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Abstract: An extensive body of work has documented the antioxidant role of xanthophylls (lutein
and zeaxanthin) in human health and specifically how they provide photoprotection in human vision.
More recently, evidence is emerging for the transcriptional regulation of antioxidant response by
lutein/lutein cleavage products, similar to the role of β-carotene cleavage products in the modulation
of retinoic acid receptors. Supplementation with xanthophylls also provides additional benefits for
the prevention of age-related macular degeneration (AMD) and attenuation of Alzheimer’s disease
symptoms. Mammalian β-carotene oxygenase 2 (BCO2) asymmetrically cleaves xanthophylls as
well as β-carotene in vitro. We recently demonstrated that mouse BCO2 (mBCO2) is a functionally
palmitoylated enzyme and that it loses palmitoylation when cells are treated with β-carotene. The
mouse enzyme is the easiest model to study mammalian BCO2 because it has only one isoform,
unlike human BCO2 with several major isoforms with various properties. Here, we used the same
acyl-RAC methodology and confocal microscopy to elucidate palmitoylation and localization status
of mBCO2 in the presence of xanthophylls. We created large unilamellar vesicle-based nanocarriers
for the successful delivery of xanthophylls into cells. We demonstrate here that, upon treatment with
low micromolar concentration of lutein (0.15 µM), mBCO2 is depalmitoylated and shows partial
nuclear localization (38.00 ± 0.04%), while treatment with zeaxanthin (0.45 µM) and violaxanthin
(0.6 µM) induces depalmitoylation and protein translocation from mitochondria to a lesser degree
(20.00 ± 0.01% and 35.00 ± 0.02%, respectively). Such a difference in the behavior of mBCO2 toward
various xanthophylls and its translocation into the nucleus in the presence of various xanthophylls
suggests a possible mechanism for transport of lutein/lutein cleavage products to the nucleus to
affect transcriptional regulation.

Keywords: BCO2; palmitoylation; xanthophylls; large unilamellar vesicles; β-carotene

1. Introduction

Most consideration of the antioxidant function of xanthophylls, polar hydroxy
carotenoids, has focused on their chemical role in quenching excited triplet states of
singlet oxygen by virtue of their extended conjugated bond systems. However, there is
emerging evidence for a role of xanthophyll/xanthophyll cleavage products in modulating
transcriptional regulation of antioxidant gene pathways.

In respect of their best-known role, high dietary intake of xanthophylls may offer
protection against age-related macular degeneration (AMD), cancer and neurodegenerative
diseases [1,2]. While xanthophylls account for less than 20% of the total carotenoids in the
human diet, in the blood plasma the amount of xanthophylls increases to about 40% and is
increased even more in the brain and retina [3,4]. Thus, xanthophylls account for about 70%
of total carotenoids in all brain regions. Xanthophylls are selectively concentrated in the
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most vulnerable regions of polyunsaturated lipid-enriched membranes, such as in the reti-
nal photoreceptor outer segments [5]. This localization is ideal for macular xanthophylls to
act as lipid-soluble antioxidants, which is the most likely mechanism of protection against
photooxidation [6]. Additionally, the high membrane solubility and preferential transmem-
brane orientation of macular xanthophylls [6,7] enhance their chemical and physical stabil-
ity in retina and brain membranes [8] and maximize their protective action against oxidative
stress in these organs [9]. Xanthophylls are capable of quenching excited triplet states of
potent singlet oxygen photosensitizers. Free all-trans-retinal may absorb light and transfer
energy from its excited triplet state to molecular oxygen, generating singlet oxygen [10].
It is postulated that the close proximity of xanthophylls allows effective energy transfer
from excited all-trans-retinal to xanthophyll and prevents singlet oxygen generation by this
photosensitizer [11]. By this mechanism, the largest part of excess energy can be transferred
from potentially harmful triplets of photosensitizers to xanthophylls and dissipated as heat.
The ratio of zeaxanthin (and meso-zeaxanthin) to lutein is higher in the macula where the
strongest light is received compared to peripheral low-light-vision regions of the eye [3]. A
portion of dietary lutein is converted to meso-zeaxanthin, a stereoisomer of zeaxanthin,
presumably in retinal pigment epithelium (RPE) by RPE65 isomerase [12]. This preference
for zeaxanthin has been suggested to be due to a greater antioxidant capacity, possibly due
to the longer system of conjugated double bonds and membrane-stabilizing function of
zeaxanthin (and meso-zeaxanthin) compared to lutein [12,13]. Xanthophylls are delivered
to the retina with the help of high-density lipoprotein (HDL) [14] and xanthophyll-binding
proteins [15]. Xanthophyll-binding proteins have been described for both zeaxanthin and
lutein [16]. However, the role of β-carotene oxygenase 2 (BCO2), an enzyme that can cleave
xanthophylls [17], is not thoroughly studied.

