File S22).

CeMEE differentiation from parental founders

Since C. elegans natural isolates suffer from outbreeding de-
pression (Dolgin et al. 2007), the mixing phase is expected to
generate high variance in fitness which, channeled through
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bottlenecks during serial intercrossing and population expan-
sion, gives ample opportunity for loss of diversity through
drift and selection. Fixation of N2 alleles at one X chromo-
some locus, spanning the known major effect behavioral lo-
cus npr-1 (de Bono and Bargmann 1998; Gloria-Soria and
Azevedo 2008; McGrath et al. 2009; Reddy et al. 2009;
Bendesky et al. 2011; Andersen et al. 2014), during estab-
lishment of the A140 population has been documentedwith a
coarse marker set (Teotónio et al. 2012). More broadly, the
outbred A140 population showed nonnegligible departure
from the founders, with 32,244 alleles lost (unseen in both
the A140 and RILs, 26,593 of these being founder singletons;
Figure 2). Subsequent change during the inbreeding (and
further adaptation) stages to generate RILs was more re-
stricted, with an additional 3171 alleles lost (2542 of these
at , 10% frequency in both founders and the A140). How-
ever, importantly, the physical distribution of allelic loss is
relatively restricted: at least one marker is segregating in
the CeMEE RILs at . 5% MAF within 95.5% of 20 kb seg-
ments across the genome (97.2% of autosomal segments; for
reference, protein coding genes are spaced just under 5 kb
apart on average in the 100 Mb C. elegans N2 genome).

Analysis of differentiation across variant functional classes
showed large departures in frequency for coding variation
(synonymous and nonsynonymous) and the smallest for
intronic variation (Figure 3D). Putative regulatory variation
was highly variable across experimental phases, being the
most dynamic class during the funnel intercross and initial
adaptation (founders to A140) stage, but changing less than
the mean value for all classes for generations between the
A140 and RILs. This pattern was observed across all of the
subpanels that make up the CeMEE (data not shown), nota-
bly the A140 RILs that differ from the outbred A140 by only
inbreeding, suggesting differential dominance of coding and
regulatory variation (Wray 2007; Gruber et al. 2012). With-
out sequence data for the outbred CA50, GA50, GM50, or
GT50 populations, we cannot assess the impact of inbreeding
on the fixation of alleles more generally. These effects are
expected to depend on reproductive mode and selection
(Charlesworth and Wright 2001; Morran et al. 2009; Chelo
and Teotónio 2013; Chelo et al. 2014; Kamran-Disfani and
Agrawal 2014).

Local LD, while nonuniform among chromosomes, tends
to decay relatively rapidly, approaching background levels

Figure 2 MAFs of founders and
the outbred A140 population
(A), A140 and RILs [inbreeding
only for the A140 RILs, further ad-
aptation then inbreeding for G50
RILs; (B)], and founders against all
RILs (C). Insets show frequency quan-
tiles. Changes in major/minor class
across contrasts are ignored (among
these cases, unfolded frequencies for
just 3699 sites differ by . 50% for
founders vs. RILs). (D) Change in al-
lele frequency (absolute log ratios) for
the same contrasts by functional
class: intronic, synonymous and non-
synonymous, putative regulatory
variation (US/DS; # 200 bp from
an annotated transcript or N2 pseu-
dogene), or intergenic (none of the
above). Points are mean values (di-
ameter exceeds the SE). DS, down-
stream; MAF, minor allele frequency;
RILs, recombinant inbred lines; US,
upstream.
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by 0.5 cM (F2 map scale) on average (Figure 3 and Figure S3
in File S22). Disequilibrium between pairs of loci on different
chromosomes is, as expected, very weak (r2 0.99, 0.95
quantiles = 0.538, 0.051 within chromosomes vs. 0.037,
and 0.022 across chromosomes), with one prominent exception.
At a single pair of loci on chromosomes II and III, we observe
r2 . 0.5 [II: 2,284,322, which tags an intact MARINER5 trans-
poson (WBTransposon00000128) that harbors an expressed
miRNA in the N2 reference, and III: 1,354,894–1,425,217, a
broad region of mostly unannotated genes]. The maximum in-
terchromosomal r2 for all other pairs is # 0:27: Genotypes in
repulsion phase are rare across these regions in the RILs
(P, 10270; Fisher’s Exact Test), absent in the founders, and
present in only 1 of 124 wild isolates surveyed with unambigu-
ous variant calls in these regions (CeNDR). This suggests the
presence of at least one two-locus incompatibility exposed by
inbreeding or, perhaps more likely given the uncertainties of
reference-based genotyping, a transposon-mediated II–III trans-
position polymorphism among founders. Three founders
contribute the chromosome II nonreference haplotype, but
extremely poor read mapping in this region for these and
other isolates, consistent with high local divergence as well
as potential structural variation, means our short-read data
are not informative in resolving these alternatives.

To better quantify the extent of subtle interchromosomal
structure in theCeMEE,wecomparedtheobservedcorrelations

among chromosomes to values from permutations, shuffling
lines within subpanels, among chromosomes (Figure 3). The
observed mean value for the genome, while extremely low,
is higher than the maximum value of the null distribution
(P, 23 1024 from 5000 permutations), indicating the pres-
ence of extensive weak interactions. Further permutations
dropping single or pairs of chromosomes showed that interac-
tions between autosomes and the X chromosome contribute
disproportionately (although all pairwise combinations exceeded
the respective null maxima).

Founder haplotype blocks and genetic map expansion

The CeMEE panel is highly recombined and any simple, large-
effect incompatibilities between founders are likely to have
been purged early on in experimental evolution. For example,
a haplotype containing peel-1 and zeel-1, a known incompat-
ibility locus that segregates among the founders on the left
arm of chromosome I (Seidel et al. 2008, 2011), is fixed in the
RILs (Figure 4A). Cases such as this are best appreciated
when the mosaic of founder haplotypes that comprise each
RIL genome is inferred.

Founder haplotypes in the RILs were reconstructed with
the multiparent HMM framework RABBIT (Zheng et al.
2015), assigning 96.9% of markers to a single founder hap-
lotype at posterior probability . 0:2 (84.2% . 0:5; median
value across lines; haplotype sharing in the 16 founders

Figure 3 Linkage disequilibrium in founders (A)
and all CeMEE RILs [(B); F2 genetic map distance,
LOESS fit to mean r2]. (C) Interchromosomal
structure is weak but significant. Observed
mean r2 between all chromosomes (red vertical
bar) plotted against the null distribution from
permutations randomizing lines across chro-
mosomes (within subpanels to exclude effects
of population structure). (D) Permutations drop-
ping pairs of chromosomes implicate X–autosome
interactions. Color and size are (redundantly) scaled
by enrichment over the null distribution (95% per-
centile), relative to the genome-wide mean value.
CeMEE, C. elegansmultiparental experimental evolu-
tion panel; LOESS, LOcal regrESSion; RILs, recombinant
inbred lines.
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means that unambiguous assignment to a single founder is
not always possible). For illustration purposes, a summary
of reconstructed haplotypes for the A140 RILs on chromo-
somes I, IV, and X are shown in Figure 4, at both physi-
cal and genetic scales, to make the differences between these
units plain. The observed recombination landscapes generally
recapitulate those inferred from classical linkage mapping stud-
ies and from theN2/CB4856RIAIL cross (RockmanandKruglyak
2009), with the recombination rate high in chromosome arms
and low in centers. With the additional map expansion gained

here (see below), we note that suppression of recombination is
clearly strong, but not complete, within subtelomeric regions
(see, for example, the exceptionally large right tip of chromosome
X, spanning almost 2 Mb, in Figure 4C).

