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Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Colorectal adenomatous polyps are at high
risk for the development of CRC. In this report, we described the metabolic changes in the sera from patients with colorectal polyps
and CRC by using the NMR-based metabolomics. 110 serum samples were collected from patients and healthy controls, including
40 CRC patients, 32 colorectal polyp patients, and 38 healthy controls. The metabolic profiles and differential metabolites of sera
were analyzed by multivariate statistical analysis (MSA), including principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. A total of 23
differential metabolites were identified from MSA. According to the pathway analysis and multivariate ROC curve-based
exploratory analysis by using the relative concentrations of differential metabolites, we found abnormal metabolic pathways and
potential biomarkers involved with the colorectal polyp and CRC. The results showed that the pyruvate metabolism and
glycerolipid metabolism were activated in colorectal polyps. And the glycolysis and glycine, serine, and threonine metabolism
were activated in CRC. The changed metabolism may promote cellular proliferation. In addition, we found that the rates of
acetate/glycerol and lactate/citrate could be the potential biomarkers in colorectal polyp and CRC, respectively. The application
of 1H-NMR metabolomics analysis in serum has interesting potential as a new detection and diagnostic tool for early diagnosis
of CRC.

1. Introduction

Colorectal cancer (CRC) is one of the most prevalent diges-
tive system malignant tumors worldwide. The occurrence
of tumors is multistep and multifactorial, including gene
mutation, genetic, immune. According to the relevant date,
the morbidity and mortality of CRC are second only to lung
cancer and breast cancer [1]. As the third most common type
of cancer in the US according to the American Cancer Soci-
ety, over 136000 new CRC cases and 50000 deaths are

estimated for the year 2015 [2]. In China, with the improve-
ment of living standards and changes in diet, CRC mortality
rapidly increased to become the fifth most common cause of
cancer-related deaths in 2012 and continued to rise [1].

At present, CRC early assessment and diagnostic
methods mainly include digital rectal exam, fecal occult
blood test (FOBT), serum tumor marker detection, sigmoid-
oscopy, colonoscopy, virtual colonoscopy, and double-
contrast barium enema (DCBE). Each has its own advantages
and disadvantages. Patients with colon polyps are at high risk
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for the development of colon cancer. However, the only colo-
noscopy has sufficient sensitivity to detect polyps. While
colonoscopy and sigmoidoscopy remain the most accurate
methods for screening and diagnosis of CRC and polyps,
they have significant disadvantages, including invasiveness,
potential hazards of postoperative complications, and high
fee [3, 4]. Of the CRC patients, only 40% are diagnosed and
treated in the early stage [5]. Therefore, new, highly sensitive,
specific, noninvasive, and robust screening methods are
urgently needed for the early diagnosis of CRC.

Metabolomics is the “systematic study of unique chemi-
cal fingerprints that specific cellular processes leave behind”
[6]. The metabolome represents the collection of all metabo-
lites in a biological cell, tissue, organ, or organism, which are
the final products of cellular processes [7]. Metabolomics
could supply indispensable information to provide a better
understanding of cellular biology in the system biology and
functional genomics [8, 9]. 1H nuclear magnetic resonance
(1H-NMR) is one of the major analytical methods of metabo-
lomics. Recently, NMR-based metabolomics is widely used in
cancer diagnosis and prognosis [10–14]. In addition, meta-
bolomics studies of CRC patients have found some potential
biomarkers for CRC detection and prognosis [15, 16]. The
colorectal adenomatous polyp is a precancerous lesion of
CRC; however, a few studies have focused on identifying
metabolite changes between CRC and colorectal polyps.

In this study, we have utilized NMR-based metabolomics
combined with multivariate statistical analysis (MSA), to
investigate differential metabolic profiles between sera from
CRC patients, colorectal polyp patients, and healthy con-
trols. In this study, we are looking forward to finding out
the differential metabolites associated intimately with CRC,
as the potential biomarkers for detecting between the CRC
and colorectal polyp patients.

2. Materials and Methods

2.1. Chemicals. D2O (99.9% D) was purchased from Sigma-
Aldrich (St. Louis, MO). K2HPO4 and NaH2PO4 were pur-
chased from Xilong Chemical Co. Ltd. (Guangdong, China).
Phosphate buffer solution (pH 7.4) was prepared by 50mM
K2HPO4/NaH2PO4 in the D2O.