BCO2 is present in the brain, retina and RPE; everywhere xanthophylls accumulate.
BCO2 is well characterized as a carotenoid metabolizing enzyme [18–21] that is widely dis-
tributed in tissues, including the retina, RPE, skeletal muscle, small intestine and liver [22].
A deficiency of BCO2 was found to be associated with accumulation of carotenoids in the
adipose tissues [23], such as subcutaneous adipose tissue. This leads to the occurrence of
yellow fat in sheep [24], cow [25], and yellow skin in chicken [26]. The abSNP rs2250417 in
BCO2 has one of the strongest instances of statistical significance for association with AMD
of carotenoid metabolism genes [27]. The two minor alleles for SNP rs2250417 in BCO2
account for an increase in risk for AMD by almost 50% [27]. Additionally, BCO2 deficiency
in mice leads to stimulation of oxidative stress and inflammation in hypothalamic tissues
on a low carotenoid diet [28].

To better study the role of BCO2 in metabolism of xanthophylls, we developed
xanthophyll-containing large unilamellar vesicles (LUVs) to efficiently deliver xantho-
phylls to cells. We chose to express mBCO2 in human cell culture because it has only
one major isoform while human and monkey BCO2 have several major isoforms. Only
one of these has a N-terminal mitochondrial signal and it is still hotly debated if this
isoform manifests as an active BCO2 enzyme [17,29–31]. Here, using LUVs, we describe
that lutein modulates the palmitoylation status of mouse BCO2 (mBCO2) and changes its
cellular localization in HEK293F cells from mitochondria to nucleus upon binding. We
have detected the same effect for zeaxanthin and violaxanthin but to a lesser degree and
our modeling analysis suggests a possible explanation of the difference. Accumulation in
the nucleus of mBCO2 loaded with xanthophylls could directly affect gene expression and
may provide a mechanism whereby xanthophylls/xanthophyll cleavage products could
elicit a transcriptional response to oxidant stress.

2. Materials and Methods
2.1. Materials

1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dimyristoyl-sn-glycero-
3-phospho-L-serine (sodium salt) (DMPS), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine
(DPPC), 1,2-dipalmitoyl-sn-glycero-3-phospho-L-serine (sodium salt) (DPPS) were pur-
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chased from Avanti Polar Lipids, Inc. (Alabaster, AL, USA). (R)-(+)-limonene and tricine
were used as received (Sigma-Aldrich, St. Louis, MO, USA). Nitrogen-purged hexane,
dichloromethane (DCM) and chloroform (CHCl3) were passed through an activated alu-
mina column, dried with CaSO4, and stored over 4Å molecular sieves. All kinetic exper-
iments were performed with the same batch of samples. Lutein and violaxanthin were
purchased from Cayman Chemicals (Ann Arbor, MI, USA), and zeaxanthin (65%) from
Toronto Research Chemicals (Toronto, ON, Canada).

2.2. Preparation of Large Unilamellar Vesicles (LUVs) with Xanthophylls

Aqueous lipid dispersions of LUVs were prepared by first mixing the required
amounts of lipids, carotenoids, and limonene (used here for better solubilization of
carotenoids in the lipid bilayer) in chloroform. All samples were prepared using similar
protocol to the one described previously [32]. Amounts of lipids were the same, 10 mg/mL,
limonene: lipid = 1:1 (mol/mol), while amounts of carotenoids were different: 0.5 mg
zeaxanthin in 1.5 mL of buffer (using DPPC/DPPS or DMPC/DMPS lipids); the lutein
preparation contained 0.25 mg lutein in 1.5 mL of buffer (using DMPC/DMPS lipids);
and the violaxanthin preparation contained 0.25 mg violaxanthin in 1.5 mL of buffer
(using DMPC/DMPS lipids). All samples were prepared with a mole fraction of 7% PS
(sn-glycero-3-phospho-L-serine) to avoid multilamellar stack formation [33]. The solvent
was evaporated with an inert gas stream to constant weight. The lipid film was hydrated
with 100 mM tricine-KOH pH 8.0 buffer (prepared with H2O) at room temperature with
intermittent gentle vortex mixing. The lipid suspension was passed through 0.4, 0.2, 0.1 µm
Nucleopore polycarbonate membranes (21 times through each membrane) using a mini-
extruder (Avanti Polar Lipids). The LUVs were mixed with hexane and shaken gently for
20 min to remove limonene as confirmed by GC-MS. The LUVs were then decanted from
the organic layer and the aqueous solution was purged with nitrogen and degassed to
remove traces of hexane.