In general, founder haplotype diversity among RILs remains
high: across reconstructed intervals, the median number of hap-
lotypes observed in . 1 RIL is 12 (posterior probability . 0.5).
Contributions clearly vary fromequality, with linesmost divergent
from the N2 reference (CB4856 andMY16) overrepresented
and lines more similar to the reference underrepresented

Figure 4 A140 RIL founder haplotype reconstruction and structure for chromosomes I (A), IV (B), and X (C). Founder haplotypes in physical and genetic
distances (in subpanels labeled “a”). Each plotted point is a marker, with its size scaled by posterior probability (minimum 0.2; regions of low marker density are
visible as vertical white swathes through RIL haplotypes). Founder contributions are summarized below (in subpanels labeled “b”). Loci discussed in the text are
indicated: the zeel-1/peel-1 incompatibility on the left arm of chromosome I (haplotype compatibility group), either experimentally tested in Seidel et al. (2008) or
determined here from genotype data, is indicated below as an arrowhead for Bristol (N2) or an “x” for Hawaii (CB4856); extreme haplotype differentiation
within a piRNA cluster on the right arm and tip of chromosome IV; and the fixation of N2/CB4507 haplotypes over a large region of the X chromosome left arm
spanning npr-1, alleles of which have pleiotropic effects on behavior and laboratory adaptation (de Bono and Bargmann 1998; Gloria-Soria and Azevedo 2008;
McGrath et al. 2009; Andersen et al. 2014). Subpanels “c–g” show summary statistics evaluated at 5 kb or 0.01 cM resolution, with vertical scales for each
metric fixed across chromosomes, and the positions of recombination rate boundaries inferred for the N2 3 CB4856 RIAILs (Rockman and Kruglyak 2009)
indicated with shaded bars. Haplotype length: mean length extending from the focal position (in subpanels labeled “c”). P (haplo.): test of reconstructed
founder haplotype proportions, relative to expectation based on reconstruction frequency from G150 simulations (2log10ðPÞ from a x2 goodness-of-fit test) (in
subpanels labeled “d”). t (geno.): change in allele frequency from the founders (absolute value of Welch’s t statistic for founder vs. RIL genotype counts) (in
subpanels labeled “e”). N haplo.: the number of unique founder haplotypes detected at each position, with the maximum value of 16 indicated (in subpanels
labeled “f”). N RILs: the number of RIL haplotypes reconstructed at each interval (.0:2 posterior probability), with the maximum value of 178 indicated (in
subpanels labeled “g”). RIAIL, recombinant inbred advanced intercross line; RIL, recombinant inbred line.
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(with the exception of the large region of chromosome X,
spanning npr-1, which is largely fixed for N2/CB4507 al-
leles (Figure 4C). To examine whether these biases were
merely technical, and establish expectations for reconstruc-
tion completeness and resolution in the presence of haplotype
redundancy, we simulated genomes of varying pedigree length
(up to 300 generations). As expected, reconstruction was ham-
pered by increasing recombination, and by ambiguity between
similar founders (Figure S4 in File S22). However, bias toward
divergent haplotypeswas not observed in the reconstruction sim-
ulations, suggesting that the overrepresentation of CB4856 and
MY16 may be due to selection, notably for long haplotypes
across the central domain of chromosome IV (Figure 5). Re-
construction completeness for the A140 RILs is generally in
line with expectations for a pedigree of 150 generations. Clear
exceptions are chromosome IV, where we recovermore than
expected under random sampling, and chromosome V,
where we recover less. Haplotype lengths from simulated
reconstructions showed that we progressively underestimate
recombination breakpoints due to imperfect resolution of small
haplotypes (Figure S4C in File S22).

The relationshipbetweenknowngenerationandestimated
realized map expansion from reconstruction simulations allows
prediction of the number of effective generations of outcrossing.
Across the five CeMEE subpanels, mean autosomal generation
ranges from 227 (GMmonoecious RILs) to 284 [control adapted
(CA) androdioecious lines], with a weighted average of 260 for
the panel as a whole (Figure S5 in File S22). Estimated genetic
map expansion is highly variable across chromosomes: IV ap-
pears to be exceptionally recombinant in all subpanels, with ex-
pansionmore than twice that of chromosomes I–III, largely due to
a high-frequency, highly structured haplotype on the far-right arm
and tip (Figure 4B (panel a)). This region spans one of the two
largeC. elegans piRNA clusters (Ruby et al. 2006), which encodes
. 15,000piRNAtranscripts, interspersedwith active transposons
and protein-coding genes. Several trivial explanations for the un-
usual apparent expansion, such as elevated genotyping error rate
or founder haplotype ambiguity, or distortions in theN2/CB4856
genetic map use to condition reconstruction probabilities, are not
supported (data not shown), although the extent of large-scale
structural variation among founders in this region [with the ex-
ception ofCB4856,whichdoes not showunusual levels of SNPor

Figure 4 Continued.
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copy number variation in the assembly of Thompson et al.
(2015)] is unknown. Potential technical artifacts aside, the locus
may represent a hitherto undetected recombination hotspot
(whether through attraction or suppression of observed recom-
bination elsewhere on the chromosome), a site of rampant gene
conversion, or the focus of early and sustained selection during
the initial intercross phase [potentially epistatic in nature, see
Neher and Shraiman (2009)]. We previously proposed that evo-
lution of this region may have involved a recombination rate
modifier (through gene conversion) during the first 140 genera-
tions of experimental evolution to explain the observed excess
haplotype diversity [see Results and Discussion and Figure S4 and
Figure S5 of Chelo and Teotónio (2013)]. In contrast, chromo-
some V, which has been the focus of a recent large-scale selective
sweep (Andersen et al. 2012), shows more variable expansion
across subpanels suggestive of ongoing evolution (Figure S5 in
File S22).

Population stratification

We examined additional genetic structure in the CeMEE RIL
panel stemming from the presence of distinct subpanels of
RILs that vary in experimental evolution histories. In the

context ofQTLmapping, this structure can represent nuisance
variation that canbias estimatesofheritability if unknown factors
covary with the trait of interest, structure that is causally asso-
ciatedwithatrait,ornoncausal structureduesolely topopulation
stratification (or any combination of these factors).

To gauge the extent of population stratification, we com-
pared the results of supervised and unsupervised DAPC
(Jombart 2008), which partitions within and between group
variation, using either known or inferred populations, based
on linear combinations of PCs. By selection of discriminant func-
tions that best predict known CeMEE subpanel membership, it is
clear that the varied evolutionary history has, unsurprisingly,
generated significant genetic structure. The number of PCs se-
lected by cross-validation that best predicts population member-
ship is 40, which together explain 25% of the variance (though
only a fraction of these components are significantly associated,
considered singly or in pairs, see Materials and Methods). Unsu-
pervised DAPC, which infers groups based on variance minimi-
zation andmodel penalization criteria (k-means clustering, BIC),
selected 5–8 clusters that best explain the data (D BIC, 1 over
this range), although the rate of successful assignment was low
(e.g., 36% at the true value of k = 5). Together, these results

Figure 4 Continued.
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suggest that genetic structure within, as well as between sub-
panels, is of comparable magnitude.

Heritability and predictability of fitness-proximal traits

We measured two traits that are important components of
fitness as defined under our experimental evolution scheme,
the fertility and size of young adult hermaphrodites, and thus
represent challenging case studies for mapping of complex
traits in the panel (Poullet et al. 2016). The traits are corre-
lated (Figure S2 in File S22) and vary extensively in the CeMEE
RILs: hermaphrodite fertility varies more than fivefold and size
varies more than threefold (Figure 6).

Repeatability, genomic heritability, and prediction: RIL
repeatability [an upper bound on broad sense heritability, H2,
under certain assumptions (Dohm 2002)] for both traits was
relatively high20.76 for fertility and 0.80 for size. However,
additive genetic similarity based on the probability of allele
sharing at all markers, equally weighted, gave genomic her-
itability estimates not significantly different to 0 (LRT; data
not shown). This suggested that genome-wide genotypic sim-
ilarity is poorly correlated with causal variation for these
traits, potentially due to variable LD or epistatic cancellation
(Lachowiec et al. 2015). Thus, we examined alternative mea-
sures of genetic similarity to address the apparent lack of
additive genomic heritability, varying assumptions about
the relationship of MAF, LD, and effect sizes, and the distri-
bution of causal variation among chromosome and recom-
bination rate domains. Model predictive power (r2) was
compared by leave-one-out cross-validation (see Materials
and Methods and File S22).

Heritability estimates and prediction accuracy are summa-
rized in Table 1, comparing the simplest models—additive
(A) only, or additive + additive-by-additive (A2) genetic
covariance at the genome level—and the most predictive
models for each trait. Given relatively high variance in re-
latedness, we are powered to detect large differences in ad-
ditive heritabilities despite modest sample sizes for analysis
of this kind, although the differences between individual
models are generally minor. For fertility, with just 227 lines,

we have 50% power at a significance level of 0.05 to reject
h2 ¼ 0 if h2 ¼ 0:38; and . 95% power at our estimate of H2

(and marginally better power for size), based on the best-
performing measure of additive similarity for each trait
(Visscher et al. 2014). Low power to detect statistical epista-
sis is unavoidable given the multiplicative scaling of variance
in genetic similarity.

While phenotype prediction accuracy is generally poor,
some broad trends are apparent in the ranking. Additive
heritability based on LD-weighted markers was relatively
high for size (0.58), though less so for fertility (0.24).
However, in neither case was additive similarity alone the
best predictor of phenotype. Nine of the top 10 models for
fertility incorporated epistasis in some form, with the best of
these giving 57% improvement over the best additivemodel.
For size, the advantage was less clear: three of the top four
models included epistasis, although the performance differ-
ential between the best epistatic and additive models was
only 3%.