2.2. Serum Sample Collection. CRC and colorectal polyp
patients were recruited from the Department of Gastroenter-
ology and Oncological Surgery of the First Affiliated Hospi-
tal of Xiamen University. Healthy controls were recruited
from the physical examination center of the First Affiliated
Hospital of Xiamen University. All of the CRC patients and
colorectal polyp patients had been confirmed by colonoscopy
and histology. The participating subjects were recruited for
this study, as summarized in Table S1. Blood samples (5mL)
were collected from CRC patients, colorectal polyp patients,
and healthy controls, who were on a rice gruel for at least
48 hours. Blood was allowed to clot at room temperature for
1 hour before centrifugation (4°C, 4500 g, 15min). Then, the
serum (supernatant) was carefully separated, collected in
cryovials, and stored in a -80°C refrigerator.

2.3. Preparation of Samples and Acquisition for 1H-NMR
Spectroscopy. Before NMR analysis, we followed the methods
of Gu et al. [17] to prepare the sera. The sera were thawed in
ice, and 300μL aliquots were mixed with 210μL PBS to min-
imize variations in pH. Then, all samples were centrifuged at
12000 g for 10min at 4°C and transferred into a 5mm NMR
tube. All 1H-NMR spectra were acquired at 298K on the Bru-
ker AVANCE III at 600MHz. One-dimensional spectra were
acquired by using the Carr-Purcell-Meiboom-Gill (CPMG)
pulse sequence RD − 90o − τ − 180o − τ n −ACQ with
water suppression. We set up the total spin-spin relaxation
delay as 80ms to attenuate broad NMR signals of macro-
molecules and retain signals of metabolites, according to dif-
ferences of T2 relaxation times from macromolecules and
metabolites. The spectral width was 20 ppm with an acquisi-
tion time of 1.64 s, and a total of 256 free induction decays
were collected into 64 k data points for each spectrum.

2.4. Spectral Processing and Multivariate Statistical Analysis
(MSA). Before Fourier transformation, the free induction
decay (fid) data was multiplied by an exponential line-
broadening function of 0.3Hz. The NMR spectra were man-
ually phased, corrected for baseline correction, referenced to
the lactate (CH3, at δ1.33 ppm), and carefully aligned using
MestReNova (version 6.1, MestReLab Research S.L., Spain).
The spectral region of δ0.0-9.0 ppm was segmented into
9000 bins with a width of 0.001 ppm. The residual integrals
from the region of δ4.6-5.1 ppm in suppressed water reso-
nance were excluded in all spectra. Each sample data was
normalized to the sum of the spectral intensity to compensate
for differences in the concentrations of samples [18].

Subsequently, the normalized data were subjected into
MSA by using the SIMCA-P+ 13 software package (Ume-
trics, Umeå, Sweden). The principal component analysis
(PCA) model approximates the variation in a data table
by a low-dimensional model plane. Then, the partial least
squares discriminant analysis (PLS-DA) [19] and orthogonal
signal correction partial least squares discriminant analysis
(OPLS-DA) [20] were used to classify the samples and
extract the correlated variables in relevance with the sample
belongings. Both PLS-DA and OPLS-DA were also operated
by using the SIMCA-P+ 13 software package. As the super-
vised MSA (PLS-DA and OPLS-DA), the response permuta-
tion testing (RPT) was carried out to measure the robustness
of the model [21]. Furthermore, the CV-ANOVA was also
used to measure the robustness of the OPLS-DAmodels [22].

2.5. Identification of Differential Metabolites. In the OPLS-
DA model, most of the variables related to the class
belongings were described in the first principal component
prediction [20]. Two critical parameters were used to identify
the differential metabolites. One is the variable importance in
the projection (VIP) from the OPLS-DA model, which sorts
the importance of each variable for classification of the met-
abolic profiles. When VIP > 1, the variables were considered
statistically significant variables [23, 24]. The other is the cor-
relation coefficients of the variables relative (r) in the OPLS-
DA models. According to degrees of freedom (X − 1), where
X is the smaller number of n1 and n2 in OPLS-DA models
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[25], the threshold values were calculated for identification of
the differential metabolites. The reconstitution loading plots
of the OPLS-DA model were created in MATLAB (version
2011b, MathWorks Inc., USA).

