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Abstract

Research on the human microbiome, the microbiota that live in, on, and around the human

person, has revolutionized our understanding of the complex interactions between microbial

life and human health and disease. The microbiome may also provide a valuable tool in

forensic death investigations by helping to reveal the postmortem interval (PMI) of a dece-

dent that is discovered after an unknown amount of time since death. Current methods of

estimating PMI for cadavers discovered in uncontrolled, unstudied environments have sub-

stantial limitations, some of which may be overcome through the use of microbial indicators.

In this project, we sampled the microbiomes of decomposing human cadavers, focusing on

the skin microbiota found in the nasal and ear canals. We then developed several models of

statistical regression to establish an algorithm for predicting the PMI of microbial samples.

We found that the complete data set, rather than a curated list of indicator species, was pre-

ferred for training the regressor. We further found that genus and family, rather than species,

are the most informative taxonomic levels. Finally, we developed a k-nearest- neighbor

regressor, tuned with the entire data set from all nasal and ear samples, that predicts the

PMI of unknown samples with an average error of ±55 accumulated degree days (ADD).

This study outlines a machine learning approach for the use of necrobiome data in the pre-

diction of the PMI and thereby provides a successful proof-of- concept that skin microbiota

is a promising tool in forensic death investigations.

1 Introduction

The human body is inhabited by a vast number of microorganisms, which have occupied

every conceivable ecological niche. Recent advances in sequencing has resulted in a great deal

of research focused on the human microbiome. [1] In particular, the microbiota of the skin is

increasingly the subject of research into inter-personal differences and microbe-host interac-

tions, revealing that microbial communities differ between individuals and between different
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sites on the body. [2] Compared to that of the gut and oral cavity, the skin microbiome appears

to be more influenced by the host environment. [3] It is also becoming apparent that skin

microbial communities play a role in many diseases, including obesity, diabetes, cancer and

chronic inflammatory disease. [4] While the skin microbiome of living individuals has

recieved attention, we know much less about the fate of these microbial communities after

host death. These microbes are likely strongly influenced by the decomposition environment,

which includes insect colonization and changes in soft tissue chemistry.

Several recent reports have aimed to describe the postmortem human microbiome. Not

surprisingly, the various microbial communities that colonize the human person change con-

siderably following the death of the host as the chemical and biological milieu changes in

almost every conceivable way. [5] The primary goal of research into the postmortem micro-

biome, or necrobiome, is to aid in death investigations by providing a means to reliably esti-

mate the postmortem interval (PMI). Current methods of estimating the PMI of a deceased

human person discovered in an uncontrolled environment are quite crude, involving subjec-

tive physical inspection of the cadaver for early-phase decomposition and insect colonization

in later-phase decomposition. However, these techniques are notoriously unreliable. The use

of entomology, in particular, is confounded by temperature, weather conditions, seasonal vari-

ation, geographic location, and many other factors, both known and unknown. The high vari-

ability of these PMI estimation techniques makes it clear that additional approaches are

needed. Microbiome-based estimates may prove particularly useful in cases where insects are

absent or delayed, such as indoors, burials, or in colder temperatures.

In a 2013 study Metcalf, et al. endeavored to discover a so-called “microbial clock” to pro-

vide estimates of the postmortem interval in mice. [6] Impressively, the model that they devel-

oped was accurate to within three days of error over a period of 48 days of decomposition. It is

worth noting, however, that the ambient conditions were held steady during the course of the

experiment and insects were excluded in order to reduces sources of environmental variability.

The controlled environment is an important first step, but favors construction of a robust pre-

dictive model at the expense of attempting to replicate the conditions when the model might

actually be used, that is, human decedents discovered after an unknown period of time in

uncontrolled environments.

A study by Pechal, et al. reported on the usefulness of monitoring the succession of bacterial

taxa during the course of decomposition of pigs in an uncontrolled environment. [7] In that

study, they were able to build a statistical model using metagenomic sampling that explained

nearly 95% of the microbiome changes that occurred through the course of decomposition.

This convincingly demonstrated that a data analytics approach can overcome the inevitable

noised introduced by sampling from an outdoor environment. An earlier study by the same

group described temperate-zone seasonal variations of the swine necrobiome, an important

consideration for forensic investigations throughout the global North. [8] Seasonal variations

in the decomposition microbiome of pigs were also reported by Carter, et al., who also

reported an important contribution of soil-derived microbes to the decomposition ecosystem

of the pig cadavers. [9]

Other interesting work on the necrobiome has probed how microbial communities in

cadaver tissue and the soil merge into one dynamic system. Studies by Finley, et al., and

Cobaugh, et al. have reported that cadaver-derived microbes can be detected in the nearby soil

for up to a year and possibly much longer. [10, 11] Importantly, the detection of microbes in

nearby soil appears to follow a steady progression and could prove fruitful for forensic estima-

tion of the postmortem interval, even long after a body has been removed the scene.

Recently, Hauther, et al., repeatedly sampled bacteria from the large intestine of 12 cadavers

as they decomposed in outdoor environmental conditions. [12] This study performed
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quantitative analysis of bacterial communities using the 16S rRNA gene for phylogenetic iden-

tifications and identified three specific genera of bacteria that show specific promise as quanti-

tative indicators of the postmortem interval.

In the largest and most comprehensive study on the human necrobiome to date, Metcalf,

et al. used machine learning methods to characterize how the microbes derived from both the

soil and the decomposing human or mouse cadaver assemble into a decomposition ecosystem

with a predictable succession of bacterial and fungal organisms. [8] Using mouse cadavers in

laboratory conditions and human cadavers in uncontrolled outdoor conditions, this study

found that patterns of microbial succession were surprisingly independent of soil type and sea-

sonal effects. In addition, researchers found many microbial taxa that are active in a similar

schedule in both the human and mouse conditions. This implies that the sudden influx of car-

rion-derived nutrients into the soil initiates a common biological chain of events at the micro-

bial level, regardless of the mammal species from which the carrion derives. This commonality

bodes well for the forensic utility of the necrobiome.

To date, most reports on the microbiome have focused on the communities of the GI tract,

as it is the site of the richest diversity of microflora to begin with. However, we propose that

that the skin microbiome offers several advantages as a site-of-interest for research into the

postmortem microbiome. Specifically, we chose the aural and nasal cavities for our study,

which are included as sites of interest in the NIH Human Microbiome Project. [13] These two

niches are each unique environments in the body but are also accessible and non-invasive to

sample. Using the ear and nasal cavities would offer distinct advantages during an active crimi-

nal investigation of a crime scene, as it would leave the cadaver essentially undisturbed.