Notably, partitioning of the genome based on recombina-
tion rate domains performedwell for both traits, andwas the
preferred model for fertility. In general, scaling the expected
relationship between allele frequency and effect size (a; see
Materials and Methods) had weak effects on prediction.
However, within models (varying only a), negative values
were generally preferred for size (rarer alleles having larger
effects) and positive for fertility, suggesting that the fre-
quency spectrum of causal variants for the two traits varies
in the RILs. Nevertheless, the additive genetic correlation
between traits was generally high (e.g., rG ¼ 0:54 for genetic
similarity unweighted by allele frequency).

Effects of population stratification on
heritability estimation

Given the stratified nature of the CeMEE panel, we tested for
effects on heritability estimation in three ways. First, we
estimated heritability for individual subpanels (best additive
models only). Althoughhighlyuncertaingiven the very small
sample sizes, estimates were positive for two of the three
subpanels for adult body size and for both of two subpanels

Figure 5 Additive QTL mapping simulations. De-
tection power (A), precision (B), and resolution (C)
(2-LOD drop interval size for detected QTL) from
single QTL simulations for the full mapping panel
of 507 lines, as a function of detection threshold
(significance at 0.01, 0.05, and 0.1) and phenotypic
variance explained by the simulated QTL. Total her-
itability of simulated phenotypes is twice that of the
focal QTL, with the polygenic contribution spread
over 10, 100, or 1000 background markers [plotted
in (A) and combined in (B and C)]. In (B) points are
mean 6 SE. Mean precision declines with SNP var-
iance at high levels as chance associations reach
significance, although the median value (+ symbols)
is 1.0 at 5% significance for variants that explain $

7.5% of trait variance. In (C) boxes span the interquartile
range, with the median value indicated with a
black bar.
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tested (n.50) for fertility, spanning the reported values for
all lines.

Second,we estimatedwithin-subpanel heritability byfitting
populationmeans as covariates (bestA andA+A2 models). For
adult body size, where GA50 RILs are significantly larger than
other panels, this reduced estimated heritability to 0.15 (A,
from 0.58) and 0.38 (A+A2; with A2=0.30). Fertility, for
which trait values vary only weakly with subpanel, was largely
unchanged at 0.45 (A) and the (unreasonably high and un-
certain) estimate of 1.44 (SD 0.75) forA+A2;with a dominant
contribution from epistasis.

Third,we applied themethodof Yang et al. (2011), developed
for unrelated human populations, which compares the sum of
heritabilities estimated for single chromosomes to that of amodel
fitting all chromosomes jointly. In the former case, genetic corre-
lations across chromosomes due to population structure will re-
sult in

P
h2CðsingleÞ . h2C; since the genotype of one chromosome

will be predictive of that of others, while fitting all chromosomes
jointly gives independent conditional estimates. The reasonable
underlying assumptions are that structure is more significant be-
tween than within populations, and is not causally associated
with phenotypic variance, although the latter might not hold
for fitness-proximal traits. Comparing the sum of heritability es-
timates from samples of half the chromosomes

�P
h2 =

2
�
to that

from all chromosomes (additive similarity only), results sug-
gested that stratification may contribute significantly to our esti-
mates for size,withmean

P
h2 =

2=0.72 (contributing 20%of the
total given h2= 0.60 for a joint chromosome model), but not for
fertility (mean

P
h2 =2, h2). Fitting # 80 PCs as covariates for

size failed to bring this ratio to equality, but progressively eroded
the heritability estimate (minimum 10% “inflation” for 80 PCs,
h2= 0.30), while fitting three DAPCs (based on the top 40 PCs)
fully accounted for the difference (mean

P
h2 =

2 ¼ h2 ¼ 0:39).
Notably, however, performing the same analysiswithin subpanels
gave a similar level of inflation for sizewithin the largest group of
RILs (28%), suggesting that structure not associated with sub-
panel is also influential.

The above analyses lead us to conclude that the results
presented in Table 1 for fertility are robust, while those for adult
size are somewhat less so. However, the extent of inflation is
unlikely to be as severe as indicated by disjoint genome parti-
tioning, and no covariates were fit for subsequent analyses.

GWAS

QTL mapping power and precision: We first explored gen-
eral characteristics of the CeMEE panel relevant to mapping
quantitative traits. Association tests were carried out by LMM
on simulated phenotypes, varying the effect size of causal

Figure 6 One-dimensional GWAS.
(A and B) Trait value distributions
across RILs (replicate means; bars
show data range or the SE for sam-
ples with. 2 replicates). Values for
the reference N2 strain are shown
for comparison. Note that values
are raw replicate means on the orig-
inal scale, and so include all sources
of technical variation (unlike model
coefficients used for mapping).
(C) Single-marker association results
for fertility and adult body size (col-
ors as above). a = 0.1 thresholds =
4.383 1026 and 5.5731027 for
size and fertility, with minimum ob-
served P-values of 2.831025 and
7.233 1025, respectively. GWAS,
genome-wide association study; RIL,
recombinant inbred line.
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variation and the degree of polygenicity (see Materials and
Methods). For an allele explaining . 4.7% of the phenotypic
variance, the power to detect the association is. 50% (permu-
tation 5% significance threshold of P , 1.62 3 1026), with
precision (% true positives of all positives) . 50%, (Figure 5).
When detected, themedianQTL support interval (a drop in LOD
score of 2) spans, 10 kb for variants explaining. 2.5% of trait
variance. Given an average gene size of �5 kb in C. elegans N2,
including intergenic sequence, the CeMEE reaches subgenic res-
olution for alleles of large effect (. 10%), yieldinghighmapping
precision (Figure 5). We note that our simulations are unbiased
with respect to chromosomal location. If causal variation is
enriched on the highly recombinant arms, these estimates are
likely to be conservative.

1Dmapping of fertility and size:Wetested for single-marker
effects on size and fertility by LMM, controlling for genome-wide
relatedness using the most predictive LD-weighted additive GSM
for each trait (see above). Based on permutation thresholds, no
single markers were significant (Figure 6). For size, P-values were
moderately inflated at the high end, but they were strongly de-
flated for fertility, consistent with model misspecification. Results
were largely independent of the method used to define similarity
or, for fertility, whether correction for relatednesswas applied at all
(Figure S6 in File S22). LD score regression, a related approach
that explicitly assumes an infinitesimal architecture (Bulik-Sullivan
et al. 2015), gave further support for extensive polygenicity with
effects distributed across the genome (again, mostly clearly for
fertility; Figure S7 in File S22). Given significant heritabilities for
both traits and the results of GWAS simulations, the absence of
individually significant associations suggests architectures compris-
ing many variants with additive effects explaining , 5% of the
phenotypic variance.

2D mapping of additive-by-additive interactions: Given
suggestive evidence for epistasis fromvariancedecomposition
and a lack of individually significant additive effects by 1D

mapping, we sought to identify interactions among markers
underlying variance in size and fertility. At a significance level
of a = 0.1, we detected eight interactions (between 13 loci)
for fertility and six (12 loci) for size, with modest marginal
additive effects (Figure 7; median value of the minimum sin-
gle-locus statistics per pair P ¼ 1:73 1024 for fertility and
P ¼ 2:63 1025 for size). The variance explained by each pair,
considered individually, is high: 12–15% for fertility and
�8% for size. The joint additive effects of these markers ex-
plain 9.1 and 9.5% of the phenotypic variances, respectively,
while a full interaction model explains 38 and 32%.

By summing LRs in 1D space to test for polygenic epistasis,
we also detected 31 unique markers with excess (1:many)
interchromosomal interactions for fertility (a = 0.01), and
77 for size Figure 7). A minority of these sites were also
significant in single-pair tests (three for fertility and four
for size). Notably, loci on chromosome IV in modest linkage
(marker positions 1,888,439, 1,894,021, and 1,914,315 Mb)
are involved in individually significant interactions of oppo-
site effect with chromosomes II, III, and IV explaining 17% of
the variance in fertility, and IV: 1,914,315 also shows a sig-
nificant excess of interactions with chromosome II (n=132).
IV: 1,914,315 is found within an intron of egl-18 (encoding a
GATA transcription factor), while the two other markers fall
within the exceptionally large serial intergenic region be-
tween egl-18 and egl-4 (encoding a cyclic-GMP-dependent
protein kinase thought to act in the TGF-b pathway). Both
genes vary in coding and UTR sequence among the founders,
and have numerous known phenotypes from classical in-
duced mutations and RNA interference spanning the gamut
of behavior, development, and reproduction. Their epony-
mous phenotype, egg-laying abnormal (Egl), is retention of
oocytes and embryos, a phenotype selected during experi-
mental evolution in which embryos were extracted each gen-
eration by bleaching (Poullet et al. 2016).

