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Abstract: The discriminative correlation filters-based methods struggle deal with the problem of
fast motion and heavy occlusion, the problem can severely degrade the performance of trackers,
ultimately leading to tracking failures. In this paper, a novel Motion-Aware Correlation Filters
(MACF) framework is proposed for online visual object tracking, where a motion-aware strategy
based on joint instantaneous motion estimation Kalman filters is integrated into the Discriminative
Correlation Filters (DCFs). The proposed motion-aware strategy is used to predict the possible region
and scale of the target in the current frame by utilizing the previous estimated 3D motion information.
Obviously, this strategy can prevent model drift caused by fast motion. On the base of the predicted
region and scale, the MACF detects the position and scale of the target by using the DCFs-based
method in the current frame. Furthermore, an adaptive model updating strategy is proposed to
address the problem of corrupted models caused by occlusions, where the learning rate is determined
by the confidence of the response map. The extensive experiments on popular Object Tracking
Benchmark OTB-100, OTB-50 and unmanned aerial vehicles (UAV) video have demonstrated that
the proposed MACF tracker performs better than most of the state-of-the-art trackers and achieves a
high real-time performance. In addition, the proposed approach can be integrated easily and flexibly
into other visual tracking algorithms.

Keywords: visual tracking; correlation filters; motion-aware; adaptive update strategy; confidence
response map

1. Introduction

Visual object tracking is one of the most popular fields in computer vision for its wide applications
including unmanned vehicles, video surveillance, UAV, and human-computer interaction, where the
goal is to estimate the locus of the object given only by an initial bounding box from the first frame in
the video stream [1]. Although significant progress has been achieved in recent decades, accurate and
robust online visual object tracking is still a challenging problem due to the parameters of fast motion,
scale variations, partial occlusions, illumination changes and background clutters [2].

In recent decades, visual object tracking has been widely studied by researchers resulting in a
large body of work. The most relevant works, which had been tested on the benchmark datasets of
OTB-50 [3], OTB-100 [4], and the Visual Object Tracking benchmarks of VOT-2014 [5], and VOT-2016 [6],
are discussed below.

In general, visual object tracking approaches can be broadly classified into two categories,
generative methods [7–13] and discriminative methods [14–25]. The generative methods use the
features extracted from the previous frame to establish the appearance model of the target, and
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then search for the most similar region and locate the position of the target in the current frame.
Robust Scale-Adaptive Mean-Shift for Tracking (ASMS) [8] and Distractor-Aware Tracker (DAT) [7]
are the two most representative trackers in generative methods. ASMS is a real-time algorithm using
the color histogram features for visual tracking where a scale estimation strategy is added to the
classical mean-shift framework. However, it is easily distracted by similar objects in the surroundings.
The improved method DAT is a distractor-aware tracking algorithm based on the color probabilistic
model of the foreground and the background. It uses the Bayesian method to determine the probability
of each pixel belonging to the foreground or background to suppress similar objects in the vicinity.
However, these methods make the trend of scale shrink for the use of color features where the edge
pixels are always overlooked. Meanwhile, the discriminative approaches which are also called as
‘track-by-detection methods’ are popular for their high accuracy, robustness, and real-time performance.
These methods employ machine-learning techniques to train classifiers by numbers of positive and
negative samples extracted from the previous frame, and then use the trained classifiers to find the
optimal area of the target and locate the position of the target. Among the discriminative approaches,
the Discriminative Correlation Filter-based (DCF-based) approach is one of the most popular approach.

1.1. DCF-Based Trackers

Lately, Discriminative Correlation Filters (DCFs) have been extensively applied to visual object
tracking in computer vision. It was introduced into the visual tracking fields by Bolme and colleagues
in the article visual object tracking using adaptive correlation filters [1]. It named by Minimum Output
Sum of Squared Error (MOSSE) which produced astonishing results with tracking speed reaching
about 700 Frames Per Second (FPS). Thereafter, numerous improved algorithms [14–17,26–28] based
on DCFs have been published with accurate and robust tracking results by sacrificing the tracking
speed. The DCF technique is a computationally efficient process in the frequency domain transformed
by fast Fourier transform (FFT) [1,29,30]. It is a supervised method for learning a linear classifier
or a linear regressor, which trains and updates DCFs online with only one real sample given by the
bounding box and various synthetic samples generated by cyclic shift windows. Then the trained
DCFs are used to detect the position and scale of the target in the subsequent frame.

Currently, DCF-based methods such as Discriminative Scale Space Tracking (DSST) [16],
Fast Discriminative Scale Space Tracking (FDSST) [16], and Spatially Regularized Discriminative
Correlation Filters (SRDCF) [26] have demonstrated excellent performance on the popular benchmarks
OTB-100 [4], VOT-2014 [5], and VOT-2016 [6]. The DSST trains separate translation and scale correlation
filters by the Histogram of Oriented Gradient (HOG) features. And the trained correlation filters
are used to respectively detect the position and scale of the target. Then the improved FDSST use
the principal component analysis (PCA) method to reduce the dimension of the features to speed up
the DSST. However, all these methods detect the target by exploiting a limited search region usually
smaller than the whole figure. Although it can reduce computational costs, it can result in tracking
failures when the target moves out of the search region due to fast motion or heavy occlusion.

Generally, to reduce the computation costs, the standard DCF-based method tracks the
target using a padding region which is several times larger than the target but with size limited.
In addition, it multiplies a cosine window with the same size of padding region to emphasize on the
target [1,14,16,17,26,31]. Despite its excellent properties, the DCF approach cannot detect the position
of the target correctly when the target moves to the boundaries of the padding region. Additionally,
it fails to track the target when the target moves out of the padding region due to fast motion or
heavy occlusion. The dilemma between a larger padding region which is more computationally
expensive and a smaller padding region which lacks the ability to track the target, significantly
influences the capabilities of the DCF methods. Furthermore, most of the state-of-the-art DCF-based
methods [7,16,17,26,27,32] estimate the scale of the target by using a limited number of scales of various
sizes. It results in scale tracking failures when the scale changes significantly due to the fast motion.
The dilemma between the exhaustive scale search strategies resulting in higher computational costs
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and the finite number of scale estimation method leading to failures of scale estimation, severely
reduced the robustness of the DCF algorithm. Resolving these two dilemmas are the main aims of the
present paper.

1.2. Solutions to the Problem of Fast Motion

To solve the dilemmas, a concise and efficient instantaneous motion estimation method (which is
implemented by the differential velocity and acceleration between frames) is applied to predict the
possible position and scale of the detected target. Nevertheless, the noises existing in the detected
results can dramatically affect the performance of this method. For eliminating the noises of the
detected results, we prefer to choose the optimal Kalman filter [33–37] which is a highly efficient
autoregressive filter. It can estimate the state of a dynamic system in a combination of many
uncertainties. In addition, it is a powerful and versatile tool which is appropriate for changing
constantly systems. In recent decades, Kalman filters have been widely used in the field of visual
object tracking due to the advantage of a small memory footprint (just retaining the previous state) and
computational efficiency. It is ideal for real-time problems and embedded systems [33,34,36,38–41],
which can improve the performance of trackers without sacrificing the real-time property.