2.3. Generation of Expression Vectors

Mouse BCO2 cDNAs were prepared as described [34] and used to generate vectors
for the expression of BCO2 in mammalian cells. Briefly, BCO2 was subcloned into the
bicistronic expression vector pVitro2 (InvivoGen, San Diego, CA, USA) and into the Gate-
way cloning vector pcDNA6.2c-Lumio-DEST vector (Thermo Fisher (Invitrogen), Carlsbad,
CA, USA) to generate untagged or C-terminal V5/lumio tagged versions of mouse BCO2,
respectively. All constructs and mutants were sequenced to verify the orientation and
accuracy of the ORFs and/or the changes introduced.

2.4. Cell Culture

Human 293F FreeStyle (Thermo Fisher, Invitrogen) suspension cells were grown in
serum-free FreeStyle 293 expression medium (Invitrogen) and transfected according to
the previously published protocol [35]. Briefly, a typical transfection experiment used
3 × 107 cells in 28 mL of FreeStyle medium mixed with 2 mL of OptiMem-I reduced serum
medium containing 40 µL 293fectin transfection reagent (Invitrogen) and 20 µg of each
expression plasmid under study. Cells were grown with shaking at 125 rpm on an orbital
shaker platform in a 37 ◦C incubator with a humidified atmosphere of 8% CO2 for 48 h
total. In total, 200 µL of vesicles with xanthophylls were added, incubating for 5 hr under
standard growth conditions.
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2.5. Antibodies

Rabbit polyclonal antibody 186 was custom made against the mouse BCO2 multiple
antigenic peptides (MAP)-SKFLQSDTYKANSAG peptide and 7055 rabbit polyclonal anti-
body was produced by co-immunization of the two human BCO2 MAP-SHENLHQEDL
EKEGGIE and MAP-QDNGRTLEVYQLQNLRKAG peptides.

2.6. Characterization of Large Unilamellar Vesicles (LUVs) with Xanthophylls
2.6.1. Dynamic Light Scattering (DLS)

The hydrodynamic diameter and polydispersity index (PDI) were measured at 30 ◦C
on a Malvern Nano-ZS zetasizer (Malvern Instruments Ltd., Worcestershire, UK) equipped
with a 4 mW helium-neon laser operated at 633 nm with a fixed scattering angle of 173◦.
An 80 µL sample was placed into disposable cuvettes without dilution (70 µL, center height
8.5 mm, BRAND® UV-Cuvette micro). Data were processed using non-negative least
squares (NNLS) analysis.

2.6.2. GC–MS Analysis

A Shimadzu GC-2010 Plus system with an AOC-20i Auto-Injector and a GCMS-
QP2010 SE ion trap MS system (Shimadzu, Kyoto, Japan) was used for GC-MS analysis
using the electron impact ionization mode. Chromatographic separations were performed
on a Shimadzu SH-Rxi-5SiL MS capillary column (30 m × 0.25 mm, 0.25mm film thickness;
non-polar phase: Crossbond™ 100% dimethyl polysiloxane as stationary phase). The
temperatures of the injector and the GC-MS transfer line were 170 and 280 ◦C, respectively.
The carrier gas was ultrahigh purity helium (Airgas); the flow rate was 1.0 mL/min. The
mass spectrometer was operated using the following parameters: the ratio of the split
injection was 20:1, ionization voltage was 70 eV; ion source temperature was 200 ◦C; scan
mode, 30.0–500.0 (mass range); scan rate, 5000 amu/s, and 3.68 scans/s; start time was
2 min. Electron multiplier (EM) voltage was obtained from autotune. The oven temperature
was programmed to hold at 60 ◦C for 2 min, increase to 300 ◦C at 50 ◦C/min, and hold at
300 ◦C for 3 min.

To measure the residual limonene in LUVs, a 100 µL aliquot is mixed with 1.9 mL
of hexane and 50 mg of CaSO4 (used here to disrupt the LUVs) and stirred for 30 min to
extract limonene. The data were averaged from at least three independent measurements.