Conclusions

We have described the generation, characterization, and
application of the first multiparental mapping panel for the
model organism C. elegans. Drawing on effectively 260 gen-
erations of outcrossing at moderate population size during
laboratory culture, full reference-based genome sequencing
of the 16 inbred wild founders, and dense genotyping of the
RILs, the CeMEE panel yields gene-level mapping resolution
for additive alleles explaining $ 5% of trait variance. For
traits such as gene expression, for which local variation typ-
ically accounts for upward of 20% (e.g., Brem and Kruglyak
2005; Rockman et al. 2010; King et al. 2014), the majority of
(detected) QTL intervals will dissect single genes.

Multiparental mapping resources combine the power of
controlledcrosseswithlevelsofdiversitypotentiallyapproaching
those of wild populations. Of existing resources, the CeMEE is
most similar in spirit to themouseCollaborativeCross (Churchill
et al. 2004, 2012; Philip et al. 2011; Threadgill and Churchill
2012). Microscopic nematodes andmacroscopic mammals vary
in many ways, and major conveniences of the C. elegans system

Table 1 Genomic heritability estimates

Trait GSM a r2 h2 (SD) LR

Size A 20.5 0.073 A 0.58 (0.14) 11
A + A2 20.5 0.093 A 0.57 (0.15) 11

A2 0.21 (0.51)
Fertility A 1 0.012 A 0.24 (0.24) 0

A + A2 1 0.029 A 0.36 (0.21) 3
A2 1.24 (0.87)

(A + A2)rec 1 0.064 Aarm 0.44 (0.18) 7
Acen 0.02 (0.07)

Results are shown for additive (A) and additive-by-additive (A2) GSM, and for the most
predictive model tested (if neither of the above), shown in bold. a is the scaling parameter
from Speed et al. (2012), which determines the effect size expectation for markers as a
function of allele frequency, where 0 is unweighted and smaller values assign greater
weight to rare alleles (see Equations 1 and 2). Unconstrained REML estimates and SD are
shown for components . 0 at convergence. LR is improvement over the null model
(likelihood ratio). Aþ A2

rec is additive and additive-by-additive similarity defined at the level
of recombination rate domains (tips, arms and centers, merged across chromosomes). See
Equation S4 and associated discussion in File S22. GSM, genetic similarity matrices; LR, log
likelihood ratios; REML, restricted/residual maximum likelihood.
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such as parental zygosity, inbreeding by selfing without a
high burden of lethality, advanced pedigree, cryopreservation,
and small genome size, have facilitated the generation and char-
acterization of a powerful and stable resource that is relatively

representative of its founders. The comparison with Dro-
sophila is perhaps more fair, where the Drosophila Genetic
Reference Panel (DGRP) and Drosophila Synthetic Popula-
tion Resource (DSPR) have been widely used to study the

Figure 7 Strong-sign epistasis and highly polygenic in-
teractions contribute to trait variance. (A) The distribu-
tion of significant interactions for fertility and size
plotted by genetic distance. Pairwise interactions are
linked over one-dimensional genome-wide association
study test statistics (2log10ðPÞ.1) for each trait (size
in blue and fertility in red). Markers with a significant
excess of polygenic interactions are indicated with black
points. These two-dimensional (2D) sum tests are one-
to-many interactions between a single focal marker and
all other markers on one other chromosome, with the
sum of likelihood ratios significant under a null permu-
tation model. (B and C) and (D and E) show genotype
class means for significant size (and fertility) interactions:
pairwise tests are in B and D (mean 6 SE), and the
individual pairwise tests that contribute to 2D sum tests
are in C and E (mean values only). The marker with the
highest summed likelihood ratio for each significant
chromosome combination is shown. In C and D, line
color and intensity is scaled by the interaction F statistic
for each interaction according to the scale shown in (E).
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genetic basis of complex organismal and molecular traits
(King et al. 2012b, 2014; Swarup et al. 2013; Marriage et al.
2014; Dembeck et al. 2015; Huang et al. 2015; Najarro et al.
2015; Rohde et al. 2017). The DGRP GWAS panel preserves a
sample of genetic variation from an ancestral population of
large effective size in a relatively small number of RILs
(185 with coefficient of coancestry , 0.25), and therefore is
highly diverse, with an allele frequency spectrum skewed to-
ward rare alleles. Although LD is practically absent, on aver-
age, it is highly variable due to sampling effects, exacerbated
by large segregating inversions, leading to rarity disequilibria
that can inflate false positive QTL (Houle andMárquez 2015).
The DSPR, comprising two eight-parent, 50-generation RIL
panels founded from 15 inbred isolates (. 1700 lines in total),
achieves good power and decent resolution (84% power to
detect QTL explaining 5% of trait variance in the pA panel
by simulation, with a mean QTL interval of 1.5 cM, or around
630 kb; King et al. 2012a), with an allele frequency spectrum
more favorable for QTL detection. The CeMEE panel, at its
current size, performs similarly to the DSPR for mapping
additive QTL (slightly lower power but considerably better
resolution). Important considerations for mapping individ-
ual interactions and epistatic variance components are, re-
spectively, the joint allele frequency spectrum and the degree
of relatedness among lines (Young and Durbin 2014). In both
these respects, the CeMEE is well placed relative to other
model system panels.

The native androdioecious mating system of C. elegans and
the ability to archive strains indefinitely confer almost microbial
powers on a metazoan model. For one, the preservation of in-
termediate outbred populations means that the CeMEE is read-
ily extensible, limited only by effective population sizes, andwill
benefit from a doubling of the number of RILs underway. How-
ever, RIL panels have several potential shortcomings. First, de-
spite inbreeding during RIL construction, a nagging concern is
residual heterozygosity (Barrière et al. 2009; Chelo et al. 2014)
and the possibility of further evolution subsequent to initial char-
acterization. While heterozygosity appears to be at a low level in
the CeMEE RILs, on average, it is not absent (see Materials and
Methods). However, importantly, given that lines are in stasis, the
opportunity for segregation during further use is both limited and
known. A second concern is the possibility of inbreeding depres-
sion, particularly for fitness-proximal traits. This applies predom-
inantly to obligately outcrossing organisms (Barrière et al. 2009;
Chelo et al. 2014), but it is also applicable to multiparental ex-
perimental evolution of C. elegans. As mentioned in the introduc-
tion, excess heterozygositymayhave beenmaintainedby epistatic
overdominant selection during the initial stage of laboratory ad-
aptation, and closely linked recessive deleterious alleles in repul-
sion could be maintained by balancing selection (Chelo et al.
2013, 2014). Assaying the F1 progeny of nested crosses among
RILsmay be a useful approach to estimate (or avoid) the effects of
inbreeding depression in the future (Long et al. 2014).

While reference-based genotyping will remain a practical
necessity for some timeyet, it leaves thecontributionof certain
classes of genetic variation uncertain, and can hamper variant

calling due tomapping bias and erroneous alignments at copy
number variants. The genome of only one wild isolate, the
Hawaiian CB4856, has been assembled de novo to a high
standard, revealing extensive divergence (Thompson et al.
2015). The ultimate goal of full genomes for all founders will
yield both better accuracy in calculating genetic similarity
and the ability to measure phenotypic effects of this recal-
citrant variation. Similarly undetermined, given RIL geno-
typing by mostly low-coverage sequencing, is the extent of
gene conversion and the fate of novel mutations during exper-
imental evolution. With a mutation rate of around 1/genome/
generation for SNPs, and more for multinucleotide mutations
and copy number variation (Denver et al. 2004a,b, 2010; Seyfert
et al. 2008; Phillips et al. 2009; Lipinski et al. 2011; Meier et al.
2014), the contribution of newmutations to trait variation in the
RILs may well be nonnegligible. Theory suggests that fixation of
adaptivemutations should not be significant during experimental
evolution (Hill 1982; Caballero and Santiago 1995; Matuszewski
et al. 2015), but empirical evidence is mixed (Estes 2004; Denver
et al.2010; Estes et al.2011; Chelo et al.2013). All of these factors
would erode phenotype prediction accuracy, which, theoretically,
should converge on H2 given perfect genotyping of causal varia-
tion and appropriate description of genetic covariances (de los
Campos et al. 2015).

Using subsets of the CeMEE panel, we outlined the
genetics of two correlated traits associated with fitness.
Variance in fitness-related traits, in particular, may be
maintained despite consistent selection on additive varia-
tion through a number of processes, including stabilizing
selection under a stable environment (Whitlock et al. 1995;
Wolf et al. 2000; Barton and Keightley 2002; Phillips
2008; Hemani et al. 2013). Variance in size and fertility
remains high, and we find evidence that this is due largely
to abundant interactions. Notably for fertility, which is
expected to be well aligned with fitness under the experi-
mental evolution scheme, strong interactions among 13 al-
leles with weak to moderate marginal effects jointly explain
over a third of the phenotypic variance. It is unclear why
such large effect alleles are still segregating after extensive
experimental evolution. Proximal explanations may lie in
dominance, antagonistic pleiotropy, or in higher order prop-
erties of the genotype–phenotype map.