1.3. Our Contributions

This paper, inspired by the works [16,42–45], proposes a novel Motion-Aware Correlation Filters
(MACF) visual tracker which aims to solve the two dilemmas described in Section 1.1. The proposed
approach initializes the joint instantaneous motion estimation Kalman filters by using the parameters
of the bounding box given by the first frame. Then the improved Kalman filters are used to predict the
probable position and scale of the target in the subsequent frame. This makes the target near the center
of the padding region which improves the robustness and accuracy of the tracker. The DCFs-based
tracker [16] is chosen as the fundamental framework to train correlation filters to detect the location
and scale of the target based on the predicted results. For the convenience of computation and
integration, the Kalman Filters are decomposed into two parts including a two-dimensional in-plane
motion estimation filter and a one-dimensional depth motion estimation filter [46]. In addition, a novel
function is proposed to compute the confidence of the response map to determine whether to update
the correlation filters. The lower the confidence score is, the higher probability the model is corrupted.
Hence, the score below the set threshold means that the target has been occluded or has changed
greatly. Then, the learning rate is reduced according to the confidence of the response map to overcome
the problem. In this paper, all the implementation and testing codes are all open source in the following
Github web: https://github.com/YijYang/MACF.git.

In summary, the main contributions of this paper include:

1. A novel tracking framework named MACF which corrects the padding region using motion cues
predicted by separated joint instantaneous motion estimation Kalman filters, one for in-plane
position prediction and the other for scale prediction;

2. An attractive confidence function of the response map to identify the situation where the target is
occluded or corrupted and an adaptive learning rate to prevent the model from being corrupted.

3. Qualitative and quantitative experiments on OTB-50, OTB-100 and UAV video have demonstrated
that our approach outperforms most of the state-of-the-art trackers.

2. The Reference Tracker

In this section, the reference framework of the FDSST tracker is introduced in detail. In contrast to
the FDSST, the proposed MACF tracker has been improved on this baseline tracker and achieved a
significant progress on the benchmarks as shown in Figure 1.

https://github.com/YijYang/MACF.git
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Figure 1. The comparison of tracking results between our MACF tracker (in red) and the standard 
FDSST tracker (in green) in three sequences on OTB-100 benchmark. Our tracker performs better than 
FDSST in the example frames which are shown from the “Board” of fast motion (top row), “Gym1” 
of scale change (middle row) and “Human4.2” of heavy occlusion (bottom row) videos. 

The FDSST tracker is chosen as the baseline of the proposed MACF framework due to its 
superior performance on VOT-2014. Unlike the other DCFs-based methods, the FDSST tracker learns 
1-dimensional scale estimation correlation filters and 2-dimensional translation estimation 
correlation filters separately, which is implemented by adjusting the feature extraction procedure 
only for each case [16]. The objective function of correlation filter f  can be denoted as follows 
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Figure 1. The comparison of tracking results between our MACF tracker (in red) and the standard
FDSST tracker (in green) in three sequences on OTB-100 benchmark. Our tracker performs better than
FDSST in the example frames which are shown from the “Board” of fast motion (top row), “Gym1” of
scale change (middle row) and “Human4.2” of heavy occlusion (bottom row) videos.

The FDSST tracker is chosen as the baseline of the proposed MACF framework due to its
superior performance on VOT-2014. Unlike the other DCFs-based methods, the FDSST tracker learns
1-dimensional scale estimation correlation filters and 2-dimensional translation estimation correlation
filters separately, which is implemented by adjusting the feature extraction procedure only for each
case [16]. The objective function of correlation filter f can be denoted as follows including a response
score function (1) and an L2 error function (2) with t samples:

S f (x) =
d
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where * denotes circular convolution operation and x denotes the HOG features extracted from the
target samples. In function (1), l indicates the l-dimensional HOG features and d represents the
total dimension of the HOG features. In function (2), the desired output gk presents a 2-dimentional
Gaussian function with the same size of f and x, and k denotes the k represents the kth sample of the
input. The second term in Equation (2) is a regularization term with a parameter λ (λ ≥ 0).

The function (2) is a linear least square problem which can be solved efficiently in frequency
domain transformed by FFT. Therefore, through minimizing the function (2), the final solution can be
computed by Equation (5), which is equivalent to solving a system of linear equations as follows:

Al
t = GFl (3)

Bt =
d

∑
k=1

Xk
t Xk

t + λ (4)
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Fl
t =

Al
t

Bt
, l = 1, 2, . . . , d (5)

where the capital letters denote the FFT and Ft denotes the correlation filter in the Fourier domain.
In Equations (3) and (4), At denotes the numerator of the filter, and Bt denotes the denominator of the
filter. The overbar of X denotes the complex conjugation of X.

For computational efficiency, the size of the filter Ft is the same as the padding region which
is twice the size of the bounding box. An optimal update strategy is utilized to the numerator At

in Equation (6) and the denominator Bt in Equation (7) of the filter Ft with a new sample feature Xt

as follows:
Al

t = (1− η0)Al
t−1 + η0GFl (6)

Bt = (1− η0)Bt−1 + η0

d

∑
k=1

Xk
t Xk

t (7)

where the scalar η0 is a parameter of the learning rate.
To detect the variations of position Pt and scale St of the target, the FDSST firstly learns a

2-dimensional DCF for position estimation and then learns a 1-dimensional DCF for scale estimation.
The responding scores yt for a new frame can be formulated by function (8).

yt = F−1


d
∑

l=1
Al

t−1Zl

Bt−1 + λ

 (8)

where Zl denotes the l-dimensional HOG features extracted from the frame of pending detection.
F−1 represents the Inverse Fast Fourier Transform (IFFT). In Algorithm 1, the capital letter Yt,trans

denotes the response scores of translation model and Yt,scale denotes the response scores of scale model.
By computing the IFFT, the obtained spatial distribution of the response map is used to determine the
spatial location and scale of the target.

Consequently, the position or the scale of the target is determined by the maximal value of the
scores y of the corresponding DCFs. In addition, to ultimately reduce the computational costs, the
principal component analysis (PCA) method is utilized to decrease the dimension of Histogram of
Oriented Gradient (HOG) features. For further details see references [5,6].

3. Our Approach

In this section, two different approaches for motion estimation of the target is introduced,
including the instantaneous motion estimation method and Kalman Filters-based motion estimation
method. Then the proposed MACF framework is introduced in detail. Firstly, the Joint instantaneous
motion estimation Kalman filters for motion prediction are investigated. Secondly, an update scheme
with an adaptive learning rate to prevent the model corrupted by heavy occlusion or fast motion is
presented. Finally, the algorithm framework of MACF is described in Algorithm 1.

3.1. Instantaneous Motion Estimation between Three Adjacent Frames

A single scheme for incorporating motion estimation is to estimate instantaneous velocity and
acceleration between three contiguous frames as shown in Figure 2. Firstly, this method initializes
the parameters of position and scale to (x1, y1, s1), and sets the velocity and acceleration of the x-axis,
y-axis, and z-axis (vx1 , vy1 , vs1), (ax1 , ay1 , as1) to (0, 0, 0) in the first frame. Secondly, these parameters
are utilized to predict the possible region of the target by Equation (11) in the second frame. Then the
FDSST is used to detect the position (x2, y2) and the scale s2 of the target to update (vx2 , vy2 , vs2) by
function (9). In the third frame, the accelerations (ax2 , ay2 , as2) are updated by function (10). Finally,
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it continuously predicts and detects the location and scale of the target until the last frame of the
video stream. 

vxt = xt − xt−1

vyt = yt − yt−1

vst = st − st−1

(9)


axt = vxt − vxt−1

ayt = vyt − vyt−1

ast = vst − vst−1

(10)


Pxt+1 = xt + vxt · ∆t + 0.5 · axt · ∆t2

Pyt+1 = yt + vyt · ∆t + 0.5 · ayt · ∆t2

Pst+1 = st + vst · ∆t + 0.5 · ast · ∆t2
(11)

where ∆t denotes time step, ∆t = 1 is used to facilitate the calculation, (x, y, s) denote the results of
detection, and (Px, Py, Ps) denote the results of the prediction.