2.6.3. Small-Angle X-ray Scattering (SAXS)

The structural characteristics of LUVs were studied using small-angle X-ray scattering
(SAXS). SAXS patterns were obtained using a Bruker NanoStar instrument equipped with
a turbo rotating anode operated at 50 kV and 50 mA, evacuated beam path, two-pinhole
collimators, Göbel mirrors selecting Cu-Kα radiation, and a large 2D Vantec-2000 detector.
Samples were measured in 1.5 mm quartz capillaries; the measurement time was 3 h.
Scattering patterns were collected in the range 0.006 Å-1 < q < 0.35 Å−1. The sample to
detector distance of 67.8 cm was verified using silver behenate as a calibration standard.
The SAXS patterns were corrected for sample transmission and empty cell scattering. One-
dimensional (1D) SAXS patterns were obtained by azimuthal integration of the resulting
2D images around the beam center, to obtain the intensity (ISAXS) vs. q profiles. The
magnitude of the scattering vector was calculated as q = (4π/λ) sin(◦/2), where θ is the
scattering angle and λ is the X-ray wavelength for Cu-Kα (λ = 1.5418 Å).
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2.6.4. Spectroscopic Determination of the Concentration of Xanthophylls

The concentrations of xanthophylls were measured using a 2 mm optical path quartz
cell in an Agilent Cary 60 UV-Vis spectrophotometer. To measure the concentration of
xanthophylls in LUVs, a 10 µL aliquot is mixed with 300 µL of DMF. Standards and
samples were measured at least 3 times and the data were averaged. Final concentrations of
xanthophylls in LUVs measured by UV/Vis: zeaxanthin 0.038 g/L (DPPC/DPPS, 0.45 µM
final), zeaxanthin 0.14 g/L (DMPC/DMPS); lutein 0.0125 g/L (DMPC/DMPS, 0.15 µM
and 0.06 µM final); violaxanthin 0.07 g/L (DMPC/DMPS, 0.6 µM final).

2.7. BCO2 Protein Palmitoylation Was Analyzed by Acyl-Resin-Assisted Capture (Acyl-RAC)

For cell lysis and the Acyl-RAC assay, we followed the same protocol as previously
described in detail, with slight modifications [34,36]. BCO2-overexpressing HEK293F
cells were washed with 1X-PBS and resuspended in lysis buffer (50 mM HEPES (pH 7.4)
containing 150 mM NaCl, 5 mM EDTA, 1% glycerol, and 1X complete protease inhibitor
cocktail (Roche Diagnostics)). Resuspended cells were lysed using N2 cavitation followed
by centrifugation at 900× g for 10 min at 4 ◦C to remove the cell debris and nuclei. The
clarified supernatant was then subjected to centrifugation at 20,000× g for 30 min at 4 ◦C
to obtain heavy membrane (mitochondrial) pellet and post-mitochondrial supernatant
(light membrane and cytosol) fractions. Typically, a 1000 µg amount of resuspended heavy
membrane pellet protein (resuspended in lysis buffer containing 0.1% Triton X-100) was
used for palmitoylation detection assay. Briefly, free cysteine sulfhydryl (-SH) groups were
blocked with 0.5% (v/v) S-methyl methanethiosulfonate (MMTS) containing blocking buffer
for 15 min at 40 ◦C. The blocked protein samples were then subjected to acetone protein
precipitation. The protein pellet was then resuspended in 550 µL 100 mM HEPES containing
5 mM EDTA and 1% SDS (v/v). The samples were then divided into two 250 µL aliquots
(containing 400 µg protein amount) and the remaining 50 µL was used as an input. The
samples were treated with 250 mM hydroxylamine (NH2OH, HAM) or control (250 mM
NaCl). To capture proteins with free -SH groups, each sample was mixed with 10 mg
activated thiol-sepharose 4B beads (Sigma) and incubated for 2 h at room temperature with
continuous end-over-end rotation. After incubation, the beads were washed, and bound
proteins were eluted by boiling the beads with an aliquot of 50 µL elution sample buffer.
The input and eluted fractions from “HAM” and “control” samples were separated by
SDS-PAGE and analyzed by Western blotting.