All pairwise interactions detected are instances of sign
epistasis, where the directional effect of one allele is reversed
in the presence of another. At least five of these represent the
extreme form, reciprocal sign epistasis (the reversal is, to some
extent at least, symmetric; Poelwijk et al. 2011). Sign epistasis,
in particular, has important implications for a population’s ca-
pacity to adapt, potentially creating rugged fitness landscapes
and constraining exploration of them (Weinreich et al. 2005,
2013), and also for the repeatability of evolution, since the
outcome of selection on the marginal additive effects of inter-
acting alleles will be determined by their relative frequencies
(Wright 1932; Whitlock et al. 1995; Phillips et al. 2000).
Our tests for excess interactions among individually nonsignif-
icant marker pairs additionally revealed many cases of highly
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polygenic epistasis. While tests of this type have the unsatisfy-
ing property of leaving the identities of the interacting partners
uncertain, they have the potential to combat the loss of power
that comes with brute-force 2D testing (Crawford et al. 2016).
The effects of these segregating interactions on the genotype–
phenotype map can now be readily tested by replicated exper-
imental evolution. In this context, it will be useful to determine
the directional effects of epistasis during further evolution as a
function of recombination and varied environment, a task for
which the CeMEE is well suited.

Fertility and body size at reproduction show broad-sense
heritabilities that are relatively high for fitness-proximal traits
(Lynch andWalsh 1998), likely a consequence of novel genetic
variation created in themultiparental cross and realignment of
selection to novel laboratory environments. While all mapping
panels are synthetic systems, the mixing of natural variation
and experimental evolution represents a perturbation that
may have some parallels, for example, with that of founder
events or environmental change, which can reveal novel in-
compatibilities and promote further population differentiation
(Cheverud and Routman 1996; Johnson 2000). As in other
systems such as Arabidopsis, where similar resources exist
(Weigel 2012) and epistasis for fitness-related traits has been
found (e.g., Malmberg et al. 2005; Simon et al. 2008), it will
also be important to begin a comprehensive comparison of
QTL for fitness traits in the CeMEE and natural populations—
where linked selection coupled with predominant selfing and
meta-population dynamics have generated limited structured
genetic diversity (Rockman et al. 2010; Andersen et al. 2012;
Cutter 2015)—and also with mutational variances obtained in
mutation accumulation experiments (Baer et al. 2005; Baer
2008; Joyner-Matos et al. 2009). Such comparisons have the
potential to provide insights into how QTL effects and frequen-
cies are shaped in natural populations.
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Bůžková, P., T. Lumley, and K. Rice, 2011 Permutation and para-
metric bootstrap tests for gene-gene and gene-environment in-
teractions. Ann. Hum. Genet. 75: 36–45.

Caballero, A., and E. Santiago, 1995 Response to selection from
new mutation and effective size of partially inbred populations.
I. Theoretical results. Genet. Res. 66: 213–225.

Carlborg, Ö., L. Jacobsson, P. Ahgren, P. Siegel, and L. Andersson,
2006 Epistasis and the release of genetic variation during
long-term selection. Nat. Genet. 38: 418–420.

Charlesworth, D., and S. I. Wright, 2001 Breeding systems and
genome evolution. Curr. Opin. Genet. Dev. 11: 685–690.

Chelo, I. M., and H. Teotónio, 2013 The opportunity for balancing
selection in experimental populations of Caenorhabditis elegans.
Evolution 67: 142–156.

Chelo, I. M., J. Nédli, I. Gordo, and H. Teotónio, 2013 An ex-
perimental test on the probability of extinction of new genetic
variants. Nat. Commun. 4: 2417.

Chelo, I. M., S. Carvalho, M. Roque, S. R. Proulx, and H. Teotónio,
2014 The genetic basis and experimental evolution of inbreeding
depression in Caenorhabditis elegans. Heredity 112: 248–254.

Cheverud, J. M., and E. J. Routman, 1995 Epistasis and its contribu-
tion to genetic variance components. Genetics 139: 1455–1461.

Cheverud, J. M., and E. J. Routman, 1996 Epistasis as a source of
increased additive genetic variance at population bottlenecks.
Evolution 50: 1042.

Chirgwin, E., D. J. Marshall, C. M. Sgrò, and K. Monro, 2016 The
other 96%: can neglected sources of fitness variation offer new
insights into adaptation to global change? Evol. Appl. 10: 267–275.

Churchill, G. A., D. C. Airey, H. Allayee, J. M. Angel, A. D. Attie et al.,
2004 The Collaborative Cross, a community resource for the ge-
netic analysis of complex traits. Nat. Genet. 36: 1133–1137.

Churchill, G. A., D. M. Gatti, S. C. Munger, and K. L. Svenson,
2012 The diversity outbred mouse population. Mamm. Ge-
nome 23: 713–718.

Cook, D. E., S. Zdraljevic, R. E. Tanny, B. Seo, D. D. Riccardi et al.,
2016 The genetic basis of natural variation in Caenorhabditis
elegans telomere length. Genetics 204: 371–383.

Cook, D. E., S. Zdraljevic, J. P. Roberts, and E. C. Andersen,
2017 CeNDR, the Caenorhabditis elegans natural diversity re-
source. Nucleic Acids Res. 45: D650–D657.

Corbett-Detig, R. B., J. Zhou, A. G. Clark, D. L. Hartl, and J. F.
Ayroles, 2013 Genetic incompatibilities are widespread within
species. Nature 504: 135–137.

Corsi, A. K., B. Wightman, and M. Chalfie, 2015 A transparent
window into biology: a primer on Caenorhabditis elegans. Ge-
netics 200: 387–407.

Covarrubias-Pazaran, G., 2016 Genome-assisted prediction of quanti-
tative traits using the R package sommer. PLoS One 11: e0156744.

Crawford, L., S. Mukherjee, and X. Zhou, 2016 Detecting epistasis
in genome-wide association studies with the marginal EPIstasis
test. bioRxiv DOI: 10.1101/066985 .

Cutter, A. D., 2004 Sperm-limited fecundity in nematodes: how
many sperm are enough? Evolution 58: 651–655.

Cutter, A. D., 2006 Nucleotide polymorphism and linkage disequi-
librium in wild populations of the partial selfer Caenorhabditis
elegans. Genetics 172: 171–184.

Cutter, A. D., 2015 Caenorhabditis evolution in the wild. Bioes-
says 37: 983–995.

Cutter, A. D., A. Dey, and R. L. Murray, 2009 Evolution of the
Caenorhabditis elegans genome. Mol. Biol. Evol. 26: 1199–1234.

de Bono, M., and C. I. Bargmann, 1998 Natural variation in a
neuropeptide Y receptor homolog modifies social behavior and
food response in C. elegans. Cell 94: 679–689.

de los Campos, G., D. Sorensen, and D. Gianola, 2015 Genomic
heritability: what is it? PLoS Genet. 11: e1005048.

Dembeck, L. M., K. Böröczky, W. Huang, C. Schal, R. R. H. Anholt
et al., 2015 Genetic architecture of natural variation in cutic-
ular hydrocarbon composition in Drosophila melanogaster. Elife
4: e09861.

Denver, D. R., K. Morris, A. Kewalramani, K. E. Harris, A. Chow
et al., 2004a Abundance, distribution, and mutation rates of
homopolymeric nucleotide runs in the genome of Caenorhabditis
elegans. J. Mol. Evol. 58: 584–595.

Denver, D. R., K. Morris, M. Lynch, and W. K. Thomas, 2004b High
mutation rate and predominance of insertions in the Caenorhabditis
elegans nuclear genome. Nature 430: 679–682.

Denver, D. R., D. K. Howe, L. J. Wilhelm, C. A. Palmer, J. L. Anderson
et al., 2010 Selective sweeps and parallel mutation in the adap-
tive recovery from deleterious mutation in Caenorhabditis elegans.
Genome Res. 20: 1663–1671.

Diaz, S. A., and M. Viney, 2014 Genotypic-specific variance in
Caenorhabditis elegans lifetime fecundity. Ecol. Evol. 4: 2058–
2069.

Dohm, M. R., 2002 Repeatability estimates do not always set an
upper limit to heritability. Funct. Ecol. 16: 273–280.

Dolgin, E. S., B. Charlesworth, S. E. Baird, and A. D. Cutter,
2007 Inbreeding and outbreeding depression in Caenorhabdi-
tis nematodes. Evolution 61: 1339–1352.

Doroszuk, A., L. B. Snoek, E. Fradin, J. Riksen, and J. Kammenga,
2009 A genome-wide library of CB4856/N2 introgression lines
of Caenorhabditis elegans. Nucleic Acids Res. 37: e110.

Duveau, F., and M.-A. Félix, 2012 Role of pleiotropy in the evo-
lution of a cryptic developmental variation in Caenorhabditis
elegans. PLoS Biol. 10: e1001230.