In this study, we sampled the bacterial communities in the ear and nasal canals of 17 cadav-

ers, four of them repeatedly, throughout the course of surface decomposition and analyzed

those communities with 16S rRNA gene amplicon sequencing. Statistical analysis at all taxo-

nomic levels was used in a machine learning approach toward development of a computational

model for prediction of the postmortem interval. To that end, we were successful in construct-

ing a k = 4 nearest-neighbor regression model which accurately predicted the true postmortem

interval to within 55 accumulated degree days (ADD), or two days at an average temperature

of 27.5˚C. We were also able to identify the bacterial taxa that are most informative of our pre-

dictive model of decomposition.

2 Materials and Laboratory Methods

2.1 Sample collection and purification of DNA

All samples were collected from cadavers placed at the Anthropological Research Facility

(ARF) at the University of Tennessee at Knoxville. The use of deceased human subjects at the

ARF does not require IRB approval as the bodies were donated for research purposes to the

facility. In addition, this research was reviewed and approved by the Internal Review Board of

the City University of New York as part of larger project (protocol #514576). The ARF is a pre-

served temperate deciduous forest with well-drained fine textured clayey soils. All cadavers

were placed on the surface of the soil and allowed to decompose naturally. Bodies were placed

in a prostrate position, unclothed, and loosely covered to reduce mass scavenging by large ani-

mals. A total of 144 sample swabs were taken from a total of 21 cadavers, most as a single col-

lection event for each cadaver. However, four of these cadavers were swabbed repeatedly

through the course of decomposition, starting at placement and continuing every 2–3 days

until the tissues were too decomposed to access the ear and/or nose. Data from only these four

cadavers was used in the early phase of our computational analysis when the models that were
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best suited for our data were selected, as explained below. Subsequent computational modeling

included data from all suitable samples.

During sample collection, aseptic technique was utilized as much as possible. Because the

bodies were placed prostrate, the heads are turned, facing one side of the other. For each

cadaver, the nostril and ear canal chosen for sampling was that on the side of the face facing

away from the ground, preventing or minimizing the sampling of bacteria from the soil and

nearby cadavers. Just prior to each sample collection, the extreme tip of a fresh, sterile, Cap-

Shure™ swab was briefly dipped into sterile phosphate-buffered saline (obtained 1X from

Fisher Scientific). Then, the swab was placed into the nostril or ear canal until the entire cotton

swab was inside the canal. The swab was gently pressed against the outside wall before moving

the swab in a circular motion for two complete rotations. The swab was then placed back into

its collection tube, which was itself placed back into its plastic wrapping, separately, and then

into a sterile sample collection bag. Sample bags were kept at -20˚C until DNA extraction was

performed.

2.2 DNA Extraction and Quantitation

DNA was extracted using the PowerLyzer PowerSoil DNA Isolation Kit (MoBio Laboratory)

precisely according to the manufacturer’s protocol. Final purified DNA was eluted in a final

volume of 100 μL. DNA concentration was determined by measuring the absorbance of each

sample at 260 nm using the NanoDrop 2000 Spectrophotometer (Thermo Scientific). Only

samples harboring at least 1 ng/μL DNA and yielded a clean spectrogram with a peak at 260

nm were included in subsequent amplification steps.

2.3 DNA Amplification, Quantification and Sequencing

Preparation of sample amplification for sequencing was completed by following the 16S Meta-

genomic Sequencing Library Preparation protocol by Illumina. Briefly, the V3 and V4 regions

of the 16S rRNA gene were amplified using universal degenerate primers in the provided kit.

Procedures were exactly according to protocol with the following exceptions: volumes used

were 7.5 μL template DNA, 2.5 μL Amplicon PCR Forward Primer (1 M), 2.5 μL Amplicon

PCR Reverse Primer (1μM), and 12.5μL 2x KAPA HiFi HotStart ReadyMix for a total of 25μL.

This modification was to increase the DNA concentration used per sample, since some sam-

ples were too low to follow the recommended protocol precisely.

Following the amplification step, 2 μL of each sample was run in a 1.5% agarose gel to

ensure that the PCR was successful. Only those samples that yielded a clean PCR product at

550bp were included in future steps. PCR clean up was performed using the Agencourt

AMPure XP beads kit by Beckman Coulter, following the provided protocol precisely. Final

purified DNA was eluted in a volume of 50 μL and [DNA] was determined. Samples with less

than 15 ng/μL were concentrated down to� 25 μL using a speedvac before proceeding to the

index PCR.

Next, 25 μL of the purified amplicon PCR product was barcoded by index PCR using the

Nextera XT Index Kit from Illumina, as per provided protocol. Following PCR cleanup (again

using the AMPure XL kit), 2 μL of each barcoded PCR product was subjected to agarose gel

electrophoresis to verify integrity of each sample through visualization of a 630bp band.

The barcoded DNA amplicons were pooled together and delivered to the Genome Technol-

ogy Center at NYU Langone Medical Center for next-generation 16S metagenomic sequenc-

ing using the MiSeq platform (Illumina). Compiled sequence libraries were analyzed and

phylogentically classified using the BaseSpace program (Illumina). Spreadsheets with absolute
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numbers of sequence reads for each taxon in each sample were extracted and transformed to

relative abundance measures as explained below.

2.4 Calculation of Accumulated Degree Days

Because the events of tissue decomposition are equally dependent on time and temperature,

we calculated the accumulated degree days (ADD) for each sample, with each 24 hour period

postmortem counting as an equivalent to its average temperature in Celsius, as explained in

Michaud, et al. [14] The following assumptions were made in these calculations. First, because

cadaver placements at the ARF facility take place between 11:00A.M. and 1:00P.M., and all

swabs are taken around that same time, we converted each day into two-half days, halving the

average temperature for each day. Secondly, all cadavers were kept at 3˚C for all days between

the date of death and placement at the facility. Thirdly, if a cadaver was frozen, those days

counted as zero toward the cumulative ADD value. Fourthly, average temperature listed for

Knoxville, Tennessee, as recorded in Weather Underground (www.wunderground.com) was

used as a proxy measurement for the average temperature at the ARF facility, which does not

track and archive precise local temperature.