2.6. Compared with the Most Relevant Pathways by Using the
Pathway Analysis. For a better and more complete under-
standing of the metabolic changes, the metabolic pathway
analysis was applied to find the most relevant pathways
involved with the CRC and colorectal polyp. Before the path-
way analysis, we calculated the relative concentration of the
differential metabolites. The pathway analysis was carried
out on the web server of MetaboAnalyst 3.0 [26]. In the path-
way analysis module of MetaboAnalyst 3.0, there are two
parameters to determine the relevant pathways involved with
CRC and colorectal polyp. One parameter is the statistical
p values from the quantitative enrichment analysis [27], and
the other is the pathway impact value, which is calculated by
the topological analysis with the relative betweenesss
centrality..

2.7. Potential Biomarker Discovery by Using the Multivariate
Receiver Operating Characteristic (ROC) Analysis.Metabolo-
mics has proved to be useful in the biomarker discovery of
cancer in early diagnostic [28, 29]. In our study, we used
the multivariate ROC analysis in MetaboAnalyst 3.0 [26] to
find the potential biomarkers from differential metabolites.
ROC curves compare sensitivity versus specificity across a
range of values for the ability to predict a dichotomous out-
come. In the ROC curve, sensitivity refers to the percentage
of subjects with target conditions and positive results; mean-
while, specificity is the percentage of subjects without target
conditions and negative results [30]. In the biomarker analy-
sis module of the web server of MetaboAnalyst 3.0, the fea-
ture ranking method with Random forest algorithm [31] is
applied to select the potential biomarkers.

3. Results

3.1. Metabolic Profile Analysis of Colorectal Polyp and CRC
Patients. The typical 1H-NMR spectra of sera from the three
groups were showed in Figure S1. A number of metabolites
were assigned based on previous literatures [32, 33] and
confirmed by public NMR database (Human Metabolome
Database, version 3.0, http://www.hmdb.ca/) [34]. Further,
these metabolites were confirmed with a 2D 1H-1H TOCSY
spectrum of a control serum (Figure S2).

For comprehensive observation of the metabolic profiles
from the three groups, the PCA was performed on the
respective NMR data of sera. The analysis results of PCA
were shown in Figure 1. The metabolic profiles of colorectal
polyp and CRC could be distinguished from those of the
healthy control in the PCA score plot (Figure 1(a)) with the
first three principal components (PC1, PC2, and PC3). In
the PCA models, the metabolic profiles of colorectal polyp
could be basically differentiated from those of the control
(Figure 1(b)). CRC is metabolically differentiated from the
control obviously (Figure 1(c)). However, the groups of

colorectal polyp and CRC displayed separations with partial
overlap in the score plot (Figure 1(d)).

To assess the variations between the groups, PLS-DA
with the first two predicted principal components (tp1 and
tp2) would like to be utilized. In the score plots of PLS-
DA models (Figure S3 A, B, and C), the metabolic profiles
of each could be distinguished between each other. The
validation plots of these corresponding RPTs (Figure S3 D,
E, and F) indicated that the classifications were reliable.
Furthermore, the corresponding RPTs and CV-ANOVAs of
OPLS-DA models were also used to measure the robustness
of these OPLS-DA models (Figure S4, Table S2-S4).

The differential metabolites which are significant respon-
sible for distinguishing these three groups were identified in
the OPLS-DA loading plots. In the OPLS-DA models, the
score plots showed separations between each other
(Figures 2(a)–2(c)). The corresponding loading plots offered
an insight into the types of metabolites on the first principal
component according to the VIPs and correlation coeffi-
cients (Figures 2(d)–2(f)). According to the OPLS-DAmodel
of the colorectal polyp group compared to that of the con-
trol group, the levels of lipid, leucine, lactate, acetate, glu-
tamate, PUFA, choline, glycine, and betaine were increased
in the colorectal polyp group, and the levels of valine, alanine,
N-acetyl glycoproteins, glutamine, succinate, aspartate, glyc-
erol, and glucose were decreased in the colorectal polyp
group (Figures 2(a) and 2(d)). In the model of the CRC group
compared to that of the control group, the levels of isoleu-
cine, 3-hydroxybutyrate, lactate, acetate, glutamate, choline,
glycine, serine, and glucose were increased in the CRC
group, and the levels of lipid, leucine, valine, alanine, glu-
tamine, succinate, citrate, aspartate, proline, and tyrosine
were decreased in the CRC group (Figures 2(b) and 2(e)).
There are some different metabolites between the colorectal
polyp group and CRC group. The metabolites of lysine, N-
acetyl glycoproteins, glutamine, glycerol, serine, and glucose
were elevated in the CRC group. The metabolites of lipid,
leucine, valine, alanine, glutamate citrate, PUFA, proline,
and tyrosine were reduced in the CRC group (Figures 2(c)
and 2(f)). The detailed information of these metabolites
was listed in Table 1.