2.8. Immunocolocalization Studies BCO2 Protein in Different Organelles upon Substrate
Treatment Using Confocal Microscopy

BCO2-overexpressing COS7 cells (1 × 106 cells/mL) seeded on poly L-lysine coated
18 mm coverslips were analyzed by immunofluorescence microscopy to determine the
localization of BCO2 protein in different subcellular organelles as described previously [34].
Briefly, COS7 cells were transfected with 20 µg of BCO2-Lumio V5 tag plasmid using
Fugene® 6 transfection reagent (1:6 DNA: Fugene 6 ratio). After 43 h, BCO2-transfected
cells were treated with substrate-encapsulated LUVs for 5 h. Fixed cells were immunos-
tained with V5 monoclonal and polyclonal antibodies alone and together with primary
antibodies specific for different subcellular organelles (ER (PDIA3), Golgi (MAN2A1), mito-
chondria (COX IV and HSP60), and peroxisomes (PMP70)), followed by Alexa fluorophore-
conjugated secondary antibodies (Invitrogen). Cell nuclei were stained with DAPI (1 µg/µL
solution; Sigma). Slides were then visualized with a Zeiss LSM 700 confocal microscope
using a 40X oil immersion lens/1.4-NA and Zeiss ZEN software. Pearson’s correlation
coefficient values were determined for analysis of the co-localization of BCO2 protein
and different organelles and represented as mean ± standard deviation. For nuclear co-
localization of BCO2 protein, we measured the Pearson’s correlation coefficient of BCO2
with DAPI-stained nuclei using the results from three independent experiments: single
labeling of BCO2 “alone”, double labeling of BCO2 with mitochondrial markers COX IV
and HSP60. Results shown were typical of a minimum of three independent experiments
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with 5–10 fields of view containing on average 1–10 cells/field of view. For quantifi-
cation and statistical analyses, at least 100 cells were observed for each organelle and
nuclear co-localization.

2.9. Construction of Models and Ligand Docking Simulations

A model of mBCO2 was constructed with the Swiss-Model program using the RPE65
4F30 crystal as a template [37]. The loop carrying the PDPCK motif is unresolved in this
crystal and is given in this model as a random loop. To model the unresolved areas, the
mBCO2 sequence with distances specified for the catalytic histidines was submitted to
the I-Tasser server [38–40]. Five models were obtained; however, the side chains of the
Fe-coordinating histidines and glutamates were displaced relative to both the Swiss-Model
and RPE65 crystals. The sidechains of the histidines and glutamates of the top I-Tasser
model were modified based on the Swiss-Model and the RPE65 crystal structures. Finally,
to model an active state, the Fe center and the O2 and OH of the VP14 crystal (PDB: NPE3)
were aligned with both models and integrated into the models. Clashes resulting from
the introduction of O2 and OH on the Fe center were corrected by torsioning the relevant
residues. Ligand dockings were carried out using Autodock Vina [41]. In general ligand
restraints chosen allowed for all possible torsions.

3. Results
3.1. Xanthophyll Delivery System

LUVs were prepared by hydration of lipid with carotenoids and assisting limonene, fol-
lowed by extrusion and extraction of limonene to yield unilamellar vesicles with a narrow
size distribution, as confirmed by SAXS and DLS, respectively (Figure 1). The amount of
carotenoids associated with LUVs was determined by UV-vis spectroscopy following a pre-
viously published protocol [42]. Previously, it was shown that, depending on the structure
of the substrate, as well as on the composition of lipids, hydrophobic carotenoids are ori-
ented differently in the phospholipid bilayer of delivery vesicles [43]. Thus, symmetrically
oxy-functionalized carotenoids intercalate into phospholipid membranes perpendicular
to the membrane surface [44], while fully non-polar β-carotene is intercalated parallel to
the surface within the hydrophobic core of phospholipid bilayers [44,45]. In addition, the
molecular length of a carotenoid affects the degree of its intercalation into phospholipid
bilayers, depending on the membrane thickness [42]. In fact, zeaxanthin (C40) was better
incorporated into unilamellar vesicles of dimyristoylphosphatidylcholine (n-C14), whereas
decaprenozeaxanthin (C50) was better adopted in unilamellar vesicles of dipalmitoylphos-
phatidylcholine (n-C16). On the other hand, the inclusion of large hydrophobic molecules
into the phospholipid bilayer can change the structure as well as the thickness of vesi-
cles [46]. To understand the membrane structure of vesicles as well as the organization of
carotenoids within DMPC and DPPC LUVs with associated zeaxanthin, X-ray scattering
measurements were performed. The phosphate-phosphate (p-p) thicknesses obtained
from the SAXS data fit gave values of ~35.1 Å for DMPC-zeaxanthin membranes and
~41.2 Å for DPPC-zeaxanthin membranes, which is the typical thickness for DMPC and
DPPC-carotenoid LUVs [42,46]. The length values (Figure 1) of the carotenoid (lutein or
zeaxanthin) correspond well to the length of the lipophilic segment of DMPC, but not
DPPC. This is the reason for the much weaker incorporation of lutein (or zeaxanthin) into
DPPC membranes compared to DMPC [42,47].
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Figure 1. Top: Intramolecular dimensions of carotenoids and DMPC/DPPC bilayer as calculated by molecular
mechanics [42,47]. The length of the carotenoid (lutein or zeaxanthin) corresponds to the length of the lipophilic seg-
ment of the DMPC phospholipid (double the average distance between the carbonyl group and the methyl group of the
DMPC), and does not match the length of the lipophilic segment of the DPPC. Bottom: (a) SAXS data of DMPC-zeaxanthin
(black) and DPPC-zeaxanthin (blue) LUVs; (b) Kratky plot from SAXS data, supporting the formation of unilamellar
LUVs; and (c) Size distribution and the average diameter of DMPC-zeaxanthin (black) and DPPC-zeaxanthin (blue) LUVs
measured by DLS (Figure S1).