3 Computational Methods

3.1 Data Transformations

The data for this project was produced by collecting a series of bacterial swabs from the ear

and nasal canals of cadavers undergoing active decomposition in uncontrolled environmental

conditions. Each swab is annotated with a time-since-death measurement that accounts for

both temperature and time elapsed in a single variable, accumulated degree days (ADD). The

DNA collected in each swab was subjected to quantitative sequencing of the 16S rDNA gene,

which allowed detection of individual species and subsequent calculation of its relative abun-

dance in the entire sample. Thus, the raw data consists of percent-abundance of each sequence

(representing a bacterial species) and the ADD to which the cadavers were exposed at the time

of the swab. In order to study these data as a regression problem, we set the independent vari-

ables as the relative abundance of the species (or higher taxa) in each collection swab and the

dependent variable as the ADD value for that swab. The aim of our regression analysis was to

observe if the dependent variable, ADD, can be determined as a function of the independent

variables.

In addition to species classification, each sequence read was also assigned to its proper king-

dom, phylum, class, order, family, and genus. Mathematically, the species measurements may

be considered to be the raw data, with data corresponding to higher taxonomic levels under-

stood as transformations of the original data. In the parlance of machine learning, this is a

form of feature extraction. Considering the data at higher taxa clusters the species into similar

kinds, preserving some amount of information, while reducing the number of independent

variables, and possibly increasing the effectiveness of the regression. [15]

We regard the data as matrices X in which rows correspond to instances–swabs–and col-

umns correspond to features—organisms (or taxa). The symbol X can be regarded as a multi-

dimensional independent variable, for which there is a corresponding dependent vector

variable y. If X is m × n then y is a column vector of length m, where row i of X determines (at

least partly) the ADD value found in row i of y. There are a number of different possible matri-

ces X, depending on which swabs, which organisms, and which taxonomic levels are consid-

ered. For instance, we may consider only nose swabs and restrict our attention to a special

subset of organisms at the phylum level, and attempt a regression of y from the resulting

matrix X. In another case, X may include both ear and nose swabs, and refer to the data at the
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class level. We thus consider several different transformations of our data to see which trans-

formation performs best with respect to the problem of determining y from X. The main dif-

ferences analyzed refer to whether X contains only ear data, only nose data, or both jointly,

and whether all organisms are considered, or only a special curated subset, as described below.

3.2 Selection of Curated Data

For data that came from the four cadavers that were sampled repeatedly throughout decompo-

sition, we also attempted to refine our data matrices into two different types: curated and non-

curated. The non-curated data matrices X have one column corresponding to each organism

occurring a nonzero number of times in some ear sample, or some nose sample (the same

organism is frequently represented twice–once for the ear and once for the nose). The curated

data employs a reduced set of organisms (both for ear and for the nose). The pruning of organ-

isms was done manually through visual inspection, considering factors such as the correlation

coefficient of the organism with the dependent variable, and the coherence of any correlation

across multiple cadavers. To facilitate this process, code was written to plot ADD against per-

centage composition for each taxon, producing 5243 individual plots. In these images, data

was color coded by cadaver, allowing an intuitive judgement to be made regarding the agree-

ment across cadavers, as well as the plausibility of a functional relationship between ADD and

percent composition. Fig 1 provides an example of an image of this type.

A separate pruning was done at each level of the taxonomic hierarchy. The effect is that the

curated data set has many fewer columns than the non-curated data, though they have an

equal number of rows. The curated data is also higher quality in the sense that the selected taxa

have unusually high agreement across cadavers as well as higher magnitude correlation values

with respect to ADD and percent composition. Table 1 summarizes the dimensions of our

data matrices.

The exact set of organisms used for each level for both non-curated and curated cases can

be found in our supplementary materials (http://bit.ly/2f4ltDH). When the data matrix X is

built from a spreadsheet, it contains integers for entries, with entry xi,j reflecting the absolute

number of instances for organism j detected in sample i. Because this number may depend on,

for example, the richness of the swab offered to the analyzer, it is normalized in the following

way. For each row i of X, we compute si = Sj � n xi,j, and replace �xi ¼ hxi;1; xi;2; . . . ; xi;ni with

h
xi;1
si
;
xi;2
si
; . . . ;

xi;n
si
i. Note that this form of normalization depends only on the row (i.e. sample),

and can be done to new data without information from X. We do not perform column-based

normalization (so-called feature normalization) manually, but this may be done in some of the

algorithms we use for regression. Consult our code in the supplementary materials for details.

3.3 Calculation of Microbial Diversity

In our discussion of diversity, we will use the following quantity to measure diversity of the

microbial communities in each swab: [16]

qD ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PS

i¼1
pip

q� 1

i
q� 1
q :

Here the variable S refers to species richness (the number of species present) and pi is the

proportion of the population accounted for by the ith species. This quantity, which depends

on a nonnegative free variable q, can be understood as the reciprocal of the weighted power

mean (with power q − 1) of the proportions pi of the various species, where the weight of

species i is pi.
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Intuitively, when q is small, qD provides a formalization of diversity which emphasizes spe-

cies richness, whereas when q is large, equal representation of species in the environment (i.e.
equitability) becomes more influential. In fact when q = 0, qD is simply the species richnes.

Note also that special values of q cause qD to specialize to a number of well known diversity

indices. For example, if q = 2, then qD is Simpson’s diversity index D ¼ 1PS

i¼1
p2
i

, and while qD is

undefined for q = 1, it is the case that limq! 1
q D = exp(H0) where H0 denotes the Shannon

index defined by H0 ¼ �
PS

i¼1
pi ln ðpiÞ.

It is not necessary that qD be computed literally with respect to species. For example the pi
can be sample composition percentages at the level of phylum, genus, etc, in which case qD rep-

resents diversity at the level of the appropriate taxon. For a fixed q, higher values of qD corre-

spond to higher levels of diversity.

Fig 1. A plot of ADD versus percentage composition for the bacterial genus Vagococcus. Each of the four sample cadavers has a corresponding

curve, as indicated in the legend.

doi:10.1371/journal.pone.0167370.g001
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3.4 Regression Analysis

To analyze the data, several regression techniques were considered. To evaluate the effective-

ness of the regressors, we used a machine learning approach, splitting the data randomly into

two mutually exclusive groups called a training set and a testing set. The train/test split

depends only on m and is the same for every taxon. The training set is selected uniformly at

random to comprise 80% of the instances. The testing set is then taken as the remaining 20%

of instances. [17] The regressors we employed in our analysis were the following (as imple-

mented by the scikit-learn project, version 0.17): [18] Support Vector Regression (SVR) [19],

K-neighbors Regression (KNR) [15], Ridge Regression (RR) [20], Lasso Regression (LR) [15],

Elastic Net Regression (ENR), Random Forest Regression (RFR) [21], and Bayesian Ridge

Regression (BRR) [20].