3.2. Major Pathways with Concerted Alterations in the
Colorectal Polyp and CRC. In the colorectal polyp, the major
relevant pathways were the pyruvate metabolism, glyceroli-
pid metabolism, glutamine and glutamate metabolism, and
alanine, aspartate, and glutamate metabolism (Figure 3(a)).
Then, the major relevant pathways changed in the CRC. The
major pathways were glycolysis; glycine, serine, and threonine
metabolism; glutamine and glutamate metabolism; and ala-
nine, aspartate, and glutamate metabolism (Figure 3(b)).

3.3. Potential Biomarkers in the Colorectal Polyp and CRC.
Using the biomarker analysis from the web server of
MetaboAnalyst 3.0, we found some potential biomarkers
in the colorectal polyp and CRC. At first, we performed
multivariate ROC curve analyses based on the Random
forest algorithms. The results of multi-ROC curve analyses
showed that the models with five features both in
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colorectal polyp and CRC data have a good discriminant
ability (Figures 4(a) and 4(d)). The predicted class prob-
abilities for each sample using the classifier of five fea-
ture models (Figures 4(b) and 4(e)) also verified that these
five features could distinguish the colorectal polyp and
CRC samples from the control samples. The results of the
feature ranking showed the potential biomarker ranking
(Figures 4(c) and 4(f)). In the colorectal polyp data, the dif-
ferent metabolites of glutamine, succinate, glycerol, aspartate,
and lactate were the potential biomarkers (Figure 4(c)). In
the CRC data, the different metabolites of lactate, glycine,
glutamate, glutamine, and aspartate were the potential bio-
markers (Figure 4(f)). These potential biomarkers could be
transformed into the early diagnostic index of colorectal
polyp and CRC.

4. Discussion

Metabolic polymorphisms in human carcinogenesis derived
from the altered oncogenic expression, variable hypoxia
levels, and the utilization of different carbon sources may
produce diverse metabolic phenotypes and treatment
responses [35]. Toward the goal of a system view of the
metabolic changes in CRC, we have therefore researched
metabolic changes in the sera from the colorectal polyp and
CRC patients and healthy control volunteers.

In this study, we found that the metabolic profiles of these
three groups could be distinguished by using the NMR-based
metabolomics combined with multivariate statistical analy-
sis. The similar results were also observed by others. Zhu
et al. found that metabolites are obviously different between

4

2

0

−2 −5

−10

−4
−6 −4 −2 0 2 4 6 10

5

0

PC
3 

(6
.8

9%
)

PC2 (14.75%)

PC
1 (

25
.77

%
)

Contol
Colorectal polyp
CRC

(a)

−10
−4
−3
−2
−1

0
1
2
3
4

−5
0

5

10

0

PC
3 

(9
.3

2%
)

PC1 (31.06%) PC2 (12.72%)

Contol
Colorectal polyp

(b)

−10
−5

0
5

10

−4

−2

0

2

4

−5

0

5

PC
3 

(9
.3

2%
)

PC1 (25.80%) PC2 (15.74%)

Contol
CRC

(c)

−10

−4

−2

0

2

4

6

8

−5

−5

−50510
0

PC
3 

(9
.3

2%
)

PC1 (26.38%) PC2 (11.66%)

Colorectal polyp
CRC

(d)

Figure 1: PCA score plots derived from NMR spectra of the serum samples. (a) All samples; (b) colorectal polyps vs. controls; (c) CRC vs.
control; (d) CRC vs. colorectal polyps.
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Figure 2: (a–c) OPLS-DA score plots derived fromNMR spectra of serum samples and (d–f) the corresponding loading plots used to identify
differential metabolites. (a, d) Colorectal polyps vs. controls; (b, e) CRC vs. control; (c, f) CRC vs. colorectal polyps. The gradient red color
indicates that the variables are very significant (∣r∣ > 0 442 in (d), ∣r∣ > 0 408 in (e), and ∣r∣ > 0 442 in (f); VIP > 1); gradient orange
indicates that the variables are significant (0 344 < ∣r∣ < 0 442 in (d), 0 316 < ∣r∣ < 0 408 in (e), and 0 344 < ∣r∣ < 0 442 in (f); VIP > 1); blue
indicates that the variables are insignificant (NS).
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the serum samples of these three groups by using LC-MS
[36]. In addition, Ong et al. also found this metabolic path-
way was significant change between the tissure of CRC and
adjacent matched normal mucosa by using the GC-MS and
LC-MS/MS [37].