3.2. Palmitoylation of Mouse BCO2 (mBCO2) in the Presence of Xanthophylls

We previously established that mBCO2 in eukaryotic HEK293F cells is palmitoylated.
We discovered that in the presence of the mBCO2 substrate β-carotene mBCO2 loses
palmitoylation [34]. Knowing that BCO2 cleaves xanthophylls [17,48,49] we decided to
run palmitoylation assays to study the palmitoylation status of mBCO2 in the presence
of xanthophylls. We first tried to deliver xanthophylls with the detergent Tween 40 [50].
We found that a higher concentration of Tween 40 (0.1%) led to HEK293F cell apoptosis
as was previously described for HepG2 cells [51], while a lower concentration (0.01%)
eluted mBCO2 from membranes during the Acyl-RAC assay even without hydroxylamine
treatment (data not shown). Therefore, we established a new method to deliver xantho-
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phylls without detergents using unilamellar LUVs as described above. The content of
xanthophylls in the HEK293F cells after 5 h of treatment was similar to a Tween 40 delivery
system in ARPE-19 cells (1–2%) (Figure S2) [52]. Subsequently, we used the acyl-RAC
method as described previously. The membrane fraction of HEK293F cells expressing
mBCO2 was subjected to treatment with hydroxylamine (+HAM) and an equal portion
of the fraction was treated with 250 mM NaCl (−HAM) which served as control. In the
absence of substrates, mBCO2 protein showed an intense protein band in the HAM-treated
sample (Figure 2A–D untreated panels, full Western blots are presented in Figure S3), while
there was no protein band in the control NaCl-treated sample, indicating S-palmitoylation
of BCO2 protein. In contrast, when cells were pre-treated with 0.15 µM lutein and 0.06 µM
in DMPC/DMPS micelles, no protein band was detected in the HAM-treated sample
(Figures 2A,B and S3A,D, lutein panel). Similar results were obtained with DPPC/DPPS-
encapsulated zeaxanthin (0.45 µM) (Figures 2C and S3B) and DMPC/DMPS-encapsulated
violaxanthin (0.6 µM) (Figures 2D and S3C).

Figure 2. mBCO2 loses its palmitoylation in the presence of substrate. The palmitoylation status of mBCO2 protein was ana-
lyzed by Acyl-RAC assay in the presence of different substrates: (A) 0.15 µM lutein; (B) 0.06 µM lutein; (C) 0.45 µM zeaxan-
thin; and (D) 0.6 µM violaxanthin. Equal amounts (~50 µg) of the total (indicated as “input”) and eluted protein from control
(indicated as “-”) and hydroxylamine (HAM)-treated (indicated as “+”) were subjected to SDS-PAGE and immunoblotting.
Western blot results are representative of three independent experiments as shown in the Supplementary figures.

3.3. Sub-Cellular Localization of mBCO2 with and without Xanthophylls. Shuttling the Enzyme to
the Nucleus

Next, we examined BCO2 localization by immunofluorescence microscopy using
mBCO2 transfected COS7 cells with various organellar markers (for mitochondria, per-
oxisomes, endoplasmic reticulum (ER), and Golgi). We confirmed that V5 tag antibodies
recognize specifically mBCO2-V5 protein in transfected HEK293F cells (Figure S4). For
nuclear labeling, we used DAPI nuclear stain. Immunofluorescence results as shown in
Figure 3A (upper left panel) revealed the extensive mitochondrial colocalization with
both COXIV and heat-shock protein 60 (HSP60) (Figure 3A, upper left panel). We did not
observe any colocalization of mBCO2 with other organelles (Figure 3A, bottom left panel,
and 4B) as indicated by their low correlation coefficient score compared with mitochondrial
localization. Our data are in full agreement with previous results for human BCO2 [21,34].
However, upon addition of substrates to mBCO2 we observed that a fraction of mBCO2
colocalizes with the nuclear DAPI stain and the colocalization with mitochondrial markers
is significantly decreased (Figure 3A, top right panel, C). The percent of colocalization with
nuclear marker is higher when cells are treated with lutein and violaxanthin (Figure 4A–C)
than with zeaxanthin (Figure 5A–C).