Describing each of these regressors in detail is beyond the scope of this report, but a few

general remarks may be helpful. The regressors SVR, RR, RFR, LR and BRR all fit a collection

of linear coefficients to the data. They differ from one another and from simple linear regres-

sion in the objective function and their constraints, which are optimized during the fitting pro-

cess. All of these regressors include some kind of regularization which is a penalty assigned in

the objective function to complicated solutions. [15] Usually this amounts to penalizing coeffi-

cients which, when viewed as a vector, have a large norm with respect to either the L1 or L2

norms (the Manhattan metric and Euclidean metric, respectively). The values that control the

degree to which complicated solutions are penalized are known as the hyperparameters for the

regressor. [15] Fitting the hyperparameters to the data is important to avoid overfitting. Note

that for the non-curated dataset, we have n>m in all cases except for kingdom and phylum,

necessitating some form of regularization to avoid trivial solutions.

The KNR regressor is a simple instance-based approach, which means that no parameters

are fit to the data. [15] Rather, the data itself is stored directly and used to predict the values for

new instances. In the KNR case, this happens simply by averaging the known ADD for the k
most similar training points for some new (test) instance. The measure of similarity may be

Euclidean distance (when the data are regarded as vectors) or something more exotic. Though

the KNR regressor does not have parameters, it does have hyperparameters, namely k and spe-

cifics of the algorithm used, which might specify the meaning of “similarity” or weight the

training vectors in certain ways in an attempt to improve performance. An interesting

Table 1. Summary of data matrix dimensions for joint data (swabs for both ear and nose). The number of rows in each table is 67 for all data, and the

number of columns is the number of organisms, as shown. We also provide the logarithm of the number of columns in each dataset, for later reference.

Dataset Number of organisms Logarithm

KINGDOM_NONCURATED_JOINT 6 1.792

PHYLUM_CURATED_JOINT 7 1.946

CLASS_CURATED_JOINT 13 2.565

ORDER_CURATED_JOINT 22 3.091

FAMILY_CURATED_JOINT 30 3.401

PHYLUM_NONCURATED_JOINT 52 3.951

GENUS_CURATED_JOINT 54 3.989

SPECIES_CURATED_JOINT 65 4.174

CLASS_NONCURATED_JOINT 106 4.663

ORDER_NONCURATED_JOINT 213 5.361

FAMILY_NONCURATED_JOINT 478 6.170

GENUS_NONCURATED_JOINT 1264 7.142

SPECIES_NONCURATED_JOINT 3130 8.049

doi:10.1371/journal.pone.0167370.t001
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corollary of the instance-based nature of KNR is that the training accuracy (the accuracy of the

predictions the model makes on the training set) is always perfect.

The RFR regressor is an ensemble method, meaning it employs a voting approach based on

a family of simpler regressors. In the case of RFR, the simpler family of regressors consists of

decision trees. This model neither has parameters nor is it instance-based. A more lengthy dis-

cussion can be found in the references. [21]

4 Results

4.1 Effect of Decomposition on Microbial Diversity

We began the analysis of our data by inquiring if there was a useful relationship between ADD

and sample diversity. For a data matrix X, recall that the rows of X represent population sam-

ples, and any given row naturally corresponds to p1,p2, . . ., pS as in the definition of qD. Then if
qD(X) denotes the column vector whose rows are the diversity values with respect to qD of the

corresponding rows of X, we asked if there was any correlation between qD(X) and y. We used

Pearson’s correlation coefficient to measure the strength of such a relationship for a number of

values of q and several different taxa. Consider Fig 2, below.

Panels A, B, and C in Fig 2 show Pearson’s r as a function of q for the species, phylum, and

order datasets, respectively. Each contains three curves, corresponding to whether X contains

data taken only from nose swabs, only from ear swabs, or a combination of both (joint). For

most datasets, diversity decreased as ADD increases for the microbial communities found in

the ear swabs, as is the case with data from both the ear and the nose swabs considered jointly.

Using data from the nose swabs alone yields weaker correlations for the most part, and diver-

sity tends to have a positive (increasing) relationship to ADD.

Panel D of Fig 2 shows diversity (q = 0.4) as a function of ADD for the species data. Note

that for ear-only data, the plot is predominantly decreasing for the first 100 ADD, after which

it becomes comparatively constant. The nose-only data, by contrast, yields a curve that is

approximately constant for this choice of taxon and q. It should be noted that in computing

the diversity of the joint data, if the same organism occurs both in the ear and in the nose, this

is counted as two taxa rather than one.

The lowest value attained for the correlation coefficient is r = −0.425 for curated, joint ear

and nose, family-level data, with an optimal choice of q = 0.226. The highest value is r = 0.35

for noncurated, nose-only, class-level data for an optimal choice of q = 0.50. The p values for

these r are p = 0.00033 and p = 0.0033, respectively. Table 2 displays the r coefficients with the

lowest p values for each dataset, as well as the associated q values.

4.2 Analysis of Various Regressors by Cross-Validation

In order to evaluate the relative effectiveness of the regressors chosen for analysis, each first

underwent a process of hyperparameter optimization, which was based solely on the training

portion of the dataset. The method used was grid search combined with 10× cross-validation.

In the following discussion, a model is a regressor together with a choice of hyperparameters.

In the 10× cross-validation process, the training data T is partitioned into 10 equally sized

subsets t1, t2, . . ., t10. For each i 2 {1, 2, 3, . . ., 10}, the model under consideration M is trained

on T\ti and tested on ti, to yield a performance score pi (in units of mean absolute error). Here

“training” means the same thing as “fitting” and “testing” means the same thing as “predict-

ing”. The values pi were then averaged to yield a final measure of the performance of the

model, which we refer to as the training error based on 10× cross-validation.