4.1. Metabolic Changes in the Colorectal Polyp. Comparing to
the healthy control, we focused on the altered metabolism in
the colorectal polyp. The major abnormal metabolic path-
ways were the pyruvate metabolism, glycerolipid metabo-
lism, glutamine and glutamate metabolism, and alanine,
aspartate, and glutamate metabolism. Pyruvate metabolism
predominates reliance on carbohydrate metabolism for
ATP generation [38]. It is also involved in carbon flux to reg-
ulate the ATP generation [39]. Lactate and acetate are the key
metabolites in the pyruvate metabolism. In our data of colo-
rectal polyp, the level of lactate was increased and the level of
acetate was decreased. The changes of these metabolites also
suggested that the pyruvate metabolism was abnormal in the
colorectal polyp. The glycerolipid metabolism was the anther
abnormal metabolic pathway. The increased levels of lipid
and PUFA and the decreased level of glycerol could also

prove that the glycerolipid metabolism was abnormal in the
colorectal polyp. This phenomenon suggested that the gly-
cerolipid metabolism participates in the ATP generation.
Two other abnormal metabolic pathways were focused on
the amino acid metabolism. The increased level of glutamate
and the decreased level of glutamine implied that the relevant
oxidative stress was activated in the colorectal polyp. Crespo-
Sanjuán et al. also verified that the oxidative stress level was
increased in the serum of polyp patients [40]. Alanine, aspar-
tate, and glutamate metabolism was abnormal in polyps. The
levels of alanine and aspartate were decreased in the serum of
polyps. The alanine is the product of pyruvate metabolism.
Aspartate is one of the important amino acids for the biosyn-
thesis of the building block [41]. Chen et al. found the meta-
bolic profile differences between colorectal polyp patients
and controls [4]. Using the seemingly unrelated regression
in the NMR data of sera, they found that the alanine, aspar-
tate, and glutamate metabolism was abnormal in the polyps.

4.2. Metabolic Changes in CRC. Comparing to the controls,
the major abnormal metabolic pathways were the glycolysis;
glycine, serine, and threonine metabolism; glutamine and

Table 1: Changes in relative levels of metabolites in the serum samples from CRC patients, colorectal polyp patients, and healthy controls.

Metabolites δ (1H)
Colorectal polyp vs. control CRC vs. control CRC vs. colorectal polyp

VIP ∣r∣ Change/fold
change

VIP ∣r∣ Change/fold
change

VIP ∣r∣ Change/fold
change

Lipid 0.83-0.89 (bra) 2.51 0.41 ↑∗/1.07 2.15 0.33 ↓∗/1.19 2.24 0.36 ↓∗/1.15

Leucine 0.96 (t), 1.70 (m), 3.73 (m) 1.3 0.52 ↑∗∗/1.08 1.16 0.45 ↓∗∗/1.23 2.04 0.45 ↓∗∗/1.16

Isoleucine 9.92 (t), 1.02 (d), 3.73 (m) — — —/1.01 1.34 0.53 ↑∗∗/1.28 — — —/1.01

Valine 9.78 (d), 1.05 (d), 3.61 (d) 1.92 0.54 ↓∗∗/1.09 3.77 0.50 ↓∗∗/1.17 3.03 0.35 ↓∗/1.12

3-Hydroxybutyrate
1.20 (d), 2.28 (q),
2.40 (q), 4.15 (m)

— — —/1.01 1.29 0.47 ↑∗∗/1.59 — — —/1.08

Lactate 1.33 (d), 4.12 (q) 9.52 0.63 ↑∗∗/1.51 4.6 0.67 ↑∗∗/1.48 — — —/1.06

Alanine 1.48 (d), 3.78 (q) 1.13 0.56 ↓∗∗/1.12 1.65 0.48 ↓∗∗/1.17 2.19 0.36 ↓∗/1.18

Acetate 1.92 (s) 1.46 0.57 ↑∗∗/1.21 1.25 0.54 ↑∗∗/1.18 — — —/1.02

Glutamate 2.08 (m), 2.34 (m) 3.19 0.86 ↑∗∗/1.41 1.95 0.72 ↑∗∗/1.20 1.51 0.38 ↑∗/1.18

Glutamine 2.13 (m), 2.45 (m) 5.19 0.82 ↓∗∗/1.19 2.74 0.67 ↓∗∗/1.18 1.06 0.39 ↓∗/1.19

