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ABSTRACT
In S. cerevisiae prophase meiotic chromosomes move by forces generated in the cytoplasm and 
transduced to the telomere via a protein complex located in the nuclear membrane. We know 
that chromosome movements require actin cytoskeleton [13,31] and the proteins Ndj1, Mps3, and 
Csm4. Until recently, the identity of the protein connecting Ndj1-Mps3 with the cytoskeleton 
components was missing. It was also not known the identity of a cytoplasmic motor responsible 
for interacting with the actin cytoskeleton and a protein at the outer nuclear envelope. Our recent 
work [36] identified Mps2 as the protein connecting Ndj1-Mps3 with cytoskeleton components; 
Myo2 as the cytoplasmic motor that interacts with Mps2; and Cms4 as a regulator of Mps2 and 
Myo2 interaction and activities (Figure 1). Below we present a model for how Mps2, Csm4, and 
Myo2 promote chromosome movements by providing the primary connections joining telomeres 
to the actin cytoskeleton through the LINC complex.
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In meiosis, DNA replication is followed by two 
rounds of chromosome segregation. In the first 
round, prophase progresses through distinct 
stages, during which homologous chromosomes 
pair (leptonema-zygonema). Synaptonemal com-
plex is then formed, a proteinaceous structure 
formed in between each pair of homologous chro-
mosomes stabilizing their interaction, promoting 
synapsis (zygonema-pachynema).

Mutations in genes that regulate pairing and 
synaptonemal complex dynamics are invariably 
associated with increased errors in meiotic chro-
mosome segregation. This is particularly relevant 
considering that chromosome segregation errors 
occur in about 10%-30% of human germ cells, 
resulting in aneuploid gametes, ultimately result-
ing in aneuploid conceptus abortions before term, 
and a number of aneuploid births with physical 
disabilities and mental retardation [1–3].

Chromosome interactions (pairing and synap-
sis) are accompanied by prominent active chromo-
some movements that are conserved in organisms 
from yeast to mammals [4–18]. RPMs have been 
implicated in promoting homologous 

chromosome pairing and synapsis [16,19–26], 
reducing non-homologous interactions 
[6,20,21,27,28], and resolving chromosome inter-
locks [29,30]. Thus, chromosome movements par-
ticipate in critical meiotic events required for 
normal progression of gametogenesis.

In S. cerevisiae prophase meiotic chromosomes 
move by forces generated in the cytoplasm and 
transduced to the telomere via a conserved protein 
complex located in the nuclear membrane. From 
previous studies, we know that budding yeast chro-
mosome movements require an intact actin cytoske-
leton [13,31] and the proteins Ndj1, Mps3, and 
Csm4 at the nuclear membrane. The telomeric 
Ndj1 binds the nucleoplasmic domain Mps3, which 
contains a SUN domain [32–35]. However, until 
recently, the identity of the protein connecting Ndj1- 
Mps3 with the machinery that generates the forces at 
the cytoskeleton was missing. It was also not known 
the identity of a predicted cytoplasmic motor 
responsible for interacting with the actin cytoskele-
ton and the outer nuclear portion of a protein at the 
outer nuclear envelope. Our recent work [36] iden-
tified Mps2 as the protein connecting Ndj1-Mps3 
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with cytoskeleton components; Myo2 as the cyto-
plasmic motor that interacts with Mps2; and the 
Cms4 protein as a possible regulator of Mps2 and 
Myo2 interaction and activities (Figure 1). Below we 
discuss a model in which the interaction between 
Mps2, Csm4, and Myo2 promotes chromosome 
movements by providing the primary connections 
joining telomeres to the actin cytoskeleton through 
the LINC complex.

Mps2 acts as a KASH-like protein connecting 
the LINC complex to cytoskeleton 
components

Previous work showed that the meiosis-specific 
Mps3-Ndj1 complex interacts with telomeres 

[33]. We then reasoned that known Mps3 inter-
actors may be candidates to identify the missing 
LINC protein connecting the telomere to the 
cytoskeleton. Indeed, in mitotic cells Mps3-Mps2 
work together in the spindle pole body [37]. 
Although Mps2 does not show a conserved 
KASH domain as usually observed in KASH pro-
teins, Mps2 is an integral membrane protein of the 
nuclear envelope with a transmembrane domain 
near the C terminus [37–39]. We then tested 
whether Mps2 functions as an integral part of the 
LINC complex interacting with Mps3. We 
observed that Mps2 localizes at the end of chro-
mosomes, Mps2-Mps3 physically interact, and 
expression of Mps2 C-terminal mutation (six 
amino acids) impairs active prophase chromosome 
movements [36]. This provides substantial evi-
dence that Mps2 functions are comparable to 
those of a KASH-like protein within the LINC 
complex, connecting the Mps3/Ndj1/telomere 
complex to the cytoskeleton.

Identification of Mps2 interacting proteins, 
candidates for novel factors participating in 
active movements

We propose a model in which the N terminus of 
Mps2 is located in the cytoplasm, and the 
C terminus in the intermembrane lumen (Figure 1). 
To test this model we performed a yeast two-hybrid 
screen [36] using amino acids 1–310 of Mps2 as bait 
to screen a prey library of yeast genomic DNA frag-
ments [40].