Antioxidants 2021, 10, 413 9 of 16

Figure 3. Characterization of subcellular localization of mBCO2 treated with lutein. (A) COS7 cells expressing mBCO2
protein treated with 0.15 µM lutein for 5 h were immunoassayed using antibodies against V5 tag and different organelle
marker proteins as indicated in the Materials and Methods section. Pearson’s correlation coefficient for colocalization of
V5-tagged mBCO2 protein with different organellar marker proteins (B) and with nucleus (C); * p ≤ 0.05; *** p ≤ 0.0005.

Figure 4. Characterization of subcellular localization of mBCO2 treated with zeaxanthin. (A) COS7 cells expressing V5-
tagged mouse BCO2 protein treated with 0.45 µM zeaxanthin for 5 h were immunoassayed using antibodies against V5 tag
and different organelle marker proteins as indicated in the Materials and Methods section. Pearson’s correlation coefficient
s were calculated for colocalization of V5-tagged mBCO2 protein with different organellar marker proteins (B) and with
nucleus (C); * p ≤ 0.05; *** p ≤ 0.0005.
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Figure 5. Characterization of subcellular localization of mBCO2 treated with violaxanthin. (A) COS7 cells expressing
mBCO2 protein treated with 0.6 µM violaxanthin for 5 h were immunoassayed using antibodies against V5 tag and different
organelle marker proteins as indicated in the Materials and Methods section. Pearson’s correlation coefficients were
calculated for colocalization of V5-tagged mBCO2 protein with different organellar marker proteins (B) and with nucleus
(C); * p ≤ 0.05; *** p ≤ 0.0005.

When we performed the experiment using a lower concentration of lutein (0.06 µM)
we observed that the percent colocalization of BCO2 in the nucleus decreased in a lutein
concentration-dependent manner (Figure 6A–C). We have previously observed mBCO2
colocalization with the nuclear DAPI stain when cells were treated with β-carotene [34].
It correlates with our observation from the acyl-RAC assay that residual mBCO2 palmi-
toylation is seen in some samples in the presence of zeaxanthin, violaxanthin and a low
concentration of lutein (Figure S3).

3.4. Modeling of Xanthophyll Docking in Mouse BCO2

To understand these findings, we performed modeling of substrate (lutein, zeaxanthin
and violaxanthin) docking in mBCO2. The Swiss-Model random coil model of the bovine
RPE65 4F30 crystal with the helical -PDPCK- containing loop modeled in (using I-TASSER
as described in Methods) was used as a basis to model mBCO2. We observed the highest
binding energy to the Swiss-Model model of mBCO2 protein with lutein and the lowest
with zeaxanthin. However, zeaxanthin binding energy significantly increased in Model1
(clash-free I-TASSER model which corrected the catalytic H and E residues orientation from
the Swiss-Model model) docking simulation, while lutein and violaxanthin binding energy
did not change (Table 1). Additionally, zeaxanthin did not line up well in the mBCO2 active
site and curled up in both of the models (Figure 7A,B).
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Figure 6. (A) Cellular Localization of V5-tagged mouse BCO2 with and without lutein: mBCO2 with and without 0.15 µM
lutein; (left panel) mBCO2 with and without 0.06 µM lutein; (right panel). Pearson’s correlation coefficients were calculated
for colocalization of V5-tagged mBCO2 protein with nucleus (B).

Table 1. AutoDock Vina modeling of the affinity of carotenoids to mBCO2. The lowest (best) docking
energy is used.

Carotenoid SwissPro Model I-TASSER Model1

violaxanthin −11.0 −10.8
zeaxanthin −11.8 −10.1

lutein −10.5 −10.4
β-carotene −11.8 −10.6



Antioxidants 2021, 10, 413 12 of 16

Figure 7. Visualization of carotenoid docking (A) on the mBCO2 protein I-TASSER model (lutein in green and β-carotene in
purple, zeaxanthin in red and protein in cyan) and (B) on the mBCO2 protein Swiss-Model model (violaxanthin in yellow,
lutein in cyan, zeaxanthin in red and protein in green).