However, this approach can be affected easily by the noise of the detected results. In addition, the
basic tracker FDSST has quite a fine scale detection. Hence, the error scale estimation, which is caused
by measurement noise, probably leads to tracking failures.
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Figure 2. Illustrating of instantaneous motion estimation on the test sequence of UAV.

3.2. Kalman Filters-Based Motion Estimation

For high accuracy of the motion prediction, Kalman Filters serve as a strategy of motion
estimation [38,39]. Assuming that the motion model of the target is a constant acceleration model,
the motion model can be described by the linear stochastic differential functions as follows:

P(t) = AP(t− 1) + BM(t) + W(t) (12)

Z(t) = HP(t) + V(t) (13)

In the above two equations, P(t) is the target state of the t-th frame of the video sequence, and
M(t) is the motion model of the target in the t-th frame. In function (12), A and B are the parameters
of the motion model. In Formula (13), Z(t) is the measured value of the target state of the t-th frame
and H is the parameter of the measurement system. In the two equations, W(t) and V(t) represent the
process and measured noise respectively and they are assumed to be White Gaussian Noise. Their
covariances are Q and R which are assumed not to change with the system state. Q and R respectively
represent the confidence of the predicted value and the measured value. It can affect the weight of
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the predicted value and the measured value through affecting the value of the Kalman gain in the
Equation (16). When the value of R is larger, the confidence of the measured value is smaller.

3.2.1. Prediction

For a system which satisfies the above conditions, the Kalman Filter is the optimal information
processor. Firstly, the motion model of the target is used to separately predict the position and scale
of the target in the next state. Secondly, the current system state is t, the function (14) can be used to
predict the position or scale in the current state based on the previous state P(t− 1|t− 1) of the target.
Finally, the current covariance of C(t− 1|t− 1) can be updated by Equation (15).

P(t|t− 1) = AP(t− 1|t− 1) + BM(t) (14)

C(t|t− 1) = AC(t− 1|t− 1)A′ + Q (15)

where, P(t|t− 1) is the current predicted position or scale of the target, and P(t− 1|t− 1) is the result
of the previous state optimization. In Equation (15) C(t|t− 1) is the covariance corresponding to
P(t|t− 1) and C(t− 1|t− 1) is covariance corresponding to P(t− 1|t− 1). In formula (15), A′ denotes
the transpose matrix of A and Q is the covariance of the motion model which has been set in the
first frame.

3.2.2. Measurement and Correction

The position and scale of the target detected by FDSST mentioned in Section 3.1 is used as the
measurement value Z(t). Combined with the prediction result P(t|t− 1), the measurement value Z(t),
and the Kalman gain calculated by Equation (16), the optimal estimate of the current position P(t|t) is
achieved using Equation (17).

Kg(t) =
C(t|t− 1)H′

HC(t|t− 1)H′ + R
(16)

P(t|t) = P(t|t− 1) + Kg(t)[Z(t)− HP(t|t− 1)] (17)

where Kg(t) is the Kalman gain in current frame and H′ denotes the transpose matrix of H, and R
denotes the measuring error. In short, Q and R respectively represent the confidence of the predicted
value and the measured value and can affect the weight of the predicted value and the measured
value by affecting the value of the Kalman gain Kg(t). The larger the R, the less the confidence is the
measured value.

To keep the Kalman filter running until the last frame of the video streaming [47], the new
covariance of C(t|t) is updated by function (18).

C(t|t) = [I − Kg(t)H]C(t|t− 1) (18)

where, I is a unit matrix.

3.3. Motion-Aware in Our Framework

Assuming that White Gaussian Noises exist in the measured velocity and acceleration in
Equations (9) and (10), the measured results are utilized to predict the position of the target by a linear
Equation (11). Obviously, the predictions include the White Gaussian Noises which potentially result
in tracking failures. Therefore, the joint instantaneous motion estimation Kalman Filters are utilized
to filter out the noise of the predicting results. It means that the predicted values by Equation (11)
are taken as the observed input value of the Kalman filter and then output an optimal prediction by
Equation (17).
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Figure 3. Visualization of the separate translation and scale prediction and detection on the video
sequence of UAV. The previous position and scale are indicated by red bounding box, and the predicted
position and scale are denoted in green, and the detected position and scale are shown with blue
bounding box.

As mentioned in Section 3.2, the instantaneous motion estimation method is affected greatly by
the noise, but it can deal with the nonlinear motion model. However, the Kalman Filter filters out
the noises, but cannot solve the nonlinear motion model. Hence, for achieving the advantages of
both methods, the two methods are combined for Motion estimation of the target. Additionally, for
convenient and efficient computation, the optimal Kalman Filters are set up separately for position
and scale prediction as shown in Figure 3.

(I) The position prediction filter is responsible for the prediction of the target location and noise
filtering. First, motion parameters (vxt−1 , vyt−1 , axt−1 , ayt−1) are employed in the previous frame to
predict the translation PPt (Pxt, Pyt) of the target in the next frame through Equation (11). After that,
the two-dimensional Kalman position filter is utilized to eliminate the noises of the prediction by
function (17).

(II) The scale prediction filter is employed to predict accurately and reliably the scale of the target
by filtering noises. The prediction parameters (vxs−1 , ast−1 ) are first utilized in the front frame to predict
the scale Pst of the target in the following frame by Equation (11). Afterwards, the one-dimensional
Kalman scale filter is employed to remove the noises of the prediction by function (17).

3.4. Position and Scale Detection

The two-dimensional translation correlation filter Ft,trans of the FDSST (described in Section 3.1) is
used to detect the position of the target in a small padding region based on the filtered predictions.
Then, the results of detection (xt, yt) is utilized to update the in-plane motion model parameters
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(vxt , vyt , axt , ayt ) via Equations (9) and (10). Similarly, for estimating the scale of the target, the scale
correlation filter Ft,scale is utilized to correct the scale of the target on the foundation of the predicted
scale. Then, the estimated scale st is utilized to update the deep motion model parameters (vst , ast ) by
Equations (9) and (10).
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Figure 4. The Confidence of the Squared Response Map (CSRM) in the proposed MACF comparing
with the Average Peak-to-Correlation Energy (APCE) of the response map. The example frames are
from the sequence “Tiger1” on OTB-100 benchmark. The higher value of the CSMR, the more confident
the response map is. The value of parameter tr determine the adaptive learning rate which compute by
Equation (20). From the figure, the gap of CSMR is larger than APCE between the slightly occluded,
heavily occluded and none occluded target.

3.5. A Novel Model Update Strategy

After the study of Average Peak-to-Correlation Energy (APEC) in [42], a novel confidence
function (19) of the responding map is proposed in the MACF algorithm in this paper. In [42],
APEC is defined as APEC = Rmax/E(R), here, Rmax denotes the max value of the response scores,
and E(R) denotes the expected value of the response scores. APCE indicates the fluctuated degree of
response maps and the confidence level of the detected targets. Figure 4b,e,h illustrate that if the target
apparently appears in the detection scope, there is a sharper peak in the response map and the value
of APEC becomes smaller. On the contrary, if the object is occluded, the peak in response map appears
smoother, and the relative value of APEC becomes larger.

Unlike the APCE, the proposed method in this article squared the value of response map (the proof
is given in Appendix A) and then calculated the value of Confidence of Squared Response Map (CSRM).
CSRM stands for the fluctuated degree of the response maps and the confidence level of the detected
targets. The numerator of the CSRM represents the peak of the response map, and the denominator
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of CSRM represents the mean square value of the response map. Figure 4c,f,i illustrate that if the
target is not occluded or contaminated, the corresponding response map presents a sharp peak. It is
concluded that when the peak value is larger and the mean square value is smaller, and the result is
that the corresponding CSRM value is larger. On the contrary, if the target is occluded or contaminated,
the corresponding response map will present a smoother peak and even multiple peaks. It could be
concluded that when the peak value is smaller and the mean square value is larger, and the result is
that the corresponding CSRM value is smaller. This increases the gap between the confidence response
and the diffident response as shown in Figure 4, making it easier to find the threshold between them.
Consequently, a threshold is set to distinguish whether the target is occluded or contaminated and an
adaptive learning rate η is set by Equation (20) to prevent the model from being corrupted. In addition,
Equation (20) is effective and accurate for model learning which can be readily and neatly integrated
into DCF-based trackers to improve the tracking performance.