For each of the regressors SVR, LR, KNR, RR, ENR, RFR and BRR, 10× cross-validation on

the training set in combination with grid-search was used to tune the hyperparameters. The
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term grid search refers to the technique of fixing, for each regressor R and each corresponding

hyperparameter hR of R, a finite range of potential values VhR for hR. The cartesian product of

the VhR, where h ranges over the hyperparameters of R, determines a grid-like space of models

all based on the regressor R. The grid-search algorithm tries each model in this space and

selects the model with the best cross-validation score (i.e. lowest error) on the training set. We

regard the resulting model as an instance of R with “tuned” hyperparameters.

Tuned models were ranked according to their cross-validation score on the training set.

We then retrained these models on all of the training data, and applied the same models to the

testing set. The resulting error rate provides an independent validation of the model, and an

unbiased estimate of true accuracy. To approximate the best error rate achievable, we selected

the combination of regressor, hyperparameters, and data transformation that gave the lowest

cross-validation error on the training set. The error of this model on the test set (after retrain-

ing) provides an estimate of the accuracy of our method. [15]

Fig 2. The images A, B, and C show how the correlation between qD(X) and y depends on the choice of q and the dataset X. The image D shows how

diversity changes with ADD for the ear, nose and joint datasets (q = 0.4).

doi:10.1371/journal.pone.0167370.g002
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We also singled out the model with lowest testing error (without consideration of perfor-

mance on the training set). The model with lowest error on the test set is offered as the model

most likely to perform well on unseen data. In this case we used our entire data set for model

selection, not error estimation. [17]

There were 69 nose samples in our dataset. The mean ADD found in the nose data is 210.

These samples were taken at roughly uniform intervals from 0 to about 500 ADD. Table 3 out-

lines the results of our regression attempts using nose samples alone.

Table 2. The most significant correlation found between qD(X) and y for each dataset X, and the optimizing q value. Kingdom data is omitted.

Noncurated Curated

X r q r q

PHYLUM JOINT 0.137 2.312 0.187 0.477

PHYLUM EAR −0.277* 0.327 0.141 0.779

PHYLUM NOSE 0.294* 1.332 0.181 0.050

CLASS JOINT 0.240 1.608 0.239 0.427

CLASS EAR −0.274* 0.226 0.243* 0.352

CLASS NOSE 0.349** 2.739 0.163 1.759

ORDER JOINT 0.242* 1.985 −0.331* 0.879

ORDER EAR −0.287* 0.276 −0.227* 1.935

ORDER NOSE 0.314* 0.503 0.219 0.025

FAMILY JOINT 0.234 2.261 −0.425*** 0.226

FAMILY EAR −0.330** 0.377 −0.421*** 0.427

FAMILY NOSE 0.345** 5.000 0.321* 0.427

GENUS JOINT −0.264* 0.276 −0.373** 0.251

GENUS EAR −0.371** 0.427 −0.355** 0.377

GENUS NOSE 0.345** 5.000 0.299* 0.251

SPECIES JOINT −0.377** 0.402 0.296* 0.000

SPECIES EAR −0.383*** 0.452 −0.249* 0.578

SPECIES NOSE −0.171 1.709 0.309* 0.126

*** p < 0.0005,

** p < 0.005,

* p < 0.05

doi:10.1371/journal.pone.0167370.t002

Table 3. The top ten models as ranked by cross-validation error on the training data when restricted to nose data are shown here. The error units in

columns 1 and 4 are mean absolute error. The values in the NRMSE column are root mean squared error on the test set, divided by the mean ADD over all

nose data.

Training error NRMSE Regressor Test error Dataset

74.03 0.84 KNR 138.45 SPECIES_NONCURATED_NOSE

76.60 0.67 SVR 121.15 ORDER_NONCURATED_NOSE

79.13 0.58 KNR 103.55 GENUS_NONCURATED_NOSE

79.53 0.69 KNR 116.66 ORDER_NONCURATED_NOSE

81.93 0.76 SVR 122.38 PHYLUM_NONCURATED_NOSE

82.16 0.57 SVR 102.58 SPECIES_NONCURATED_NOSE

84.57 0.61 KNR 114.67 CLASS_NONCURATED_NOSE

84.97 0.47 SVR 85.16 GENUS_NONCURATED_NOSE

86.76 0.53 KNR 87.95 SPECIES_CURATED_NOSE

86.94 0.71 KNR 128.13 FAMILY_NONCURATED_NOSE

doi:10.1371/journal.pone.0167370.t003
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The first column in Table 3 provides the cross-validation error of the model on the training

set, in units of mean absolute error. As explained in the Methodology section, we used

10×cross-validation on the training set to rank our models and therefore Table 3 proceeds

from the best models at the top, to the least useful models at the bottom. The column labeled

NMRSE is computed by dividing the root mean squared error of the model on the test set, and

dividing by the mean of y. This normalized value is intended to provide a measure of model

quality that is comparable across data sets. The fourth column of Table 3 shows the error of the

model on the testing set in units of mean absolute error.

In order to put the results shown in Table 3 in context, it is useful to compare the perfor-

mance of the models shown to the performance of a so-called “dummy” regressor (sometimes

called the mean model). The dummy regressor is “trained” on the training set simply by mem-

orizing the mean ADD found in the training samples. When presented with new instances, the

dummy model always predicts the training mean, regardless of what is provided as input.

Therefore the dummy model does not use X at all, and is a good minimum benchmark for

evaluating the performance of more sophisticated approaches, that presumably extract infor-

mation from X to make predictions.

In the case of the nose data, the dummy regressor outperforms all models shown in Table 3,

with a mean absolute error of 77.11 on the testing set, and a NRMSE score of 0.46. While some

models achieved a lower mean absolute error in the training phase, the good performance did

not extend to the test set.

There were a total of 83 viable samples taken from the ear. The mean ADD for the ear data

is 282. Table 4 below summarizes the result of our regression attempts based on data from ear

samples alone.

The meaning of Table 4 is similar to that of Table 3. In the case of the ear data, the dummy

regressor achieved an error of 165.33 in units of mean absolute error on the test set, and a

NRMSE score of 0.68. Unlike the results relating to data harvested from the nose, most models

based on the ear data were able to outperform the dummy model. Observe that even though

the best model in this category outperformed the dummy model with respect to mean absolute

error on the test set, it underperformed with respect to mean squared error, accounting for the

slightly higher NRMSE.

While there are data from 83 ear swabs and 69 nose swabs, the number of instances when

we achieved quality sequence reads from both ear and nose samples taken from the same

cadaver at the same time is 67. The mean ADD of these “joint” samples is 216. Table 5, below,

summarizes the results of our regression attempts based on the joint data.

Table 4. The ear equivalent of Table 3.