Succinate 2.37 (s) 2.57 0.63 ↓∗∗/1.12 1.84 0.57 ↓∗∗/1.23 — — —/1.13

Citrate 2.54 (d), 2.66 (d) — — —/1.01 2.92 0.61 ↓∗∗/1.21 2.79 0.54 ↓∗∗/1.17

Aspartate 2.87 (m), 2.94 (m) 1.49 0.74 ↓∗∗/1.40 1.51 0.76 ↓∗∗/1.62 — — —/1.09

Choline 3.20 (s) 2.31 0.54 ↑∗∗/1.23 2.1 0.48 ↑∗∗/1.20 — — —/1.02

Proline 3.36 (m) — — —/1.03 4.03 0.65 ↓∗∗/1.20 3.41 0.44 ↓∗∗/1.26

Glycine 3.57 (s) 2.62 0.48 ↑∗∗/1.19 2.21 0.52 ↑∗∗/1.46 — — —/1.04

Glucose
3.24 (q), 3.48 (t), 3.90 (q),
3.54 (t), 3.71 (t), 3.83 (t)

2.49 0.52 ↓∗∗/1.25 1.87 0.67 ↑∗∗/1.53 3.46 0.47 ↑∗∗/1.31

Serine 3.84 (m), 3.96 (m) 1.57 0.68 ↑∗∗/1.32 1.19 0.59 ↑∗∗/1.18 1.68 0.60 ↑∗∗/1.23

Tyrosine 6.90 (d), 7.20 (d) — — —/1.01 1.01 0.52 ↓∗∗/1.19 1.12 0.54 ↓∗∗/1.22

NAc 2.03 (s) 1.09 0.62 ↓∗∗/1.27 — — —/1.01 2.93 0.74 ↑∗∗/1.21

PUFA 2.76-2.83 (bra) 1.1 0.41 ↑∗/1.18 — — —/1.04 1.46 0.43 ↓∗∗/1.37

Glycerol 3.61 (m), 3.65 (m) 1.74 0.61 ↓∗∗/1.32 — — —/1.07 — — —/1.05

Lysine
1.45 (m), 1.71 (m), 1.89 (m),

3.02 (t), 3.75 (t)
— — —/1.02 — — —/1.03 1.04 0.49 ↑∗∗/1.26

s: single; d: doublet; dd: doublet of doublet; t: triplet; q: quartet; m: multiplet; bra: broad peak; ↑: increase; ↓: decrease; —: no significant change. ∗p < 0 05;
∗∗p < 0 01.
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Figure 3: The aberrant metabolic pathways using the relative concentrations of differential metabolites from NMR spectra of serum samples
in the pathway analysis module of MetaboAnalyst 3.0. (a) Colorectal polyps vs. controls; (b) CRC vs. control.

8 Disease Markers



1.0

0.8

0.6

0.4

0.2

0.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

0.0 0.2 0.4 0.6 0.8 1.0

0.882
0.885
0.913
0.948
0.962
0.962

0.762-0.983
0.725-0.971
0.815-0.984

0.841-1
0.888-1
0.895-1

2
3
5

10
20
23

CIVar. AUC
1−specificity (false positive rate)

(a)

Predicted class probabilities
0.0

−2

−1

0

1

2

0.2 0.4 0.6 0.8 1.0

Sa
m

pl
es

Control
Colorectal polyp

(b)

C
ol

or
ec

ta
l

po
ly

p

High

Low

C
on

tro
l

Selected frequency (%)
0.40.20.0 0.6 0.8 1.0

Valine
NAc

PUFA
Glycine

Isoluecine
Alanine
Glucose

Glutamate
Choline

Serine
Lactate

Aspartate
Glycerol

Succinate
Glutamine

(c)

1.0

0.8

0.6

0.4

0.2

0.0

Se
ns

iti
vi

ty
 (t

ru
e p

os
iti

ve
 ra

te
)

1−specificity (false positive rate)
0.0 0.2 0.4 0.6 0.8 1.0

0.864
0.926
0.95

0.964
0.971
0.972

0.737-0.944
0.84-0.99

0.878-0.998
0.916-0.999

0.913-1
0.922-1

2
3
5

10
20
23

CIVar. Auc

(d)