Estes, S., 2004 Mutation accumulation in populations of varying
size: the distribution of mutational effects for fitness correlates
in Caenorhabditis elegans. Genetics 166: 1269–1279.

Estes, S., 2005 Spontaneous mutational correlations for life-
history, morphological and behavioral characters in Caenorhabditis
elegans. Genetics 170: 645–653.

Estes, S., and M. Lynch, 2003 Rapid fitness recovery in mutationally
degraded lines of Caenorhabditis elegans. Evolution 57: 1022–1030.

Estes, S., P. C. Phillips, and D. R. Denver, 2011 Fitness recovery
and compensatory evolution in natural mutant lines of C. ele-
gans. Evolution 65: 2335–2344.

Etienne, V., E. C. Andersen, J. M. Ponciano, D. Blanton, A. Cadavid
et al., 2015 The red death meets the abdominal bristle:
polygenic mutation for susceptibility to a bacterial pathogen
in Caenorhabditis elegans. Evolution 69: 508–519.

Falconer, D. S., 1981 Introduction to Quantitative Genetics. Long-
mans Green & Co., London.

Farhadifar, R., J. M. Ponciano, E. C. Andersen, D. J. Needleman,
and C. F. Baer, 2016 Mutation is a sufficient and robust
predictor of genetic variation for mitotic spindle traits in
Caenorhabditis elegans. Genetics 203: 1859–1870.

Félix, M.-A., and M. Barkoulas, 2015 Pervasive robustness in bi-
ological systems. Nat. Rev. Genet. 16: 483–496.

Fisher, R. A., 1930 The Genetical Theory of Natural Selection. A
Complete Variorum Edition. Oxford University Press, Oxford.

Forsberg, S. K. G., J. S. Bloom, M. J. Sadhu, L. Kruglyak, and
Ö. Carlborg, 2017 Accounting for genetic interactions improves
modeling of individual quantitative trait phenotypes in yeast. Nat.
Genet. 139: 1455.

Gaertner, B. E., M. D. Parmenter, M. V. Rockman, L. Kruglyak, and
P. C. Phillips, 2012 More than the sum of its parts: a complex
epistatic network underlies natural variation in thermal prefer-
ence behavior in Caenorhabditis elegans. Genetics 192: 1533–
1542.

Galton, F., 1886 Regression towards mediocrity in hereditary stat-
ure. J. Anthropol. Inst. G. B. Irel. 15: 246.

1682 L. M. Noble et al.



Gems, D., and D. L. Riddle, 2000 Defining wild-type life span in
Caenorhabditis elegans. J. Gerontol. A Biol. Sci. Med. Sci. 55:
B215–B219.

Ghosh, R., E. C. Andersen, J. A. Shapiro, J. P. Gerke, and L. Kruglyak,
2012 Natural variation in a chloride channel subunit confers
avermectin resistance in C. elegans. Science 335: 574–578.

Gloria-Soria, A., and R. B. R. Azevedo, 2008 npr-1 regulates for-
aging and dispersal strategies in Caenorhabditis elegans. Curr.
Biol. 18: 1694–1699.

Goddard, M. E., K. E. Kemper, I. M. MacLeod, A. J. Chamberlain,
and B. J. Hayes, 2016 Genetics of complex traits: prediction of
phenotype, identification of causal polymorphisms and genetic
architecture. Proc. Biol. Sci. 283: 20160569.

Gray, J. C., and A. D. Cutter, 2014 Mainstreaming Caenorhabditis
elegans in experimental evolution. Proc. Biol. Sci. 281: 20133055.

Greene, J. S., M. Brown, M. Dobosiewicz, I. G. Ishida, E. Z. Macosko
et al., 2016 Balancing selection shapes density-dependent for-
aging behaviour. Nature 539: 254–258.

Gruber, J. D., K. Vogel, G. Kalay, and P. J. Wittkopp, 2012 Contrasting
properties of gene-specific regulatory, coding, and copy number mu-
tations in Saccharomyces cerevisiae: frequency, effects, and dominance.
PLoS Genet. 8: e1002497.

Gutteling, E. W., A. Doroszuk, J. A. G. Riksen, Z. Prokop, J. Reszka
et al., 2007 Environmental influence on the genetic correla-
tions between life-history traits in Caenorhabditis elegans. He-
redity 98: 206–213.

Halligan, D. L., and P. D. Keightley, 2009 Spontaneous mutation
accumulation studies in evolutionary genetics. Annu. Rev. Ecol.
Evol. Syst. 40: 151–172.

Hansen, T. F., 2013 Why epistasis is important for selection and
adaptation. Evolution 67: 3501–3511.

Hayes, J. P., and S. H. Jenkins, 1997 Individual variation in mam-
mals. J. Mammal. 78: 274–293.

Hemani, G., S. Knott, and C. Haley, 2013 An evolutionary perspective
on epistasis and the missing heritability. PLoS Genet. 9: e1003295.

Henderson, C. R., 1985 Best linear unbiased prediction of nonadditive
genetic merits in noninbred populations. J. Anim. Sci. 60: 111–117.

Hill, W. G., 1982 Rates of change in quantitative traits from fix-
ation of new mutations. Proc. Natl. Acad. Sci. USA 79: 142–145.

Hill, W. G., M. E. Goddard, and P. M. Visscher, 2008 Data and
theory point to mainly additive genetic variance for complex
traits. PLoS Genet. 4: e1000008.

Hirsh, D., D. Oppenheim, and M. Klass, 1976 Development of the re-
productive system of Caenorhabditis elegans. Dev. Biol. 49: 200–219.

Hodgkin, J., and T. Doniach, 1997 Natural variation and copula-
tory plug formation in Caenorhabditis elegans. Genetics 146:
149–164.

Houle, D., and E. J. Márquez, 2015 Linkage disequilibrium and
inversion-typing of the Drosophila melanogaster genome refer-
ence panel. G3 (Bethesda) 5: 1695–1701.

Huang, A., S. Xu, and X. Cai, 2014 Whole-genome quantitative
trait locus mapping reveals major role of epistasis on yield of
rice. PLoS One 9: e87330.

Huang, B. E., A. W. George, K. L. Forrest, A. Kilian, M. J. Hayden
et al., 2012 A multiparent advanced generation inter-cross
population for genetic analysis in wheat. Plant Biotechnol. J.
10: 826–839.

Huang, W., M. A. Carbone, M. M. Magwire, J. A. Peiffer, R. F. Ly-
man et al., 2015 Genetic basis of transcriptome diversity in
Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 112:
E6010–E6019.

Jiang, Y., and J. C. Reif, 2015 Modeling epistasis in genomic se-
lection. Genetics 201: 759–768.

Johnson, N. A., 2000 Gene interactions and the origin of species,
pp. 197–214 in Epistasis and the Evolutionary Process, edited by
J. B. Wolf, E. D. Brodie, and M. J. Wade. Oxford University
Press, New York.

Johnson, T. E., and W. B. Wood, 1982 Genetic analysis of life-
span in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 79:
6603–6607.

Jombart, T., 2008 Adegenet: a R package for the multivariate
analysis of genetic markers. Bioinformatics 24: 1403–1405.

Jombart, T., S. Devillard, and F. Balloux, 2010 Discriminant anal-
ysis of principal components: a new method for the analysis of
genetically structured populations. BMC Genet. 11: 94.

Joyner-Matos, J., A. Upadhyay, M. P. Salomon, V. Grigaltchik, and
C. F. Baer, 2009 Genetic (Co)variation for life span in rhabditid
nematodes: role of mutation, selection, and history. J. Gerontol. A
Biol. Sci. Med. Sci. 64: 1134–1145.

Kamran-Disfani, A., and A. F. Agrawal, 2014 Selfing, adaptation
and background selection in finite populations. J. Evol. Biol. 27:
1360–1371.

King, E. G., S. J. Macdonald, and A. D. Long, 2012a Properties
and power of the Drosophila synthetic population resource for
the routine dissection of complex traits. Genetics 191: 935–949.

King, E. G., C. M. Merkes, C. L. McNeil, S. R. Hoofer, S. Sen et al.,
2012b Genetic dissection of a model complex trait using the
Drosophila synthetic population resource. Genome Res. 22:
1558–1566.

King, E. G., B. J. Sanderson, C. L. McNeil, A. D. Long, and S. J.
Macdonald, 2014 Genetic dissection of the Drosophila mela-
nogaster female head transcriptome reveals widespread allelic
heterogeneity. PLoS Genet. 10: e1004322.

Knight, C. G., R. B. Azevedo, and A. M. Leroi, 2001 Testing life-history
pleiotropy in Caenorhabditis elegans. Evolution 55: 1795–1804.