Training error NRMSE Regressor Test error Dataset

95.89 0.70 SVR 124.62 ORDER_CURATED_EAR

97.24 0.57 SVR 104.33 SPECIES_NONCURATED_EAR

100.01 0.60 SVR 109.60 GENUS_NONCURATED_EAR

100.10 0.60 SVR 120.48 CLASS_CURATED_EAR

100.71 0.56 LR 122.62 CLASS_CURATED_EAR

100.71 0.56 ENR 122.62 CLASS_CURATED_EAR

100.78 0.56 RR 122.52 CLASS_CURATED_EAR

100.94 0.53 RFR 117.59 SPECIES_CURATED_EAR

101.44 0.61 SVR 113.89 FAMILY_NONCURATED_EAR

101.52 0.60 SVR 114.03 ORDER_NONCURATED_EAR

doi:10.1371/journal.pone.0167370.t004

Using Skin Necromicrobiome to Estimate PMI

PLOS ONE | DOI:10.1371/journal.pone.0167370 December 22, 2016 12 / 23



The dummy regressor on the joint data had a mean absolute error of 103.31 and a NRMSE

score of 0.57. Table 5 shows that in the case of joint data, almost all of the top ten models out-

perform the dummy regressor by a considerable margin. This improvement comes despite a

smaller dataset, indicating a great deal of useful information is gained by simultaneously ana-

lyzing the microbiome from both ear and nose swabs.

Most of the high performing models on the joint dataset use noncurated data from a low

taxon. The top model, based on the k-neighbors regressor, uses the hyperparameter k = 4, and

weights the influence of the k neighbors by distance. All of the top seven models, excluding the

SVR regressor on the species dataset, have a mean absolute error of about 55 on the test set.

The surprisingly poor performance of the SVR regressor on the species data (Table 5, row two)

may be due to overfitting, abetted by the very high dimensionality of the joint species dataset

(more about this below). Indeed, Fig 3 (next section) illustrates that error on the training set is

usually a good predictor of test error.

The Pearson coefficient for the correlation between training and test errors is 0.53 with a p
value of 8.67 × 10−8. For our values, the cross-validation error is frequently greater than the

test error (i.e. testing error). A natural explanation for this is that the 10× cross-validation

error results from training on only 90% of the training data, whereas the test error is yielded

by a model which has enjoyed the benefit of training on the entire training set. Consequently

our cross-validation error is frequently a pessimistic estimate of the test error.

4.3 Models Minimizing Test Set Error

All of our analyses described thus far have been under the assumption that our best model is

the one with lowest cross-validation error on the training set, for which we offer the associated

testing error as an unbiased prediction of the true accuracy of the model. This approach has

the virtue that the testing set is not used in any way for model selection, ensuring that the ulti-

mate estimate of accuracy is not optimistic.

However, we next chose to break from conservatively estimating the maximum possible

predictive accuracy achievable with our data, and instead we sought to inquire which combi-

nation of dataset and regressor is likely to give the best overall generalization based on our

data. Here we did not seek an accuracy rate, but instead sought to use our entire dataset for

model selection. In this context our test set can be thought of as a final validation set, used for

the ultimate validation of a model. For this purpose, we investigated what kinds of models

tend to have the lowest errors on our test (i.e. validation) set. Fig 4 demonstrates the results of

these attempts.

Table 5. This table is similar to Table 3, but with joint datasets.

Training error NRMSE Regressor Test error Dataset

63.74 0.32 KNR 55.02 GENUS_NONCURATED_JOINT

65.49 0.72 SVR 116.22 SPECIES_NONCURATED_JOINT

66.32 0.35 SVR 57.60 GENUS_NONCURATED_JOINT

67.24 0.29 KNR 55.62 ORDER_NONCURATED_JOINT

67.40 0.32 ENR 51.63 SPECIES_NONCURATED_JOINT

67.57 0.32 RR 51.14 SPECIES_NONCURATED_JOINT

68.16 0.42 RFR 53.52 FAMILY_CURATED_JOINT

68.29 0.38 SVR 65.52 ORDER_NONCURATED_JOINT

69.34 0.48 SVR 80.72 FAMILY_NONCURATED_JOINT

69.74 0.35 SVR 62.46 CLASS_NONCURATED_JOINT

doi:10.1371/journal.pone.0167370.t005
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In panel D of Fig 4, we show the classic picture of the bias-variance tradeoff. [15] It

describes visually how more complex models (models with more parameters, for instance)

tend to improve only to a certain level, after which their excessive capacity contributes to over-

fitting of the training data. Although training error continues to decrease, testing accuracy (the

best measure of true performance) increases after the ideal level of complexity is reached. For

our models, the dimensionality of the dataset maps well to the complexity of our models, since

most parametric regressors include a parameter for each column of X. The dimensionality of

our data is determined by taxon and whether the data is curated or noncurated (see Table 1).

The other three panels of Fig 4 show, for three regressors (SVR, k-Neighbors and elastic

net) a similar plot with training error and test error shown on the same axes. In our images,

training error tends to be greater than testing error for reasons discussed above, making the

pictures somewhat different than the idealized image. However, note that, just as in the dia-

gram, training error decreases as a function of model complexity for our models, while valida-

tion error reaches a minimum somewhere in the middle of the domain. Note that the

Fig 3. All 91 models considered for the joint data are plotted according to their cross-validation (training) error and test error, in units of

mean absolute error. The Pearson r = 0.53 with a p value of 8.67 × 10−8.

doi:10.1371/journal.pone.0167370.g003
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validation error these optimal models achieve is an optimistic representation of accuracy,

because we are now using the validation set for the purposes of model selection. Table 6 shows

the top ten models when ranked by test error.

As Table 6 shows, when ranked by performance on the validation set, models based on the

phylum taxon perform relatively well. Also, whereas k-neighbors was the dominant regressor

appearing in Table 5, the models in Table 6 are mainly based on linear regression. The cham-

pion regressor, the Ridge algorithm, is simply linear regression with quadratic regularization.

Fig 5A shows explicitly the performance of this model on the validation set. Fig 5B gives a simi-

lar description of the best model with respect to training error (see Table 5). It is a happy coin-

cidence that in both Tables 5 and 6, the best regressors are the two simplest algorithms

considered.