CSRMt =

∣∣R2
max − R2

min

∣∣2
1

MN

M
∑

i=1

N
∑

j=1

∣∣∣R2
ij − R2

min

∣∣∣2 (19)


trt =

CSRMt
CSRM0

ηt = η0, trt > tr0

ηt = η0 · trt, others

(20)

where, CSRM0 is the Confidence of the Squared Response Map in the initial frame where the response
is identified as the most confidence response, CSRMt is the confidence of the squared response map in
the t-th frame, and tr0 is the threshold to decide the learning rate. In Equation (19), the response map
R is a two-dimensional M ∗ N matrix.

Algorithm 1. MACF tracking algorithm

Input:
1: Image It.
2: Predicted target position PPt and scale Pst in previous frame.

Output:
1: Detected target position Pt and scale St in current frame.
2: Predicted target position PPt+1 and scale Pst+1 subsequent frame.

Loop:
1: Initialize the Translation model A1,trans, B1,trans and Scale model A1,scale, B1,scale in the first frame by

Equations (3) and (4), and initialize the Confidence of the Squared Response Map CSRM0 in the initial frame
by Equation (19).

2: for t ∈
[
2, t f

]
do.

3: Position detection and prediction:
4: Extract pending sample feature Zt,trans from It at PPt and Pst.
5: Compute correlation scores Yt,trans by Equation (8).
6: Set Pt to the target position that maximizes Yt,trans.
7: Predict the position PPt+1 of the target of subsequent frame by joint Equations (11) and (17).
8: Scale detection and prediction:
9: Extract pending sample feature Zt,scale from It at Pt and Pst.
10: Compute correlation scores Yt,scale by Equation (8).
11: Set St to the target scale that maximizes Yt,scale.
12: Predict the position Pst+1 of the target of subsequent frame by joint Equations (11) and (17).
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13: Model update:
14: Compute the Confidence of the Squared Response Map CSRMt in current frame by Equation (17).
15: Compute the adaptive learning rate ηt by Equation (18).
16: Extract sample features Xt,trans and Xt,scale from It at Pt and St.
17: Update motion parameters (vxt , vyt , vst ), (axt , ayt , ast ) by Equations (9) and (10).
18: Update Kalman filters by Equation (18).
19: Update the translation model At,trans, Bt,trans by adaptive learning rate ηt.
20: Update the scale model At,scale, Bt,scale by adaptive learning rate ηt.
21: Return Pt, and PPt+1, Pst+1.
22: end for.

4. Experiments and Results

In this section, firstly, the implement details and parameter settings are introduced clearly. Then
the comprehensive experiments have been tested on the popular benchmark OTB-50, OTB-100 and
UAV video, and the results have demonstrated that our MACF approach surpasses most of the
state-of-the-art methods.

4.1. Implement Details

All the methods compared in this paper are implemented in MATLAB R2016a, and all experiments
run on an INTEL i3-3110 CPU with 6 GB memory.

State-of-the-art trackers: for other trackers compared to our MACF tracker in this paper,
we follow the parameter settings in their papers.

Trackers proposed in this paper: Introduced in Section 3.1, the FDSST is employed as the basic
tracker. Thus, all parameters of FDSST remain the same as in the paper [16] except for the regularization
term λ, learning rate η, search region padding, and scale factor α. In our proposed trackers, the
regularization term parameter is set to λ = 0.02, the padding region is set to padding = 1.8, the scale
factor is set to a = 1.03 and the adaptive learning rate is calculated from Equation (20) with a threshold
tr0 = 0.6. For two-dimensional translation Kalman Filter, the covariances of motion and measured
noise in Equations (12) and (13) are set to Q = [25, 10, 1], R = 25. In the one-dimensional scale
Kalman Filter, the covariances are set to Q = [2.5, 1, 0.1], R = 2.5. However, there are some different
parameter settings about the adaptive learning rate enable parameter, the Kalman position filter enable
parameter, the Kalman scale filter enable parameter and the instantaneous motion estimation enable
parameter. As described in subsequent Section 4.2, in the proposed MACF tracker, these parameters
are respectively set to (1, 1, 1, 1). In the IME_CF tracker, these parameters are respectively set to (0, 0, 0,
1). In the KE_CF tracker, these parameters are respectively set to (0, 1, 1, 0). In the ALR_CF tracker,
these parameters are respectively set to (1, 0, 0, 0).

4.2. Ablation Experiments

To validate the effectiveness of the strategy proposed in this paper, an ablation experiment is
performed on OTB-50, and the MACF is compared with the standard FDSST introduced in Section 2,
based on instantaneous motion estimation CFs (IME_CF) discussed in Section 3.1, based on Kalman
filters CFs (KF_CF) described in Section 3.2 and based adaptive learning rate CFs (ALR_CF) proposed
in Section 3.5. Obviously, Table 1 indicates that the proposed schemes all achieved varying degrees
of the tracking performance improvement compared to the standard FDSST. Overall, the proposed
MACF achieves a gain of 2.3%, 4.8% and 4.1% in OPE, TRE and SRE, respectively, of LET at 20 pixels
and a gain of 1.7%, 1.4% and 2.9% in OPE, TRE and SRE, respectively, of OT at 0.5 compared to the
standard FDSST. Furthermore, the proposed MACF run at a real-time speed of 51 FPS in my i3-3110
CPU. However, the strategy of adaptive learning rate achieves the best results instead of our fused
MACF. That’s because motion-aware strategy is more suitable to track the target of fast motion in a
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gradient background. Nevertheless, most video sequences on OTB-50 dataset are with the background
of dramatic changes.

Table 1. The comparison of ablation results on OTB-50 dataset. Clearly, the success plots (SP) of one
pass evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness evaluation (SRE)
utilizing the location error threshold (LET) and the precision plots (PP) of OPE, TRE and SRE using
overlap threshold (OT) and the tracking speed are shown in the table below. And the best results are in
red and the second results are in blue.

Trackers
Precision Plots (AUC%) Success Plots (AUC%)

Speed (FPS)
OPE SRE TRE OPE SRE TRE

FDSST 62.8 55.6 60.8 50.6 44.2 53.0 49
IME_CF 63.7 58.6 63.3 52.6 46.7 53.7 48
KF_CF 64.5 59.3 65.5 54.4 46.9 54.0 46

ALR_CF 65.0 61.1 66.6 54.6 48.6 54.6 55
MACF 65.1 59.7 65.6 52.3 47.1 54.4 51

4.3. Experiment on OTB-50

OTB-50 is an influential benchmark with 50 sequences which are all labeled manually. Th proposed
MACF is evaluated on this dataset and compared to 11 state-of-the-art trackers from the works:
Tracking-Learning-Detection (TLD) [2], DSST [17], FDSST [16], Compressive Tracking (CT) [20],
exploiting the Circulant Structure of tracking-by-detection with Kernels (CSK) [21], high-speed tracking
with Kernelized Correlation Filters (KCF) [22], Long-term Correlation Tracking (LCT) [45], Locally
Orderless Tracking (LOT) [48], Least Soft-threshold Squares tracking (LSS) [49], robust visual tracking
via Multi-Task sparse learning (MIT) [50], Distribution Fields for Tracking (DFT) [19]. Only the ranks
for the top eight trackers are reported.