Kover, P. X., W. Valdar, J. Trakalo, N. Scarcelli, I. M. Ehrenreich
et al., 2009 A multiparent advanced generation inter-cross to
fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet.
5: e1000551.

Lachowiec, J., X. Shen, C. Queitsch, and Ö. Carlborg, 2015 A
genome-wide association analysis reveals epistatic cancellation
of additive genetic variance for root length in Arabidopsis thali-
ana. PLoS Genet. 11: e1005541.

Lessells, C. M., and P. T. Boag, 1987 Unrepeatable repeatabilities:
a common mistake. Auk 104: 116–121.

Lipinski, K. J., J. C. Farslow, K. A. Fitzpatrick, M. Lynch, V. Katju
et al., 2011 High spontaneous rate of gene duplication in Cae-
norhabditis elegans. Curr. Biol. 21: 306–310.

Long, A. D., S. J. Macdonald, and E. G. King, 2014 Dissecting
complex traits using the Drosophila synthetic population re-
source. Trends Genet. 30: 488–495.

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantita-
tive Traits. Sinauer Associates, Sunderland, MA.

Macdonald, S. J., and A. D. Long, 2007 Joint estimates of quantitative
trait locus effect and frequency using synthetic recombinant popu-
lations of Drosophila melanogaster. Genetics 176: 1261–1281.

Mackay, I. J., P. Bansept-Basler, T. Barber, A. R. Bentley, J. Cockram
et al., 2014 An eight-parent multiparent advanced generation
inter-cross population for winter-sown wheat: creation, proper-
ties, and validation. G3 (Bethesda) 4: 1603–1610.

Malmberg, R. L., S. Held, A. Waits, and R. Mauricio, 2005 Epistasis
for fitness-related quantitative traits in Arabidopsis thaliana
grown in the field and in the greenhouse. Genetics 171: 2013–
2027.

Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff
et al., 2009 Finding the missing heritability of complex diseases.
Nature 461: 747–753.

Marouli, E., M. Graff, C. Medina-Gomez, K. S. Lo, A. R. Wood et al.,
2017 Rare and low-frequency coding variants alter human
adult height. Nature 542: 186–190.

Marriage, T. N., E. G. King, A. D. Long, and S. J. Macdonald,
2014 Fine-mapping nicotine resistance loci in Drosophila us-
ing a multiparent advanced generation inter-cross population.
Genetics 198: 45–57.

Fitness Traits in the CeMEE Panel 1683



Masri, L., R. D. Schulte, N. Timmermeyer, S. Thanisch, L. L. Crummenerl
et al., 2013 Sex differences in host defence interfere with parasite-
mediated selection for outcrossing during host-parasite coevolution.
Ecol. Lett. 16: 461–468.

Matuszewski, S., J. Hermisson, and M. Kopp, 2015 Catch me if
you can: adaptation from standing genetic variation to a moving
phenotypic optimum. Genetics 200: 1255–1274.

Maupas, E., 1900 Modes et formes de reproduction des nema-
todes. Arch. Zool. Exp. 8: 463–624.

McGrath, P. T., M. V. Rockman, M. Zimmer, H. Jang, E. Z. Macosko
et al., 2009 Quantitative mapping of a digenic behavioral trait
implicates globin variation in C. elegans sensory behaviors. Neu-
ron 61: 692–699.

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al.,
2010 The genome analysis toolkit: a MapReduce framework
for analyzing next-generation DNA sequencing data. Genome
Res. 20: 1297–1303.

McMullen, M. D., S. Kresovich, H. S. Villeda, P. Bradbury, H. Li
et al., 2009 Genetic properties of the maize nested association
mapping population. Science 325: 737–740.

Meier, B., S. L. Cooke, J. Weiss, A. P. Bailly, L. B. Alexandrov et al.,
2014 C. elegans whole-genome sequencing reveals mutational
signatures related to carcinogens and DNA repair deficiency.
Genome Res. 24: 1624–1636.

Meuwissen, T., and M. Goddard, 2010 Accurate prediction of ge-
netic values for complex traits by whole-genome resequencing.
Genetics 185: 623–631.

Meuwissen, T. H., B. J. Hayes, and M. E. Goddard, 2001 Prediction
of total genetic value using genome-wide dense marker maps.
Genetics 157: 1819–1829.

Monnahan, P. J., and J. K. Kelly, 2015 Naturally segregating loci
exhibit epistasis for fitness. Biol. Lett. 11: 20150498.

Morran, L. T., M. D. Parmenter, and P. C. Phillips, 2009 Mutation
load and rapid adaptation favour outcrossing over self-fertilization.
Nature 462: 350–352.

Morton, N. E., 1955 Sequential tests for the detection of linkage.
Am. J. Hum. Genet. 7: 277–318.

Mukai, T., 1967 Synergistic interaction of spontaneous mutant poly-
genes controlling viability in Drosophila melanogaster. Genetics 61:
749–761.

Najarro, M. A., J. L. Hackett, B. R. Smith, C. A. Highfill, E. G. King
et al., 2015 Identifying loci contributing to natural variation in
xenobiotic resistance in Drosophila. PLoS Genet. 11: e1005663.

Neher, R. A., and B. I. Shraiman, 2009 Competition between re-
combination and epistasis can cause a transition from allele to
genotype selection. Proc. Natl. Acad. Sci. USA 106: 6866–6871.

Nigon, V., 1949 Les modalites de la reproduction et le determinisme
du sexe chez quelques nematodes libres. Ann. Sci. Nat. Zool. Biol.
Anim. 11: 1–132.

Noble, L. M., A. S. Chang, D. McNelis, M. Kramer, M. Yen et al.,
2015 Natural variation in plep-1 causes male-male copulatory
behavior in C. elegans. Curr. Biol. 25: 2730–2737.

Nyholt, D. R., 2000 All LODs are not created equal. Am. J. Hum.
Genet. 67: 282–288.

Paaby, A. B., A. G. White, D. D. Riccardi, K. C. Gunsalus, F. Piano
et al., 2015 Wild worm embryogenesis harbors ubiquitous
polygenic modifier variation. Elife 4: e09178.

Palopoli, M. F., M. V. Rockman, A. TinMaung, C. Ramsay, S. Curwen
et al., 2008 Molecular basis of the copulatory plug polymorphism
in Caenorhabditis elegans. Nature 454: 1019–1022.

Pascual, L., N. Desplat, B. E. Huang, A. Desgroux, L. Bruguier et al.,
2015 Potential of a tomato MAGIC population to decipher the
genetic control of quantitative traits and detect causal variants
in the resequencing era. Plant Biotechnol. J. 13: 565–577.

Philip, V. M., G. Sokoloff, C. L. Ackert-Bicknell, M. Striz, L. Branstetter
et al., 2011 Genetic analysis in the Collaborative Cross breeding
population. Genome Res. 21: 1223–1238.

Phillips, N., M. Salomon, A. Custer, D. Ostrow, and C. F. Baer,
2009 Spontaneous mutational and standing genetic (co)variation
at dinucleotide microsatellites in Caenorhabditis briggsae and
Caenorhabditis elegans. Mol. Biol. Evol. 26: 659–669.

Phillips, P. C., 2008 Epistasis - the essential role of gene interac-
tions in the structure and evolution of genetic systems. Nat. Rev.
Genet. 9: 855–867.

Phillips, P. C., S. P. Otto, and M. C. Whitlock, 2000 Beyond the
average, pp. 20–38 in Epistasis and the Evolutionary Process,
edited by J. B. Wolf, E. D. Brodie, and M. J. Wade. Oxford
University Press, Oxford.

Poelwijk, F. J., S. Tănase-Nicola, D. J. Kiviet, and S. J. Tans,
2011 Reciprocal sign epistasis is a necessary condition for
multi-peaked fitness landscapes. J. Theor. Biol. 272: 141–144.

Poullet, N., A. Vielle, C. Gimond, S. Carvalho, H. Teotónio et al.,
2016 Complex heterochrony underlies the evolution of Caenorhab-
ditis elegans hermaphrodite sex allocation. Evolution 70: 2357–2369.

Pritchard, J. K., 2002 The allelic architecture of human disease
genes: common disease-common variant. . . or not? Hum. Mol.
Genet. 11: 2417–2423.

Reddy, K. C., E. C. Andersen, L. Kruglyak, and D. H. Kim, 2009 A
polymorphism in npr-1 is a behavioral determinant of pathogen
susceptibility in C. elegans. Science 323: 382–384.

Rockman, M. V., 2012 The QTN program and the alleles that
matter for evolution: all that’s gold does not glitter. Evolution
66: 1–17.

Rockman, M. V., and L. Kruglyak, 2008 Breeding designs for recombi-
nant inbred advanced intercross lines. Genetics 179: 1069–1078.

Rockman, M. V., and L. Kruglyak, 2009 Recombinational land-
scape and population genomics of Caenorhabditis elegans. PLoS
Genet. 5: e1000419.