We identified a number of possible interactors 
for Mps2 among which we highlight myosin 2 
(Myo2) [36]. Myo2 is a type V myosin with well- 
defined domains corresponding to a cargo binding 
region, which possibly interacts with adaptor pro-
teins [41]. The interaction was confirmed by co- 
immunoprecipitation in yeast co-expressing 
Myo2-HA and Mps2-Myc. Our experiments 
further demonstrated that: (1) Myo2 interacts 
with the LINC complex, (2) Mps2 is required to 
recruit Myo2 to the nuclear envelope during meio-
sis, and (3) expression of a dominant-negative 
allele of Myo2 (Myo2ΔN) delocalizes Myo2 from 
nuclear envelope, perturbs RPMs, and delays 
meiotic progression [36].

Figure 1. Schematic of a model of the engine generating RPMs 
in budding yeast. The structure diagram corresponding to the 
proteins participating in the mechanism was obtained using 
https://swissmodel.expasy.org and are not shown at scale.
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Csm4 regulates Mps2-Myo2 RPM functions

Csm4, a tail-anchored nuclear envelope protein, 
localizes at telomeric ends of chromosomes in 
meiotic chromosome spreads, suggesting its invol-
vement in the LINC complex. Deletion of Csm4 
results in a strong impairment of RPMs [42,43]. 
Our data suggest that in meiosis, Csm4 acts as 
a regulator of Mps2 and Myo2 functions. This is 
supported by our findings [36]: (1) Csm4 does not 
influence the Mps2-Mps3 interaction and Csm4 
localization at telomeres depends on Mps2. (2) 
Coimmunoprecipitation experiments show that 
Mps2 and Csm4 interact during meiosis. (3) 
Deletion of Csm4 or Mps2 leads to loss of Myo2- 
GFP association to the nuclear envelope. Together, 
these results suggest that Csm4 and Mps2 are both 
positioned in the outer nuclear membrane where 
they provide the link with extranuclear compo-
nents associated with the LINC complex.

Prompted by the observed interaction between 
Mps2 and Csm4 [36] and to further analyze the 
role of Mps2-Csm4 cooperation, we generated an 
Mps2-Csm4 fusion protein and tested its effect in 
wild type and csm4 mutant. In this manuscript, we 
show the results obtained studying sporulation, 
anaphase I entry, and RPMs. We fused amino 
acids 1–130 of Csm4 to the N-terminus of full- 
length Mps2 and expressed the fusion gene from 
the CSM4 promoter (detail in the legend of Figure 
2). Expression of Mps2-Csm4 in the wild-type 
strain did not have any apparent effect on ana-
phase I entry or sporulation rate (Figure 2(a)). 
Importantly, Mps2-Csm4 fusion complemented 
the prophase delay observed in csm4 (Figure 2 
(a)) and suppressed the csm4 defect in sporulation 
rate (Figure 2(b)).

We then measured RPMs in wild type, csm4 
mutant, and Mps2-Csm4 fusion strain. We 
acquired time-lapse images of GFP-lacI bound 
to lacO sequences integrated near the right telo-
mere of paired chromosome lV and measured 
the maximum speed, average speed, and bias. 
Csm4 deletion mutant was used as a control 
for reduced RPMs. We found that RPMs are 
partially rescued in Mps2-Csm4 fusion strain 
when compared with csm4 deletion, suggesting 

partial complementation of the csm4 deletion 
(Figure 2(c)). The most notable change in the 
character of telomere movements was detected 
by an increase in bias, which describes the abil-
ity for a spot to move away from its starting 
point. It is noteworthy that moderate enhance-
ments of movement provided by the Csm4-Mps2 
fusion protein have very significant effects on 
the meiotic outcome. While it is possible that 
the fusion protein represents some separation of 
function allele, we favor the hypothesis that the 
fusion protein is simply a hypomorphic allele of 
Csm4 that is not quite in its normal geometry 
and the fusion protein must compete with Mps2 
for telomere association. These observations may 
suggest that in many circumstances very low 
levels of movement may be sufficient to accom-
plish meiosis in budding yeast. It is also possible 
that bias may be more critical than speed. There 
may be some critical event, such as an interlock, 
that absolutely requires movement to resolve, 
while other processes, such as the homology 
search are stimulated by movement but can 
often be completed, but more slowly when 
movement is compromised. Finally, the rela-
tively mild rescue phenotype may be also inter-
preted as that the dynamic interactions between 
Mps2 and Csm4 play an important role in trig-
gering/regulating RPMs.

Overall, our work helps build a model for the 
engine generating RPMs in S. cerevisiae. We 
highlight our recent work [36] showing that 
Mps2 is part of the internuclear membrane 
complex connecting telomeres with cytoskele-
ton components; we identify Myo2 motor pro-
tein, which interacts with Mps2 connecting 
telomeres to the actin cytoskeleton; and show 
that Csm4 is a regulator of the Mps2-Myo2 
interaction and function. Additionally, in this 
manuscript, we show previously unpublished 
results pertaining to the functional interaction 
of Mps2 and Csm4. We show that an Mps2- 
Csm4 fusion protein can complement deficient 
sporulation and anaphase I entrance of a csm4 
deletion strain, and partially complement RPM 
functions.
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