As is shown in Figure 5, the proposed MACF obtains the top ranks 51.5%, 61.9% and 65.2%
among the top eight trackers in 3 different attributes of occlusion, motion blur and fast motion and
significantly outperforms the standard FDSST. In other words, the proposed adaptive learning rate
scheme is accurate and robust for tracking when the target is occluded or blurred. Furthermore,
the proposed motion-aware strategy can effectively track the target of fast motion.

Sensors 2018, 18, x FOR PEER REVIEW  13 of 26 

Table 1. The comparison of ablation results on OTB-50 dataset. Clearly, the success plots (SP) of one 
pass evaluation (OPE), temporal robustness evaluation (TRE), and spatial robustness evaluation 
(SRE) utilizing the location error threshold (LET) and the precision plots (PP) of OPE, TRE and SRE 
using overlap threshold (OT) and the tracking speed are shown in the table below. And the best 
results are in red and the second results are in blue. 

Trackers 
Precision Plots (AUC%) Success Plots (AUC%) Speed 

(FPS) OPE SRE TRE OPE SRE TRE 
FDSST 62.8 55.6 60.8 50.6 44.2 53.0 49 

IME_CF 63.7 58.6 63.3 52.6 46.7 53.7 48 
KF_CF 64.5 59.3 65.5 54.4 46.9 54.0 46 

ALR_CF 65.0 61.1 66.6 54.6 48.6 54.6 55 
MACF 65.1 59.7 65.6 52.3 47.1 54.4 51 

4.3. Experiment on OTB-50 

OTB-50 is an influential benchmark with 50 sequences which are all labeled manually. The 
proposed MACF is evaluated on this dataset and compared to 11 state-of-the-art trackers from the 
works: Tracking-Learning-Detection (TLD) [2], DSST [17], FDSST [16], Compressive Tracking (CT) 
[20], exploiting the Circulant Structure of tracking-by-detection with Kernels (CSK) [21], high-speed 
tracking with Kernelized Correlation Filters (KCF) [22], Long-term Correlation Tracking (LCT) [45], 
Locally Orderless Tracking (LOT) [48], Least Soft-threshold Squares tracking (LSS) [49], robust visual 
tracking via Multi-Task sparse learning (MIT) [50], Distribution Fields for Tracking (DFT) [19]. Only 
the ranks for the top eight trackers are reported. 

As is shown in Figure 5, the proposed MACF obtains the top ranks 51.5%, 61.9% and 65.2% 
among the top eight trackers in 3 different attributes of occlusion, motion blur and fast motion and 
significantly outperforms the standard FDSST. In other words, the proposed adaptive learning rate 
scheme is accurate and robust for tracking when the target is occluded or blurred. Furthermore, the 
proposed motion-aware strategy can effectively track the target of fast motion. 

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

ci
si

on

Precision plots of OPE - occlusion (20)

MACF [0.515]
KCF [0.445]
FDSST [0.443]
DSST [0.428]
LCT [0.415]
CSK [0.340]
CT [0.324]
DFT [0.322]

 
(a) The PP of OPE on attribute Occlusion. 

Figure 5. Cont.



Sensors 2018, 18, 3937 13 of 25
Sensors 2018, 18, x FOR PEER REVIEW  14 of 26 

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots of OPE - motion blur (17)

MACF [0.619]
LCT [0.608]
FDSST [0.574]
DSST [0.550]
KCF [0.510]
CSK [0.350]
DFT [0.212]
CT [0.200]

 
(b) The PP of OPE on attribute Motion Blur. 

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

ci
si

on

Precision plots of OPE - fast motion (22)

MACF [0.652]
FDSST [0.633]
LCT [0.630]
KCF [0.589]
DSST [0.552]
CSK [0.406]
DFT [0.264]
CT [0.215]

 
(c) The PP of OPE on attribute Fast Motion 

Figure 5. The Precision Plots (PP) of One Pass Evaluation (OPE) on OTB-50 benchmark for the top 
eight trackers determined by 3 different attributes: occlusion, motion blur and fast motion. Among 
the top eight trackers our MACF obtains the best results on all 3 attributes. 

Figure 6 and Table 2 show the SP of OPE, TRE, and SRE utilizing the LET. The PP of OPE, TRE 
and SRE using OT with the total 50 sequences on OTB-50 are also shown in Figure 6. Generally, the 
proposed MACF acquires the best results of the top eight trackers including 65.1%, 59.7% and 65.1% 
in OPE, TRE and SRE, respectively, of LET at 20 pixels and 52.3%, 47.1% and 54.4% in OPE, SRE and 
TRE, respectively, of OT at 0.5. Furthermore, the proposed MACF achieves a visibly gain of 4.3%, 
4.1% and 2.3% in OPE, SRE and TRE, respectively, of LET at 20 pixels and a gain of 1.7%, 2.9% and 
1.4% in OPE, SRE and TRE, respectively, of OT at 0.5 compared to the standard FDSST. 

Table 2. The Success Polts (SP) and Precision Plots (PP) of One Pass Evaluation (OPE) for the proposed 
MACF and the other 7 top trackers on the OTB-50 dataset. The best results are highlighted in red and 
the second results are highlighted in blue. 

Trackers 
OPE SRE TRE 

SP (%) PP (%) SP (%) PP (%) SP (%) PP (%) 
MACF 52.3 65.1 47.1 59.7 54.4 65.1 
FDSST 50.6 60.8 44.2 55.6 53.0 62.8 

LCT 49.3 61.3 44.0 57.4 52.9 63.0 
DSST 47.0 58.5 44.0 56.1 53.8 64.6 
KCF 43.9 59.7 40.1 54.7 49.0 61.8 
CSK 36.5 47.0 33.2 43.2 43.4 53.7 

Figure 5. The Precision Plots (PP) of One Pass Evaluation (OPE) on OTB-50 benchmark for the top
eight trackers determined by 3 different attributes: occlusion, motion blur and fast motion. Among the
top eight trackers our MACF obtains the best results on all 3 attributes.

Figure 6 and Table 2 show the SP of OPE, TRE, and SRE utilizing the LET. The PP of OPE, TRE and
SRE using OT with the total 50 sequences on OTB-50 are also shown in Figure 6. Generally, the
proposed MACF acquires the best results of the top eight trackers including 65.1%, 59.7% and 65.1% in
OPE, TRE and SRE, respectively, of LET at 20 pixels and 52.3%, 47.1% and 54.4% in OPE, SRE and TRE,
respectively, of OT at 0.5. Furthermore, the proposed MACF achieves a visibly gain of 4.3%, 4.1% and
2.3% in OPE, SRE and TRE, respectively, of LET at 20 pixels and a gain of 1.7%, 2.9% and 1.4% in OPE,
SRE and TRE, respectively, of OT at 0.5 compared to the standard FDSST.

Table 2. The Success Polts (SP) and Precision Plots (PP) of One Pass Evaluation (OPE) for the proposed
MACF and the other 7 top trackers on the OTB-50 dataset. The best results are highlighted in red and
the second results are highlighted in blue.

Trackers
OPE SRE TRE

SP (%) PP (%) SP (%) PP (%) SP (%) PP (%)

MACF 52.3 65.1 47.1 59.7 54.4 65.1
FDSST 50.6 60.8 44.2 55.6 53.0 62.8

LCT 49.3 61.3 44.0 57.4 52.9 63.0
DSST 47.0 58.5 44.0 56.1 53.8 64.6
KCF 43.9 59.7 40.1 54.7 49.0 61.8
CSK 36.5 47.0 33.2 43.2 43.4 53.7
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Table 2. Cont.