Rockman, M. V., S. S. Skrovanek, and L. Kruglyak, 2010 Selection
at linked sites shapes heritable phenotypic variation in C. ele-
gans. Science 330: 372–376.

Rohde, P. D., B. Gaertner, K. Ward, P. Sørensen, and T. F. C.
Mackay, 2017 Genomic analysis of genotype-by-social environ-
ment interaction for Drosophila melanogaster aggressive. Behav.
Genet. 206: 1969–1984.

Ronnegard, L., X. Shen, and M. Alam, 2010 hglm: a package for
fitting hierarchical generalized linear models. The R Journal 2:
20–28. Available at: http://journal.r-project.org/archive/2010-2/
RJournal_2010-2_Roennegaard�et�al.pdf.

Ruby, J. G., C. Jan, C. Player, M. J. Axtell, W. Lee et al., 2006 Large-scale
sequencing reveals 21U-RNAs and additional microRNAs and endog-
enous siRNAs in C. elegans. Cell 127: 1193–1207.

Seidel, H. S., M. V. Rockman, and L. Kruglyak, 2008 Widespread
genetic incompatibility in C. elegans maintained by balancing
selection. Science 319: 589–594.

Seidel, H. S., M. Ailion, J. Li, A. van Oudenaarden, M. V. Rockman
et al., 2011 A novel sperm-delivered toxin causes late-stage
embryo lethality and transmission ratio distortion in C. elegans.
PLoS Biol. 9: e1001115.

Seyfert, A. L., M. E. A. Cristescu, L. Frisse, S. Schaack, W. K. Thomas
et al., 2008 The rate and spectrum of microsatellite mutation in
Caenorhabditis elegans and Daphnia pulex. Genetics 178: 2113–2121.

Shao, H., L. C. Burrage, D. S. Sinasac, A. E. Hill, S. R. Ernest et al.,
2008 Genetic architecture of complex traits: large phenotypic
effects and pervasive epistasis. Proc. Natl. Acad. Sci. U S A. 105:
19910–19914.

Simon, M., O. Loudet, S. Durand, A. Bérard, D. Brunel et al.,
2008 Quantitative trait loci mapping in five new large re-
combinant inbred line populations of Arabidopsis thaliana geno-
typed with consensus single-nucleotide polymorphism markers.
Genetics 178: 2253–2264.

Sokal, R. R., and F. J. Rohlf, 1995 Biometry: The Principles and
Practice of Statistics in Biological Sciences. W. H. Freeman, San
Francisco.

1684 L. M. Noble et al.

http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf
http://journal.r-project.org/archive/2010-2/RJournal_2010-2_Roennegaard~et~al.pdf


Speed, D., and D. J. Balding, 2015 Relatedness in the post-genomic
era: is it still useful? Nat. Rev. Genet. 16: 33–44.

Speed, D., G. Hemani, M. R. Johnson, and D. J. Balding,
2012 Improved heritability estimation from genome-wide
SNPs. Am. J. Hum. Genet. 91: 1011–1021.

Speed, D., N. Cai The UCLEB ConsortiumM. Johnson, S. Nejentsev
et al., 2016 Re-evaluation of SNP heritability in complex hu-
man traits. bioRxiv DOI: https://doi.org/10.1101/074310.

Sterken, M. G., L. B. Snoek, J. E. Kammenga, and E. C. Andersen,
2015 The laboratory domestication of Caenorhabditis elegans.
Trends Genet. 31: 224–231.

Stewart, A. D., and P. C. Phillips, 2002 Selection and maintenance
of androdioecy in Caenorhabditis elegans. Genetics 160: 975–982.

Swarup, S., W. Huang, T. F. C. Mackay, and R. R. H. Anholt,
2013 Analysis of natural variation reveals neurogenetic net-
works for Drosophila olfactory behavior. Proc. Natl. Acad. Sci.
USA 110: 1017–1022.

Swierczek, N. A., A. C. Giles, C. H. Rankin, and R. A. Kerr,
2011 High-throughput behavioral analysis in C. elegans. Nat.
Methods 8: 592–598.

Teotónio, H., S. Carvalho, D. Manoel, M. Roque, and I. M. Chelo,
2012 Evolution of outcrossing in experimental populations of
Caenorhabditis elegans. PLoS One 7: e35811.

Teotónio, H., S. Estes, P. C. Phillips, and C. F. Baer, 2017 Evolution
experiments with Caenorhabditis nematodes. Genetics 206: 1–27.

Theologidis, I., I. M. Chelo, C. Goy, and H. Teotónio, 2014 Reproductive
assurance drives transitions to self-fertilization in experimental Caeno-
rhabditis elegans. BMC Biol. 12: 93.

Thepot, S., G. Restoux, I. Goldringer, F. Hospital, D. Gouache et al.,
2015 Efficiently tracking selection in a multiparental popula-
tion: the case of earliness in wheat. Genetics 199: 609–623.

Thompson, O. A., L. B. Snoek, H. Nijveen, M. G. Sterken, R. J. M.
Volkers et al., 2015 Remarkably divergent regions punctuate
the genome assembly of the Caenorhabditis elegans Hawaiian
strain CB4856. Genetics 200: 975–989.

Threadgill, D. W., and G. A. Churchill, 2012 Ten years of the
Collaborative Cross. Genetics 190: 291–294.

Valdar, W., L. C. Solberg, D. Gauguier, S. Burnett, P. Klenerman
et al., 2006 Genome-wide genetic association of complex traits
in heterogeneous stock mice. Nat. Genet. 38: 879–887.

VanRaden, P. M., 2008 Efficient methods to compute genomic
predictions. J. Dairy Sci. 91: 4414–4423.

Visscher, P. M., B. McEvoy, and J. Yang, 2010 From Galton to
GWAS: quantitative genetics of human height. Genet. Res. (Camb.)
92: 371–379.

Visscher, P. M., G. Hemani, A. A. E. Vinkhuyzen, G.-B. Chen, S. H. Lee
et al., 2014 Statistical power to detect genetic (co)variance of
complex traits using SNP data in unrelated samples. PLoS Genet.
10: e1004269.

Weigel, D., 2012 Natural variation in Arabidopsis: from molecular
genetics to ecological genomics. Plant Physiol. 158: 2–22.

Weinreich, D. M., R. A. Watson, and L. Chao, 2005 Perspective:
sign epistasis and genetic constraint on evolutionary trajecto-
ries. Evolution 59: 1165–1174.

Weinreich, D. M., Y. Lan, C. S. Wylie, and R. B. Heckendorn,
2013 Should evolutionary geneticists worry about higher-order
epistasis? Curr. Opin. Genet. Dev. 23: 700–707.

Whitlock, M. C., and D. Bourguet, 2000 Factors affecting the ge-
netic load in drosophila: synergistic epistasis and correlations
among fitness components. Evolution 54: 1654.

Whitlock, M. C., P. C. Phillips, F. B. G. Moore, and S. J. Tonsor,
1995 Multiple fitness peaks and epistasis. Annu. Rev. Ecol.
Syst. 26: 601–629.

Wolf, J. B., E. D. Brodie, and M. J. Wade (Editors), 2000 Epistasis
and the Evolutionary Process. Oxford University Press, New York.

Wood, A. R., T. Esko, J. Yang, S. Vedantam, T. H. Pers et al., 2014 Defining
the role of common variation in the genomic and biological archi-
tecture of adult human height. Nat. Genet. 46: 1173–1186.

Wray, G. A., 2007 The evolutionary significance of cis-regulatory
mutations. Nat. Rev. Genet. 8: 206–216.

Wright, S., 1932 The roles of mutation, inbreeding, crossbreed-
ing, and selection in evolution. Proceedings of the Sixth Inter-
national Congress of Genetics, Ithaca, New York, pp. 356–366.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al.,
2010 Common SNPs explain a large proportion of the herita-
bility for human height. Nat. Genet. 42: 565–569.

Yang, J., T. A. Manolio, L. R. Pasquale, E. Boerwinkle, N. Caporaso
et al., 2011 Genome partitioning of genetic variation for com-
plex traits using common SNPs. Nat. Genet. 43: 519–525.

Young, A. I., and R. Durbin, 2014 Estimation of epistatic variance
components and heritability in founder populations and crosses.
Genetics 198: 1405–1416.

Zheng, C., M. P. Boer, and F. A. van Eeuwijk, 2015 Reconstruction
of genome ancestry blocks in multiparental populations. Genet-
ics 200: 1073–1087.

Zwarts, L., M. M. Magwire, M. A. Carbone, M. Versteven, L. Herteleer
et al., 2011 Complex genetic architecture of Drosophila aggressive
behavior. Proc. Natl. Acad. Sci. USA 108: 17070–17075.

Communicating editor: K. Nichols

Fitness Traits in the CeMEE Panel 1685