Figure 4: Continued.
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glutamate metabolism; and alanine, aspartate, and gluta-
mate metabolism. Glycolysis is the important part of car-
bon flux in cell proliferation [42]. In our work, the level
of lactate, which is the terminal product of glycolysis,
was increased in the sera of CRC and citrate and succinate
(intermediate products of the citrate cycle) were decreased.
These changed metabolisms were known as the “Warburg
effect” [43]. The “Warburg effect” is known to be a char-
acteristic feature of cancer metabolism, which describes
the increased rate of glycolysis during tumor growth. Pre-
vious studies have also found that compared with the con-
trol group, the level of lactate was significantly increased
in the serum and tissue samples from CRC patients and
the intermediates of citrate cycle levels were decreased
[44–46]. The levels of glycine and serine were increased
in the sera of CRC, and the level of serine in CRC was
even higher than that in the colorectal polyp. Serine is
one of the important amino acids in cancer metabolism
[47]. Serine could be involved into the glycolysis by deriv-
ing from 3-phospho-D-glycerate, which is an intermediate
of glycolysis [48]. Serine could transform into glycine,
which is associated with cancer cell proliferation [49].
The increased levels of glycine and serine may imply that
the activated glycine, serine, and threonine levels could be
a feature of the metabolic pathway in the CRC. The two
other abnormal metabolic pathways in CRC were the same
as those in the colorectal polyp. The change of metabolites
(glutamine, glutamate, alanine, and aspartate) involved with
these two pathways was similar to that between colorectal
polyp and CRC patients.

4.3. Metabolism Similarities and Differences between
Colorectal Polyp and CRC. Compared to the abnormal

metabolic pathways and changed metabolites between
colorectal polyp and CRC, we found some similarities
and differences in metabolism. Outside of the two abnor-
mal metabolic pathways (glutamine and glutamate metab-
olism and alanine, aspartate, and glutamate metabolism),
the changed choline was alike between colorectal polyp
and CRC. In our work, the level of choline was significantly
increased in sera of colorectal polyp and CRC. The elevation
of choline-related metabolites in tumors probably resulted
from metabolism of the membrane lipids due to accelerated
cell proliferation [50, 51].

However, we found that the level of N-acetyl glycopro-
tein was different in the colorectal polyp and CRC patients.
The N-acetyl glycoprotein was increased in the sera of colo-
rectal polyps and not significantly changed in those of the
CRC. N-acetyl glycoprotein contains N-acetyl cysteine,
while N-acetyl cysteine is a precursor of glutathione
(GSH) synthesis [52]. Because the level of N-acetyl glyco-
protein was decreased in the serum of colorectal polyps, N-
acetyl cysteine was also reduced accordingly, so that the
equilibrium of oxidation and antioxidation may be disor-
dered and then cause the body damage. The other differences
in metabolites were 3-hydroxybutyrate, lipid, PUFA, glyc-
erol, and glucose. The metabolites of 3-hydroxybutyrate,
lipid, PUFA, and glycerol were involved with the glycerolipid
metabolism, which was abnormal in the colorectal polyp.
Glucose was involved with the glycolysis, which was abnor-
mal in CRC. These phenomena suggested that the ATP gen-
eration from carbon flux was different between colorectal
polyp and CRC.

In addition, we found that 3-hydroxybutyrate was only
significantly increased in the sera of CRC patients. 3-
Hydroxybutyrate is an end product of fatty acid β-oxidation.
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Figure 4: The results of the important feature identification in the serum data. (a) The multivariate ROC curves based on the cross-validation
to determine the features (5 features); (b) the predicted class probability plots (average of the cross-validation) for each sample using the base
classifier (based on AUC with 5 features). (c) Rank features by the selected frequency of being selected.
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Its high level and lipid and glycerol low levels may suggest
that the cancer cells enhanced fatty acid β-oxidation to sup-
port the energy demand of cancer cell proliferation. The

activated fatty acid β-oxidation has been confirmed in previ-
ous proteomics research [53]. This metabolite had the similar
trend as that in the research of Qiu et al. [54].