Trackers
OPE SRE TRE

SP (%) PP (%) SP (%) PP (%) SP (%) PP (%)

CT 25.4 32.1 26.1 33.6 29.0 36.7
DEF 26.4 32.3 25.4 32.3 33.1 39.4
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Robustness Evaluation (TRE) and Spatial Robustness Evaluation (SRE) using by Overlap Threshold 
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the works: TLD [2], DSST [17], FDSST [16], CT [20], CSK [21], KCF [22], LCT [45], LOT [48], LSS [49],
MIT [50], DFT [19]. Only the ranks for the top eight trackers are reported.

Figure 7 shows SP of OPE, TRE, and SRE utilizing the LET. The PP of OPE, TRE and SRE using OT
with the whole 100 sequences on OTB-100 are shown in Figure 5 as well. Overall, the proposed MACF
obtain the top ranks of the top eight trackers including 69.6%, 69.5% and 64.1% in OPE, TRE and
SRE, respectively, of LET at 20 pixels and 56.6%, 58.1% and 50.4% in OPE, TRE and SRE, respectively,
of OT at 0.5. In addition, the proposed MACF achieves a gain of 1.9%, 0.7% and 1.8% in OPE, TRE
and SRE, respectively, of LET at 20 pixels and a gain of 0.5%, 0.5% and 1.7% in OPE, TRE and SRE,
respectively, of OT at 0.5 compared to the standard FDSST. However, compared to the experiment on
OTB-50, the gains go down due to the extent of 50 video sequences are more challenging with dynamic
background. Hence, the additional experiments are conducted on the UAV video in Section 4.6 to
validate the accurate and robust gains of the MACF on the video streams with static background.

Table 3 shows the PP of TRE for the top eight trackers determined by 11 different attributes.
Among the top eight trackers, the proposed MACF obtains the best results on 8 out of 11 attributes
of TRE. Table 4 shows the PP of OPE for the top eight trackers determined by 11 different attributes.
Of the top eight trackers the proposed MACF acquires the best ranks on 9 of the 11 attributes of OPE.
Table 5 demonstrates the PP of SRE for the top eight trackers determined by 11 different attributes.
Of the top eight trackers the proposed MACF achieves the best results on 7 out of 11 attributes of SRE.

Figure 8 qualitatively evaluates the representative frames from four videos successfully tracked by
the MACF compared to the top five trackers. From the example frames of Skater1 (the situation of fast
motion), it is obvious that the proposed MACF approach performs better than the other four trackers
during fast motion and it can be seen from the frames of “Human2” (the situation of occlusion),
“Human6” (the situation of occlusion and scale changing greatly), and “Tiger1” (the situation of
fast motion and occlusion), the proposed MACF approach is more accurate and robust of the five
state-of-the-art trackers when the target is occluded.
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(OPR), occlusion (OCC), background cluttered (BC), deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-view (OV), and low resolution (LR). The last column is the Area
Under the Curve (AUC). The best results are in red and the second results are in blue.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AUC

MACF 64.6 68.4 64.9 65.6 70.8 64.3 62.1 61.0 65.8 55.6 72.1 69.5
FDSST 62.6 68.0 63.4 63.5 71.4 61.6 63.7 62.5 65.2 49.4 69.9 67.7

LCT 61.3 67.4 64.1 62.1 68.9 63.5 60.8 57.9 65.3 45.8 66.8 68.6
DSST 62.0 67.5 61.9 60.2 67.4 60.8 56.8 54.3 63.6 46.4 68.3 64.7
KCF 60.5 65.2 63.1 60.4 71.6 60.8 56.3 57.0 63.4 46.5 65.1 63.7
CSK 50.3 54.6 52.0 48.7 57.0 51.4 42.7 41.7 52.9 33.5 54.7 55.7
CT 38.4 35.8 40.9 38.2 38.3 39.9 22.9 25.9 39.9 31.8 49.3 38.7

DEF 38.9 43.5 46.1 43.5 47.6 45.7 35.2 34.9 45.3 29.4 41.6 46.0

Table 4. Success plots of One Pass Evaluation (OPE) for the MACF and the other 7 top trackers on
different attributes: SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, and LR. The last column is the AUC.
The best results are in red and the second results are in blue.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AUC

MACF 66.2 71.8 65.5 63.5 72.6 62.5 63.6 63.9 67.0 57.3 65.2 69.6
FDSST 61.8 68.4 62.8 59.5 70.5 58.5 61.6 63.2 66.9 50.4 64.7 68.8

LCT 61.9 67.8 66.6 60.2 66.1 61.6 60.2 62.0 69.9 52.0 64.3 68.1
DSST 59.3 67.5 60.6 56.6 63.8 52.8 52.0 51.0 62.8 43.1 63.6 66.9
KCF 58.2 64.2 62.9 60.0 65.2 58.6 55.3 58.1 63.8 48.0 62.3 66.5
CSK 44.2 47.3 46.7 42.0 52.7 42.5 34.9 38.7 49.5 27.7 43.8 49.3
CT 32.8 29.7 35.6 32.4 35.8 31.5 20.7 21.1 34.9 30.8 40.3 33.0

DEF 34.5 39.7 43.0 41.6 43.1 40.4 27.6 30.5 41.4 34.4 41.9 40.6
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Table 5. Success plots of Spatial Robustness Evaluation (SRE) for the MACF and the other 7 top trackers
on different attributes: SV, IV, OPR, OCC, BC, DEF, MB, FM, IPR, OV, and LR. The last column is the
AUC. The best results are in red and the second results are in blue.

Trackers SV IV OPR OCC BC DEF MB FM IPR OV LR AUC

MACF 60.6 64.5 59.8 58.7 63.4 56.1 56.9 57.9 62.3 51.7 67.5 64.1
FDSST 56.9 60.0 57.8 55.7 62.5 51.2 56.1 58.4 61.4 44.2 64.1 61.8

LCT 57.4 61.8 62.0 56.5 59.7 58.8 52.7 49.9 64.8 44.7 62.7 63.3
DSST 56.8 62.7 56.8 53.7 60.9 50.1 49.0 55.1 59.6 42.5 64.3 60.6
KCF 53.7 58.9 57.0 52.9 60.1 53.8 48.8 53.1 58.3 39.7 56.9 59.4
CSK 41.2 44.7 45.0 41.5 45.7 38.9 33.4 36.4 46.8 28.9 45.9 46.2
CT 35.0 30.9 35.8 33.7 31.6 32.8 22.2 24.6 36.4 30.2 42.6 34.4

DEF 31.9 34.8 38.7 36.0 40.3 35.3 28.9 30.4 40.3 28.3 34.5 37.8
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Figure 8. The representative frames from four videos successfully tracked by the MACF (in red)
compared to the top 5 trackers including FDSST (in green), LCT (in blue), DSST (in black) and KCF (in
purple). From top to bottom, the sequences are “Human6”, “Human2”, “Skater1” and “tiger1” on the
OTB-100 benchmark.
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4.5. Comparation on Raw Benchmark Results

The proposed MACF algorithm is compared to Efficient Convolution Operators for tracking
(ECO) [51], Multi-Domain convolutional neural Networks for visual tracking (MDNet) [52],
Structure-Aware Network for visual tracking (SANet) [53], Continuous Convolution Operators
for visual Tracking (C-COT) [54], Fully-Convolutional Siamese networks for object tracking
(SiamFC_3s) [55], Multi-task Correlation Particle Filter for robust object tracking (MCPF) [56],
Deep learning features based SRDCF (DeepSRDCF) [26], ECO based on Hand-Crafted features
(ECO-HC) [51], Discriminative Correlation Filter Tracker with Channel and Spatial Reliability
(CSR-DCF) [25] and FDSST [16] on the raw benchmark results. In addition, all the raw benchmark
results are open source on the web. Furthermore, the proposed MACF framework is integrated into
the ECO-HC tracker (ECO-HC+MACF) and have been tested on the datasets of OTB-50 and OTB-100.
The implementation codes are also open source in our Github https://github.com/YijYang/MACF-
ECO_HC.