Fig 4. Panel D displays the classic diagram for the bias-variance tradeoff, showing how overly complex models minimize training error but may

have sub-optimal test error. The other panels show a similar picture for three regressors (SVR, KNeighbors, and ElasticNet) with the dimensionality of the

dataset serving as a proxy for model complexity. The horizontal dimension is logarithmic.

doi:10.1371/journal.pone.0167370.g004
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4.4 Univariate Analysis: Finding the Most Informative Taxa

Our analysis reveals that the entire dataset formed a better basis for producing a predictive

algorithm for postmortem interval than a curated list of taxa that appear predictive on their

own (Tables 1 and 5). This argues that the algorithm is able to glean information from a large

number of features that do not appear useful independently. Nevertheless, there is value in

knowing which taxa are the most informative for the model that we have constructed. This is

because the extreme complexity of a multidimensional approach on the estimation of the

postmortem interval comes at the cost of an intuitive understanding of the relationship

between certain microbes and decomposition. For this reason, we here include a ranking of

various taxa in terms of their relevance to decomposition timing according to several differ-

ent metrics.

Selecting the best independent variables for predicting a dependent variable is known as

feature selection. [22] This task includes the challenge of determining a small but informative

Table 6. The ten top performing models when ranked by validation error.

Training error NRMSE Regressor Test error Dataset

89.38 0.26 RR 46.23 PHYLUM_NONCURATED_JOINT

88.93 0.26 ENR 47.82 PHYLUM_NONCURATED_JOINT

74.55 0.30 LR 49.31 SPECIES_NONCURATED_JOINT

90.03 0.27 SVR 49.80 PHYLUM_NONCURATED_JOINT

73.62 0.28 SVR 50.52 PHYLUM_CURATED_JOINT

67.57 0.32 RR 51.14 SPECIES_NONCURATED_JOINT

67.40 0.32 ENR 51.63 SPECIES_NONCURATED_JOINT

89.51 0.29 LR 51.71 PHYLUM_NONCURATED_JOINT

78.66 0.35 RR 51.94 ORDER_CURATED_JOINT

74.66 0.30 KNR 52.17 CLASS_CURATED_JOINT

doi:10.1371/journal.pone.0167370.t006

Fig 5. The performance of the best model with respect to validation error on the validation set is described in panel A, by plotting true ADD for

each element of the test set against the prediction of the model. The identity function is plotted in the same frame for reference. Panel B is a similar plot

describing the performance of the model which minimized cross-validation error on the training set.

doi:10.1371/journal.pone.0167370.g005
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subset of features in data like ours in which the number of features is larger than the number

of data points. In this study, we have chosen to use a hand-tailored approach for feature selec-

tion in the form of our curated data sets and to rely on regularization to eliminate unhelpful

features in our non-curated data (Tables 1 and 5). However, here we endeavor to use several

feature selection algorithms to rank our features (i.e. microbial taxa) in terms of importance.

This comes with the important caveat that two or more apparently useless features can, in

combination, add accuracy to a regression technique, and that there is no absolute best method

for feature ranking. [23]

There are a number of feature selection algorithms, and these differ in several respects

such as computational tractability and suitability for specific datasets. Here we consider

three methods: F-value, a tree-based approach, and mutual information. The F-value method

of feature selection considers the coefficient that results from fitting a single feature with the

target using a linear model. It returns a p-value that represents the probability that the coeffi-

cient is zero, indicating that the feature is useless for linearly modeling the target. The tree-

based method ranks features on their tendency to occupy important positions in decision

trees built on the same dataset. Finally, the mutual information metric scores each taxon on

the amount of information (in the sense of information theory) that it has in common with

the dependent variable. The tree and mutual information metrics have the advantage of

being able to detect functional relationships that are more complex than simple linear corre-

lation. (Full description of these methods can be found in references [23] and [22] and in the

documentation for the Python scikit-learn module, version 0.18, which includes the machine

learning primitives we use in our code.) The results of our efforts toward feature selections

are summarized in Table 7.

As shown in Table 7, each method of feature selection produces a different list of the most

powerful features in the data set. Although each of the listed taxa is likely worthy of exploration

as a telltale organismal group for the prediction of postmortem interval, our conclusion that

analysis of the entire data set, rather than any specific taxon or even a small group of taxa, is

the best approach is vindicated by the different results that these methods of feature selection

produce.

Nevertheless, some taxa were identified as powerful indicators by two or even three meth-

ods, making these worthy of heightened scrutiny. For example, the phyla actinobacteria and

armatimonadetes were identified as top results by all three feature ranking methods, indicating

that the collectively considered behavior of organisms within these two phyla had considerable

value in our predictive model. Meanwhile, the phyla planctomycetes, verrucomicrobia, and

cyanobacteria were identified by two of the three models each, indicating that they have lesser,

but still important value in the predictive model (Fig 6).

However, it is important to recall that the total number of phyla in our complete dataset,

52, is relatively small and each encompasses hundreds or even thousands of bacterial species.

Therefore, it is not surprising that this would be the taxonomic level at which there is the most

agreement among the three methods of feature selection. In fact, the birthday paradox would

predict some level of agreement purely by chance. As we moved to lower taxonomic levels,

there was far less agreement among the models. This underscores how each taxon likely con-

tributes a small amount of information and the power of the predictive model is found in the

consideration of all of the bits of information collectively. The classes thermoleophilia and ery-

sipelotrichi; the orders myxococcales and erysipelotrichales; the families staphylococcaceae,

planococcaceae, and enterococcaceae; and the genera staphylococcus and vagococcus were all

identified as important features by two of three methods (Fig 7). No species was identified as

among the top five indicators by more than one method, underscoring our conclusions that

taxonomic levels higher than species are generally the most reliable for construction of a
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predictive model. This is not to say that species-level information is not important for the con-

struction of the predictive model. Rather, there are no individual species that have much pre-

dictive value on their own.

While the results of our feature selection efforts did reveal some bacterial taxa that pro-

vide valuable information for our predictive modeling, it is important to bear in mind that

the entire data set performs better than a curated collection of even the best performers. This

demonstrates the value of a “big data” approach toward building predictive algorithms and

the power of regression modeling in extracting valuable information from large amounts of

noisy data.

Table 7. For each taxon in the leftmost column, this table shows the five most useful organisms for prediction of ADD, as determined by three dif-

ferent ranking methods: F-value, a decision tree based approach, and mutual information. Unless otherwise indicated, terms refer to microbes located

in the ear.