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Se
ns

ib
ili

ty

0.2 0.4 0.6 0.8 1
1−specificity

CRC vs. control
AUC = 0.669

Colorectal polyp vs. CRC
AUC = 0.713

Colorectal polyp vs. control
AUC = 0.831

(a)

Ac
et

at
e/

gl
yc

er
ol

0.0
Control Colorectal

polyp
CRC

0.1

0.2

0.3

0.4

0.5

⁎⁎⁎
⁎⁎⁎

(b)

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0

Se
ns

ib
ili

ty

0.2 0.4 0.6 0.8 1

1−specificity

CRC vs. control
AUC =0.827

Colorectal polyp vs. CRC
AUC =0.772

Colorectal polyp vs. control
AUC =0.821

(c)

Ac
et

at
e/

gl
yc

er
ol

0.0
Control Colorectal

polyp
CRC

0.1

0.2

0.3

0.4

0.5

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(d)

Figure 5: Diagnostic potential for colorectal polyp and CRC by rates (acetate/glycerol, lactate/citrate) from serum data. (a) ROC curves of the
rate of acetate/glycerol (colorectal polyp vs. control with a 0.831 AUC, colorectal polyp vs. CRC with a 0.713 AUC, and CRC vs. control with a
0.669 AUC); (b) rate of acetate/glycerol in serum samples from control, colorectal polyp, and CRC patients; (c) ROC curves of the rate of
lactate/citrate (colorectal polyp vs. control with a 0.821 AUC, colorectal polyp vs. CRC with a 0.772 AUC, and CRC vs. control with a
0.827 AUC); (d) rate of lactate/citrate in serum samples from control, colorectal polyp, and CRC patients. ∗∗p < 0 01; ∗∗∗p < 0 001.
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4.4. Diagnostic Potentials of Potential Biomarkers from
Differential Metabolites. The differential metabolites found
in serum samples could be used as candidate biomarkers to
investigate their diagnostic potential using the sera as the
samples. According to the results from the multi-ROC anal-
ysis, we found that glutamine, succinate, glycerol, aspartate,
and lactate were the potential biomarkers in colorectal polyp
and lactate, glycine, glutamate, glutamine, and aspartate were
the potential biomarkers in CRC.

Combining with the results of pathway analysis and the
multi-ROC analysis, the metabolites involved with glyceroli-
pid metabolism may become the potential biomarkers for
colorectal polyps. Then, the metabolites involved with glycol-
ysis may be the potential biomarkers for CRC. In order to
better distinguish the colorectal polyps from others, we used
the rate between the acetate and glycerol (acetate/glycerol) as
the discriminative mark. The result indicated that this rate
was efficient for distinguishing colorectal polyps from others
(colorectal polyp vs. control with a 0.831 AUC, colorectal
polyp vs. CRC with a 0.713 AUC, and CRC vs. control with
a 0.669 AUC; Figure 5(a)). The rates of lactate and citrate
(lactate/citrate) were deemed as the discriminative mark for
distinguishing these three groups (colorectal polyp vs. control
with a 0.821 AUC, colorectal polyp vs. CRCwith a 0.772 AUC,
and CRC vs. control with a 0.827 AUC; Figure 5(c)). The cut-
off points are also marked on the ROC curves (Figures 5(a)
and 5(c)). The detailed parameters were shown in Tables S5-
S6. These parameters proved the discriminant ability of these
rates. To go a step further and validate the testing of the
diagnostic effect of these rates, we used the support vector
machine (SVM) classifier to verify the diagnostic effect by
using a new validation set. The detailed information of
validation samples was listed in Table S7. The results showed
that the rates of acetate/glycerol and lactate/citrate have good
discriminant abilities (Figure S5). In addition, we needed
more patients to confirm the effectiveness for colorectal
polyps and CRC diagnosis in the future.

In conclusion, the metabolic profile analysis of sera pro-
vided a holistic view of the metabolic phenotypes of colo-
rectal polyps and CRC patients. According to the based
1H-metabolomics analysis, the differential metabolites were
identified in the sera. On the basis of the pathway analysis,
the abnormal metabolic pathways were confirmed in the
sera from colorectal polyp and CRC patients compared
to the controls. The pathways of glutamine and glutamate
metabolism and alanine, aspartate, and glutamate metabo-
lism were abnormal in the colorectal polyps and CRC. The
pyruvate metabolism and glycerolipid metabolism were
activated in colorectal polyps. Moreover, the glycolysis
and glycine, serine, and threonine metabolism were acti-
vated in CRC. The changed metabolism may promote
cellular proliferation. The rapid consumption of energy by
the upregulated glycolysis is consistent with that of the
Warburg effect.

The diagnostic potential marks of the rates of acetate and
glycerol in the colorectal polyps and the rates of lactate and
citrate in CRC were found in the serum samples on the basis
of the results of pathway analysis and multi-ROC analysis.
These rates have been validated in the ROC curve in

distinguishing the colorectal polyp and CRC patients. In the
future, more serum samples are needed for the verification
of these rates as biomarkers in clinical diagnosis.
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