4. Discussion

Here we show that xanthophylls affect the palmitoylation status of mBCO2 and direct
translocation of the enzyme to the nucleus where xanthophylls could modulate gene
expression and exert antioxidant properties through activation of cellular oxidative stress
response genes. To accomplish this, we developed a new unique non-disruptive way for
membranes to deliver xanthophylls to cells. Thus, we produced LUVs with xanthophylls by
using limonene to assist solubilization of the xanthophyll in bilayers made of phospholipids
of the appropriate size. Our findings expand our previous findings regarding substrate-
induced depalmitoylation and organellar relocalization of mBCO2 [34] and suggest a
common effect of carotenoids on this enzyme.

The catalytic activity of mBCO2 towards certain oxidative metabolites of zeaxanthin
was recently documented [17]. There are numerous other xanthophylls in the human diet.
For example, violaxanthin is a diepoxy derivative of zeaxanthin and accumulates in a
significant amount in human ovaries [53]. However, it was not known if it is a substrate
and if mBCO2 could cleave it. Our results suggest that it does. It will be useful to better
understand substrate structural requirements for mBCO2 function in cells.

Xanthophylls are well known for their antioxidant protective properties which may
play a role in delaying chronic diseases. Despite this, it is still far from clear how xantho-
phylls exert the full extent of their antioxidant properties [54]. A widely proposed pathway
is that they dissipate excess energy from potentially harmful oxidants, such as excited triplet
states of singlet oxygen, by virtue of their extended conjugated bond systems and thereby
protect membranes from oxidant stress [11]. Recently, however, a body of literature has be-
gun to accumulate, pointing to direct regulation of gene expression by xanthophylls [50,55].
This would be analogous to the role of β-carotene metabolites in transcriptional regula-
tion: β-apocarotenoids have been recently found to function as transcriptional regulators,
specifically as nuclear receptor antagonists, which inhibit retinoic acid activities [56–59].
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In this regard, lutein has been shown to activate Nrf2, an emerging regulator of cellular
resistance to oxidants, and to affect Nrf2 pathway genes in retinal cells [50,60]. It has
been demonstrated that lutein effectively protects ARPE-19 from damage generated by
hyperglycemia by activating Nrf2 through its regulators, suggesting a preventive role of
lutein against diabetic retinopathy [60]. How lutein (and other carotenoids/carotenoid
metabolites) might enter the nucleus occurs is currently unknown.

In this respect, we previously described that presence of β-carotene changes the
palmitoylation status of mBCO2 and that we can see residual colocalization with the
nucleus [34]. Thus, our results with lutein, zeaxanthin and violaxanthin extend these
prior findings by demonstrating that, generally, mBCO2 is palmitoylated in the absence
of substrates and that it loses palmitoylation when substrates are present in the cells.
Therefore, it prompts us to propose that loss of palmitoylation upon substrate-treatment
somehow influences the BCO2-mitochondrial localization and promotes the shuttling of
BCO2 to the nucleus. The mechanism of substrate bound-BCO2 shuttling to the nucleus is
still unclear and needs to be investigated in further detail to explore the unclear function
of BCO2 in the nucleus. Differences in binding of substrates to mBCO2 as demonstrated
in our molecular docking experiments could define differences in nucleus shuttling and
antioxidant effect of the various xanthophylls. Additionally, it is important to further study
if mBCO2 could work as a transporter of xanthophylls and their metabolites to the nucleus
(in addition to β-carotene and its metabolites), and to elucidate the potential mode of
action of xanthophylls and their enzymatic metabolites on gene expression in relation to an
oxidative stress response, in addition to their quenching properties.

Supplementary Materials: The following are available online at https://www.mdpi.com/2076-
3921/10/3/413/s1, Figure S1: DLS data for LUVs with xanthophylls; Figure S2: Detection of
mouse BCO2 palmitoylation by acyl-RAC assays. Raw Western blots; Figure S3: mBCO2 protein
expression in the COS7 cells transfected with V5-tagged mBCO2. COS7 cells expressing mBCO2
protein treated with different substrates for 5h were grown on poly L-lysine coated coverslips
and subjected to immunolocalization studies using confocal microscopy. For immunoblotting,
post-nuclear supernatant was separated by SDS-PAGE. The presence of V5-tagged mBCO2 was
probed by immunoblotting with rabbit polyclonal anti-mouse BCO2 (green) and mouse monoclonal
anti-V5 (red) antibodies.
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