Feature Ranking

F-value* Tree Mutual Information

Phylum armatimonadetes verrucomicrobia actinobacteria

planctomycetes armatimonadetes spirochaetes

verrucomicrobia actinobacteria armatimonadetes

actinobacteria planctomycetes firmicutes†

cyanobacteria thermodesulfobacteria† cyanobacteria†

Class thermoleophilia erysipelotrichi actinobacteria

erysipelotrichi clostridia verrucomicrobiae

fimbriimonadetes acidimicrobiia leptospirae

planctomycetia alphaproteobacteria bacilli

spartobacteria solibactereres thermoleophilia

Order solirubrobacterales clostridiales lactobacillales†

rhodospirillales erysipelotrichales lactobacillales

caulobacterales myxococcales thiotrichales

myxococcales xanthomonadales bacillales

erysipelotrichales chthoniobacterales leptospirales

Family nocardioidaceae staphylococcaceae enterococcaceae

bradyrhizobiaceae planococcaceae staphylococcaceae

solirubrobacteraceae enterococcaceae streptosporangiaceae†

caulobacteraceae pseudomonadaceae planococcaceae

acetobacteraceae veillonellaceae prevotellaceae

Genus caulobacter staphylococcus macrococcus

acidisphaera peptoniphilus vagococcus

phenylobacterium vagococcus symploca†

dactylosporangium pseudonocardia staphylococcus

nocardioides oenococcus pelomonas

Species virgibacillus salexigens staph. caprae actin. rutila

staph. fleurettii sporosarcina pasteurii staph. intermedius

dactylosporangium maewongense strep. tigurinus marinomonas basaltis

roseomonas terpenica enterococcus rottae staph. devriesei

nocardioides islandensis staph. epidermidis propion. granulosum

† located in the nose

* ranked by p-value

doi:10.1371/journal.pone.0167370.t007
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5 Conclusions

From this work, we can draw several conclusions. First, the correlation between species diver-

sity (or diversity at other taxa) and ADD is small, but likely real, at least for the ear swabs. In

the ear microbiome, diversity tends to be negatively correlated with ADD, whereas it seems to

be positively correlated in the nose, where the correlation is less pronounced.

Secondly, our regression attempts based on data from the nose microbes were not success-

ful, and were only marginally successful for data based on the ear microbes alone. However,

when the microbiota from both sites were considered jointly, the regression was clearly suc-

cessful, roughly doubling the accuracy of the dummy regressor, and yielding a model with a

mean absolute error of 55 ADD on the validation set. The model that achieved this was simple

k-nearest-neighbors regression, acting on the genus level data. Furthermore, we showed that

regularized linear regression on data at the phylum level may generalize to new instances even

better than k-neighbors. These are important findings as other postmortem microbial commu-

nity studies have focused on predictive value at a specific taxonomic level, e.g., genus. [6] Our

study highlights the importance of examining taxa at multiple levels simultaneously for predic-

tive value.

55 ADD represents about two days of decomposition during the warm months of summer-

time in Tennessee and most of the United States. An accuracy of ±2 days in an estimate of the

postmortem interval would be a substantial improvement, even in the best of circumstances,

over currently available estimation techniques, especially in the interval beyond the reach of

forensic entomology.

Fig 6. Some select high performing phyla, with ADD plotted against abundance. The vertical axis is normalized for each organism so that the relative

abundances are on a similar scale.

doi:10.1371/journal.pone.0167370.g006
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In comparing our findings to those of similar studies in this area, we find a great deal of cor-

roboration but also significant differences that warrant further study. To date, the most com-

prehensive examination of decomposition-related microbial succession led to the

development of a random-forest regression algorithm for predicting the postmortem interval

of a human or mouse cadaver. [24] Although that study reported an impressively thorough

characterization and analysis of the microbial ecology of the decomposition niche, the result-

ing predictive model had an average error rate of 2–3 days limited to the first two weeks of

decomposition. Thus, our k-nearest neighbor-based model exhibited greater accuracy, and

was useful over a longer period of decomposition time, than this previously described method,

despite the smaller sample size on which our model was built. It is possible, however, that our

small error range may be due, in part, to the homogenous nature of the decomposition envi-

ronment, as our data all come from one facility. For this reason, a multi-site study is now

needed to examine what role, if any, local environment plays in our ability to build a predictive

model. It is worth noting, however, that our samples were collected at various points through-

out the seasonal year over a period of 14 months.

The use of regression modeling itself has given mixed results in previous studies. For exam-

ple, Hauther, et al., found that regression analysis was not useful for the construction of a pre-

dictive algorithm using necrobiome samples and concluded that the complex ecosystem of

decomposition was too noisy for a machine learning approach, at least with only six cadavers

to sample from. [12] Instead, they focused on genera known to dominate the human large

intestine, from which samples were taken, and found that two of them, Bacteroides and

Fig 7. Some select high performing organisms from several taxa, with ADD plotted against abundance. The vertical axis is normalized for each

organism so that the relative abundances are on a similar scale.

doi:10.1371/journal.pone.0167370.g007
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Lactobacillus, displayed a quantitative correlation with the decomposition interval. Neither of

these genera were identified as informative by our machine-learning approach, but this is not

surprising given that the skin and the intestines are known to harbor vastly different commu-

nities of microbes. [1] Use of the necrobiome for the estimation of the postmortem interval

has now been explored by a variety of techniques, in a variety of settings, and taken from a

variety of sample sites. Our study is unique in that it examined bacteria taken solely from the

surface microbiome sampled from the nasal and auditory cavities. We found that neither of

these sites, when considered alone, were sufficient for constructing an accurate model using

machine learning. However, combining the data led to a dramatic improvement in the predic-

tive modeling. This argues that the skin microbiome holds potential for this potential forensic

strategy and that multiple sites should be explored with greater detail in future studies.

As in any machine learning application, our results would improve with the availability of

more data. Also, the promised performance estimates on our models depend on new data

being drawn from the same statistical distribution as our existing data. For this reason, any

new data collected would ideally be in a range of ADD which is of greatest interest to real

applications in forensic investigations. Because conjoining the ear and nose data proved suc-

cessful, it is natural to ask if data collected from an additional site on the cadaver would

improve regression accuracy further still. Only a large-scale study at multiple locations and

involving several swab sites can resolve these questions.

Nevertheless, we confidently predict that such an effort would produce a predictive algo-

rithm for estimating the postmortem interval for a given decedent with reliable accuracy. Such

a tool would be invaluable for forensic investigations throughout the country.
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