As shown in Table 6, the fused ECO-HC + MACF tracker achieves a gain of 1.5% and 3.2% in
SP and PP of OPE on OTB-50 and a gain of 1.3% and 1.9% in SP and PP of OPE compared to the
ECO-HC standard FDSST. In addition, it runs at a real-time speed of 19 FPS compared to the ECO-HC
tracker with a speed of 21 FPS. Hence, it indicates that the proposed MACF can be integrated easily
and flexibly into other visual tracking algorithms, and with little loss of real-time performance while
improving the accuracy. Most trackers based on deep learning features are more accurate than the
proposed MACF method. However, these trackers usually have a lower running speed than MACF
except SiamFC_3s method which runs at 86 FPS on a GPU. The proposed MACF achieves a trade-off
between the tracking speed and the accuracy. Hence, it is suitable for the embedded real-time systems
(for instance, UAV surveillance or unmanned vehicles) which have strict memory and speed limitation.

Table 6. SP and PP of OPE for the proposed MACF, ECO-HC + MACF and the other 10 top trackers on
the raw benchmark results of OTB-50 and OTB-100. The last column is the performance of Real-Time
and the results are from the original paper, not tested on the same platform. The column of Deep
Learning indicates whether the tracker is based on deep learning features. The best results are in red
and the second results are in blue.

Trackers
OTB-50 OTB-100 Deep

Learning
Real Time

(FPS)SP of OPE (%) PP of OPE (%) SP of OPE (%) PP of OPE (%)

ECO 64.3 87.4 69.4 91.0 Y N (6)
MDNet 64.5 89.0 67.8 90.9 Y N (1)
SANet – – 69.2 92.8 Y N (1)
C-COT 61.4 84.3 67.1 89.8 Y N (0.3)

SiamFC_3s 51.6 69.2 58.2 77.1 Y Y (86)
MCPF 58.3 84.3 62.8 87.3 Y N (0.5)

DeepSRDCF 56.0 77.2 63.5 85.1 Y N (<1)
CSR-DCF 59.7 66.7 59.8 73.3 N Y (13)
ECO-HC +

MACF 60.7 84.6 65.6 87.5 N Y (19)

ECO-HC 59.2 81.4 64.3 85.6 N Y (21)
MACF 52.3 65.1 56.6 69.6 N Y (51)
FDSST 50.6 60.8 56.2 67.9 N Y (49)

4.6. Experiment on UAV Video

4.6.1. Materials and Conditions

The UAV video is taken by a high-definition camera without calibration in the mobile phone.
The tested UAV is a high-effective drone from Attop company. The specific parameters of the camera
and UAV are illustrated in the Table 7. The UAV video is converted to multi-frame images which have
the format of JPG file with three channels, and its resolution is 480 × 640 pixels. In the further research,
if the camera for experiment is calibrated, the relative experiment results will be improved [57,58].

https://github.com/YijYang/MACF-ECO_HC
https://github.com/YijYang/MACF-ECO_HC
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Table 7. The parameters of the tested camera and UAV.

Camera Parameters UAV Parameters

Aperture size F2.2 Product number W5
Number of Pixel 1200 W Expand Size 15.5 × 15.5 × 10 cm

Size of Pixel 1.25 µm Color Red
Focusing speed 0.23 s Type of Control Signal Wireless Fidelity (Wi-Fi)

Image dimensions 3 Others No Antivibration used and No gimbal [59] used

4.6.2. Results and Analysis

As mentioned above, our adaptive learning rate compute by CSRM scheme is greatly suitable
for the scenes of occlusion, motion blur, defocus blur and so on when the appearance model of the
target is corrupted. Therefore, it can obtain significant gains on OTB-50 and OTB-100. Nevertheless,
the motion-aware scheme proposed in this paper is more propitious to the video sequences with
static background and target of fast motion. Hence, in order to validate this point, the MACF is
compared with the state-of-the-art trackers including Efficient Convolution Operators with HOG
feature and Color name feature (ECO-HC) [51], Background-Aware Correlation Filters (BACF) [14],
fast tracking via Spatio-Temporal Context learning (STC) [28], Sum of Template And Pixel-wise
LEarners (Staple) [27], learning Spatially Regularized Discriminative Correlation Filters (SRDCF) [26],
Distractor-Aware Tracking (DAT) [7] and FDSST [16] on the test video which include the target of UAV
of fast motion with static background. The results have been shown in Figure 9, which demonstrate
that the proposed MACF is more accurate and robust in scale and translation detection when tracking
a fast-moving target. It runs at a high speed of 56 FPS.

Figure 9 and Table 8 indicate that the proposed MACF tracker outperforms most of state-of-the-art
trackers when undergoes the situation of fast motion. Figure 10 shows the predicted trajectory by the
MACF approach is almost coincides with the actual trajectory. It illustrates our motion-aware strategy is
accurate for predicting the position and scale of fast-moving target with a static background. As shown
in Figure 10a,b, there are still small burrs in the predicted trajectory. However, after correcting by
Kalman filters, the trajectory becomes smoother and more accurate as shown in Figure 10e,f.

Table 8. The Success Plots (SP) and Precision Plots (PP) of One Pass Evaluation (OPE) for the proposed
MACF and the other 7 top trackers on the UAV video. The best results are in red and the second results
are in blue.

Trackers MACF ECO_HC BACF STC STAPLE SRDCF DAT FDSST

SP of OPE (%) 100.0 94.8 20.6 31.4 21.8 98.7 23.1 46.8
PP of OPE (%) 100.0 98.6 24.1 32.2 29.1 99.5 32.5 52.6



Sensors 2018, 18, 3937 20 of 25

Sensors 2018, 18, x FOR PEER REVIEW  20 of 26 

feature and Color name feature (ECO-HC) [51], Background-Aware Correlation Filters (BACF) [14], 
fast tracking via Spatio-Temporal Context learning (STC) [28], Sum of Template And Pixel-wise 
LEarners (Staple) [27], learning Spatially Regularized Discriminative Correlation Filters (SRDCF) 
[26], Distractor-Aware Tracking (DAT) [7] and FDSST [16] on the test video which include the target 
of UAV of fast motion with static background. The results have been shown in Figure 9, which 
demonstrate that the proposed MACF is more accurate and robust in scale and translation detection 
when tracking a fast-moving target. It runs at a high speed of 56 FPS. 

Figure 9 and Table 8 indicate that the proposed MACF tracker outperforms most of state-of-the-
art trackers when undergoes the situation of fast motion. Figure 10 shows the predicted trajectory by 
the MACF approach is almost coincides with the actual trajectory. It illustrates our motion-aware 
strategy is accurate for predicting the position and scale of fast-moving target with a static 
background. As shown in Figure 10a,b, there are still small burrs in the predicted trajectory. 
However, after correcting by Kalman filters, the trajectory becomes smoother and more accurate as 
shown in Figure 10e,f. 

Table 8. The Success Plots (SP) and Precision Plots (PP) of One Pass Evaluation (OPE) for the proposed 
MACF and the other 7 top trackers on the UAV video. The best results are in red and the second 
results are in blue. 

Trackers MACF ECO_HC BACF STC STAPLE SRDCF DAT FDSST 
SP of OPE (%) 100.0 94.8 20.6 31.4 21.8 98.7 23.1 46.8 
PP of OPE (%) 100.0 98.6 24.1 32.2 29.1 99.5 32.5 52.6 

 

    

    

    

Figure 9. The qualitative experiment comparing the MACF (in red) with state-of-the-art trackers
ECO-HC (in blue), BACF (in cyan), STC (in white), Staple (in green), SRDCF (in black), DAT (in yellow)
and FDSST (in pink) on UAV video sequence with static background.

Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 

Figure 9. The qualitative experiment comparing the MACF (in red) with state-of-the-art trackers ECO-
HC (in blue), BACF (in cyan), STC (in white), Staple (in green), SRDCF (in black), DAT (in yellow) 
and FDSST (in pink) on UAV video sequence with static background. 

  
(a) The actual position of the UAV in the plane (b) The predicted position of the UAV in the plane 

  
(c) The actual position of the UAV in the space (d) The predicted position of the UAV in the space 

  
(e) The compared results with the predicted, actual 

and corrected positions in the plane 
(f) The compared results with the predicted, actual 

and corrected positions in the space 

Figure 10. Illustration of the accuracy of the predicted position and scale of the UAV. Here, the Actual 
position (in blue) is the actual UAV position which is calibrated by manual in the video, the Predict 
position (in red) is predicted by the instantaneous motion estimation method and the Correct position 
(in green) is filtered position by Kalman filters. (a,b) indicate respectively in-plane predicted and 
actual positions. (c,d) show apart 3D predicted and actual positions where the scale represents the 
dept motion. (e,f) display the overall results. 

5. Conclusions 

In this paper, a novel tracking framework called MACF is proposed in detail, which fuses the 
motion cues with the FDSST algorithm for accurately estimating the position and scale of the target. 

-50 0 50 100 150 200 250 300 350
100

200

300

400

500

600

700

*initial pos

*final pos

Actual position

-50 0 50 100 150 200 250 300 350 400
100

200

300

400

500

600

700

*initial pos

*final pos

Predict position

Figure 10. Cont.



Sensors 2018, 18, 3937 21 of 25

Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 

Figure 9. The qualitative experiment comparing the MACF (in red) with state-of-the-art trackers ECO-
HC (in blue), BACF (in cyan), STC (in white), Staple (in green), SRDCF (in black), DAT (in yellow) 
and FDSST (in pink) on UAV video sequence with static background. 

  
(a) The actual position of the UAV in the plane (b) The predicted position of the UAV in the plane 

  
(c) The actual position of the UAV in the space (d) The predicted position of the UAV in the space 

  
(e) The compared results with the predicted, actual 

and corrected positions in the plane 
(f) The compared results with the predicted, actual 

and corrected positions in the space 

Figure 10. Illustration of the accuracy of the predicted position and scale of the UAV. Here, the Actual 
position (in blue) is the actual UAV position which is calibrated by manual in the video, the Predict 
position (in red) is predicted by the instantaneous motion estimation method and the Correct position 
(in green) is filtered position by Kalman filters. (a,b) indicate respectively in-plane predicted and 
actual positions. (c,d) show apart 3D predicted and actual positions where the scale represents the 
dept motion. (e,f) display the overall results. 

5. Conclusions 

In this paper, a novel tracking framework called MACF is proposed in detail, which fuses the 
motion cues with the FDSST algorithm for accurately estimating the position and scale of the target. 

-50 0 50 100 150 200 250 300 350
100

200

300

400

500

600

700

*initial pos

*final pos

Actual position

-50 0 50 100 150 200 250 300 350 400
100

200

300

400

500

600

700

*initial pos

*final pos

Predict position

Sensors 2018, 18, x FOR PEER REVIEW  21 of 26 

Figure 9. The qualitative experiment comparing the MACF (in red) with state-of-the-art trackers ECO-
HC (in blue), BACF (in cyan), STC (in white), Staple (in green), SRDCF (in black), DAT (in yellow) 
and FDSST (in pink) on UAV video sequence with static background. 

  
(a) The actual position of the UAV in the plane (b) The predicted position of the UAV in the plane 

  
(c) The actual position of the UAV in the space (d) The predicted position of the UAV in the space 

  
(e) The compared results with the predicted, actual 

and corrected positions in the plane 
(f) The compared results with the predicted, actual 

and corrected positions in the space 

Figure 10. Illustration of the accuracy of the predicted position and scale of the UAV. Here, the Actual 
position (in blue) is the actual UAV position which is calibrated by manual in the video, the Predict 
position (in red) is predicted by the instantaneous motion estimation method and the Correct position 
(in green) is filtered position by Kalman filters. (a,b) indicate respectively in-plane predicted and 
actual positions. (c,d) show apart 3D predicted and actual positions where the scale represents the 
dept motion. (e,f) display the overall results. 

5. Conclusions 

In this paper, a novel tracking framework called MACF is proposed in detail, which fuses the 
motion cues with the FDSST algorithm for accurately estimating the position and scale of the target. 

-50 0 50 100 150 200 250 300 350
100

200

300

400

500

600

700

*initial pos

*final pos

Actual position

-50 0 50 100 150 200 250 300 350 400
100

200

300

400

500

600

700

*initial pos

*final pos

Predict position

Figure 10. Illustration of the accuracy of the predicted position and scale of the UAV. Here, the Actual
position (in blue) is the actual UAV position which is calibrated by manual in the video, the Predict
position (in red) is predicted by the instantaneous motion estimation method and the Correct position
(in green) is filtered position by Kalman filters. (a,b) indicate respectively in-plane predicted and actual
positions. (c,d) show apart 3D predicted and actual positions where the scale represents the dept
motion. (e,f) display the overall results.

5. Conclusions

In this paper, a novel tracking framework called MACF is proposed in detail, which fuses the
motion cues with the FDSST algorithm for accurately estimating the position and scale of the target.
The proposed approach utilizes the instantaneous motion estimation method to predict the position
and scale of the target in the next frame. The optimal Kalman Filters are employed to filter noises, and
then the FDSST tracker is used to detect the position and scale based on the predictions. Moreover, an
improved confidence function of response map is further proposed to determine whether the results
of detection are accurate enough to update. Then an adaptive learning rate is set according to the
confidence function to prevent model corrupted by occlusions. Furthermore, the proposed MACF
framework is flexible and can be readily incorporated into other visual tracking algorithms. Numerous
experiments on popular benchmark OTB-50, OTB-100 and UAV video indicate that the proposed
MACF achieve a significant improvement among the compared trackers. In this work, the situation
where the target is occluded is detected by utilizing the confidence function. Then it prevents model
drifting by reducing the learning rate. It is suitable for handling the situations of incomplete occlusions.
When the target is severely occluded or completely occluded, the proposed MACF sets the learning
rate to 0, hence, the model of the target is not be degraded by occlusions. However, if the target comes
out of the other side of the occlusion object and moves out of the current search area, the tracking will
fail. Therefore, in future work, a re-detect method is expected to track the target when the target is
severely occluded or completely occluded to ensure robust tracking. For instance, when the object is
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completely occluded, the search area should be extended, and the position and scale of the target can
be predicted by the previous velocity and acceleration until the target is re-detected judging by the
confidence function.
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Appendix

In this section, the expressions bellow are used to prove that the squared response map has a
significant effect on confidence calculation. As described in Section 3.5, the Confidence of the Squared
Response Map function (CSRM) is defined as follows:

CSRM =

∣∣R2
max − R2

min

∣∣2
1

MN ∑M
i=1 ∑N

j=1

∣∣∣R2
ij − R2

min

∣∣∣2
The Confidence of Response Map function (CRM) is defined as follows:

CRM =
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Hence, the difference between the CSRM and CRM compute by follows:
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Therefore, CSRM ≥ CRM and the difference between them increases as the value of Rmax

increases. Furthermore, the larger value of Rmax means the higher confidence score. Hence, this
increases the gap between the confidence response and the diffident response.
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